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Abstract 
 
From the earliest days of using natural remedies to modern applications of clinically tested medications, 
combining therapies for disease treatment has been standard practice. Combination treatments can exhibit 
synergistic effects, broadly defined as a greater-than-additive effect of two or more therapeutic agents. 
Indeed, clinicians often use their experience and expertise to tailor such combinations in the hopes of 
maximizing the therapeutic effect. Alongside these efforts, computational studies into understanding and 
predicting the biophysical underpinnings of how synergy is achieved have benefitted from high-
throughput screening and computational biology. One challenge is how to best design and analyze the 
results of synergy studies performed at scale, especially because the number of possible combinations to 
test quickly becomes unmanageable, and the tools to analyze the resulting data are quite new. 
Nevertheless, the benefits of such studies are clear — by combining multiple drugs in the treatment of 
infectious disease and cancer, for instance, one can lessen host toxicity and simultaneously reduce the 
likelihood of resistance to treatment. In this study, we extend the widely validated chemogenomic 
HIPHOP assay to drug combinations. We identify a class of “combination-specific sensitive strains” that 
suggest mechanisms for the synergies we observe and further suggest focused follow-up studies. 
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Introduction 
 
Drugs and drug-like molecules are powerful molecular tools that can act by rapid and reversible 
inhibition of a specific protein or other biomolecule in cells. Such chemical perturbations, while 
similar to genetic manipulations, have several experimental advantages: they are tunable, fast-
acting, often reversible, and can be applied across large evolutionary distances, e.g., from yeast 
to human. Drugs can be easily combined to simultaneously modulate multiple proteins’ 
activities, and in fact, the modulation of gene products by administering a combination of drugs 
can be vital for a successful course of treatment1. The clinical success of chemical combination 
therapies has motivated our empirical study of synergistic chemical interactions. These data can 
then be assessed to predict how two drugs might interact in a biological system. To study the 
potential interaction, several mathematical models of drug synergy are available2–4; two widely 
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used approaches are the Bliss model of independence3 and the Loewe additivity model4,5. Neither 
model is able to explain all drug synergies, and no mathematical model is suited for all observed 
chemical interactions, indicating the complexity of the problem. 
 Invasive fungal infections (IFI) are lethal threats to human health, and they cause almost 
two million worldwide deaths annually. In 2018, the death rate among patients suffering from IFI 
was reported to be 28.8%6. At present, the available therapies, particularly for invasive 
infections, are limited to four categories of antifungal drugs; azoles, polyenes, echinocandins, 
and 5-flucytosine7, and the clinical results from most IFI cases are not optimal. In addition, 
emerging pathogens resistant to common antifungals8 such as the pan drug-resistant yeast 
Candida auris have spread in health care facilities globally9,10. One potential solution to the 
dearth of effective treatments is to explore the antifungal efficacy of novel drug combinations, 
including those prescribed for diverse indications11. The use of drug combinations gives rise to 
several opportunities: 1) it has been proven, both empirically and theoretically, that drugs that are 
synergistic for a particular effect do not tend to show synergy for side effects12 2) the dose of 
individual agents with serious side effects can be reduced in a combination 3) synergistic 
antifungal activity increases therapy potency and reduces lengths of treatment and 4) compared 
with monotherapy, it minimizes the risk for antifungal resistance11. 

Considering the limited number of drugs available for IFI treatment13, we sought to 
expand upon our strategy to use yeast as a eukaryotic model to screen any drug that inhibits the 
growth of, or kills yeast. Even though such drugs may be active against the host itself, our 
rationale is that using these drugs could lower host-dependent side-effects because each agent in 
a combination is typically applied in lower doses. In this study, we selected 10 compounds based 
upon their well-characterized targets in yeast, and from 100 possible combinations, drug pairs 
that empirically showed synergy were used in HIP–HOP assays — a validated genome-wide 
screen based on Haploinsufficiency Profiling (HIP) and Homozygous Profiling (HOP) to 
quantify the relative abundance of uniquely tagged yeast deletion strains. We found that, using 
this approach, we were able to; 1) identify numerous synergistic combinations, 2) quantify this 
synergy and identify combination-specific sensitive strains on a genome-wide scale. 

 
 
Results 
 
Synergy screens 
Using our database of drugs and drug-like molecules14 we selected 10 compounds (Table 1) and 
screened all possible combinations of these drugs in a 6-by-6 dosage matrix using growth curve 
analysis (Figure 1). The growth data were analyzed, using a computer program (AUDIT)15 that 
converts raw absorbance values into growth curves. These curves were then analyzed to generate 
a heatmap16, examples of which are shown in Figures 1 and 2. Next, to determine potential 
synergy, each heat map and corresponding growth curve data were examined to produce the 
average epsilon score for the drug combination 6-by-6 matrix (defined as AvgS). If two 
individual drugs act independently, their effects are expected to combine multiplicatively. In 
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other words, if a drug affecting gene x causes a fitness effect Wx, and a drug affecting gene y 
causes a fitness effect Wy, then the total effect of the drug combination (Wxy) is predicted to be 
Wx × Wy. For our purposes, we measured the deviation epsilon (ε) from this expectation (where 
εxy = Wxy – Wx × Wy)

17,18. Using this score and a threshold of AvgS < –0.05 to score a 
combination as synergistic, 33% of all combinations showed synergy. Given this unexpectedly 
high level of synergy, we applied additional filter; namely that three other drug combination 
models (additivity4,5,19, highest single agent, and a potentiation model2) identified a synergistic 
combination, we identified 10 combinations that deviated from expectation in all 4 models and 
which were therefore classified as synergistic. Interestingly, fenpropimorph vs. miconazole, 
fenpropimorph vs. cerivastatin, and miconazole vs. cerivastatin all possessed a strong synergy 
when combined. These are the only compound pairs that target the same pathway — consistent 
with the idea that drugs targeting the same essential pathway can be effective means to produce 
synergistic combinations. 
 

Table 1. Compounds used and known targets 
Compound Protein Target Method  
cerivastatin Hmg120 Bar-seq 
tunicamycin Alg721 MSP/HIP 
methotrexate Dfr122 HIP 
miconazole Erg1123,24 HIP 
rapamycin Tor225,26 MSP/HIP 
cantharidin Glc727,28 HIP 

fenpropimorph Erg2429,30 HIP 
latrunculin A Act131,32 Resistance mapping 

benomyl Tub133,34 HIP and mutant mapping 
sodium fluoride Ipp135 HIP 

hydroxyurea Rnr136,37 HIP and resistance mapping 
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Figure 1. Combination screening and transformation of growth data into a quantitative metric. (a) illustrates the
combination of fenpropimorph vs cerivastatin as an example. A 6-by-6 dose matrix is screened with an increase of
each drug along the x and y axes. The blue triangles represent increasing concentration of drug. Each square in the
6-by-6 matrix is represented by a growth curve for each drug combination, which is optical density (OD600) vs. time.
(b) To quantify synergy, growth data (a) were transformed into heat map (b). The red growth curve is the DMSO (no
drug) control. The cells marked A and B, represent the addition of compound A and compound B, respectively. The
black line represents the growth in each drug condition. The combination of A and B is shown in the bottom right-
hand cell in which the blue line indicates the expected growth rate based on the multiplicative model, while the
black curve is the actual cell growth in the drug combination. In the heatmap (c), the color of the square represents
epsilon generated using the multiplicative model, where black represents no interaction, yellow represents synergy
and blue represents antagonism.  
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Figure 2. Two examples of drug combinations screened. The concentration of drug increases along a particular axis, 
and the color of the square represents epsilon generated by using the multiplicative model. (a) methotrexate vs. 
methotrexate is an example of independence. In heat map (a), we expect epsilon to be near zero as methotrexate vs. 
methotrexate should not be synergistic since the same compound is added on both axes. (b) In contrast the 6-by-6 
dose response matrix of cerivastatin vs. fenpropimorph provides an example of synergy, because epsilon is negative. 
WAB represents the relative growth of yeast in the presence of both drugs A and B when compared to a no-drug 
control, WA represents the relative growth of yeast in the presence of drug A when compared to a no drug control. 
The color-coded scale bar from yellow (synergy) to blue (antagonism) covers the spectrum where Wab < Wa × Wb, to 
no interaction Wab = Wa × Wb to antagonism Wab > Wa × Wb. 

 
Using synergistic drug combinations to predict drug-gene interactions 

Having identified a high-confidence set of synergistic drug-drug interactions, we tested if 
these interactions could be recapitulated by combining the relevant drug-gene interactions. Our 
rationale was that if two drugs were synergistic, a loss-of-function mutation (as exemplified in 
the heterozygous state) in one of the known drug-targets would confer hypersensitivity to the 
second compound. In other words, if Drug A targets protein A and Drug B targets protein B to 
produce synergy, then one would predict that Drug A when combined with a loss-of-function 
mutant in B, should phenocopy the drug combination. To empirically test this prediction, we 
selected heterozygous deletion mutants of the known drug targets and challenged them with each 
drug listed in (Table 1), and the results were compared to data derived from the combination 
screen presented in Figure 1.  
 11 heterozygous deletion mutants — each deleted for one of the known drug-targets — 
along with a wild type control strain were profiled in each drug, results in 121 drug-gene 
interaction tests (i.e., 11 drugs against 11 heterozygous deletion mutants). The act1 heterozygote 
displayed a significant fitness defect without drug treatment and was eliminated from further 
analysis.  The remaining 110 drug-gene interactions were examined for drug sensitivity. We used 
a cut-off of greater than a 10% fitness defect (i.e., an inhibitory concentration of 10 or IC10) and 
identified 72 negative drug-gene interactions. Among these 72 interactions, 10 were the expected 
HIP-drug interaction, while 62 negative drug-gene interactions were novel. In the 62 negative 
drug-gene interactions, 17 of the 18 predicted interactions had greater than a 10% defect in 
growth, giving a significant enrichment (P-value = 0.003) of drug-gene interactions, which are 
predicted by synergistic combinations. Using a more stringent cut-off of greater than a 30% 
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fitness defect, 15 negative drug-gene interactions, 8 of which were from the predicted drug-gene 
interactions (P-value = 0.0002); Table 2.  
 
Table 2. Fitness of heterozygous mutants in drugs. Red denotes expected drug-induced haploinsufficiency (e.g., 
when considering an ERG11 Het, the expectation is that this strain would grow slower than its wild-type counterpart 
in miconazole because miconazole targets the ERG11 protein.); yellow indicates predicted haploinsufficiency 
interactions based on synergistic drug combinations (i.e., based on the drug-drug synergy we expect a drug-gene 
interaction). Numbers represent the average generation time (AvgG) of the mutant’s fitness relative to wild type in 
the drug condition. 
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erg11 0.82 0.76 0.94 0.54 0.95 1.00 0.92 0.99 0.90 0.99 0.90 

tub1  0.72 0.81 0.90 0.42 0.69 0.87 0.78 0.83 0.81 0.82 0.35 
tor2  0.53 0.73 0.56 0.68 0.90 0.98 0.85 0.96 0.87 0.89 0.65 

erg24  0.55 0.74 0.71 0.73 0.88 0.89 0.83 0.90 0.77 0.87 0.68 
glc7  0.52 0.79 0.65 0.50 0.58 0.95 0.83 0.90 0.88 0.83 0.68 
ipp1  0.61 0.74 0.72 0.78 0.91 0.71 0.89 0.97 0.99 0.89 0.68 
rnr1  0.64 0.92 0.73 0.56 0.93 0.96 0.87 0.94 0.90 0.93 0.68 
dfr1  0.55 0.92 0.80 0.68 0.93 1.04 0.87 0.78 0.97 0.91 0.75 

hmg1  0.56 1.07 0.80 0.68 0.97 1.05 0.90 1.01 0.75 0.91 0.87 
alg7  0.76 1.05 0.81 0.55 0.99 1.05 0.94 1.04 0.96 0.79 0.96 

 
 
Determination of a background synergy rate 
To put our drug-drug synergy observations in context, we sought to determine the chances of 
observing synergy when two randomly selected compounds were combined. In other words, 
establishing the likelihood observing synergistic effects of any two compounds would then allow 
one to calculate any enrichment over random chance. Accordingly, we tested all pairwise 
combinations of 15 compounds in a 4-by-4 dosage matrix (Table 3). Our criteria for selecting 
such “random compounds'' included i) they were bioactive in yeast, and ii) their HIP–HOP 
profiles showed a similar number of sensitive strains when compared to the compounds in table 
2. We further evaluated these compounds by mapping them onto the synthetic genetic array 
(SGA) network of gene-gene interactions38. Using the multiplicative synergy model, 17% of 
these 'random' combinations were synergistic (ε < −0.20) which dropped to 9.5% of 
combinations when the over-represented compounds that affect the cell wall and secretion were 
excluded. This value is similar to previously reported combination screening studies, which 
report ~10% baseline synergy in any combination2,39,40. 
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Table 3. Drugs and chemical probes and their concentrations used in a 4-by-4 dose matrix to 
determine baseline synergy. The three compounds indicated by their CAS numbers are from 

reference14. 

Drug Yeast Target Dose 1 Dose 2 Dose 3 Dose 4 Units 
cisplatin DNA 0 100.0 150.0 200.0 µM 
MMS DNA 0 0.136 0.318 0.454 mM 
camptothecin TOP2 0 0.25 0.5 1.0 mM 
caspofungin FKS1 0 7.0 7.2 7.5 nM 
chlorpromazine unknown 0 20.0 21.0 22.0 µM 
hygromycin B unknown 0 10.0 15.0 20.0 µM 

nocodazole TUB1 0 11.0 12.0 13.0 µM 
cytochalasin A ACT1 0 40.0 50.0 60.0 µM 
pentamidine unknown 0 75.0 115.0 130.0 µM 
nigericin unknown 0 20.0 25.0 30.0 nM 
neomycin sulfate unknown 0 175.0 200.0 225.0 µM 
sodium butyrate HDACs 0 40.0 60.0 80.0 mM 
3470-5652 unknown 0 9.0 11.0 13.0 µM 
1273-0059 unknown 0 1.4 1.7 2.0 µM 
3770-0098 unknown 0 150.0 200.0 250.0 µM 

 
 
Predicting synergy 
“Chemical space — a term used to encompass all possible small (>500 atoms) organic 
molecules, including those in biological systems — is vast”41.  Furthermore, the current 
purchasable, and readily screenable compounds comprise approximately 8 million unique 
compounds42. Screening each of these molecules as single agents is quite daunting, while 
screening all pairwise combinations is impossible. The number of potential combinations is (N2 − 
N)/2, with the number of starting compounds being (N). To expedite the identification of 
synergistic combinations, we test if we could uncover synergistic combinations from 
combination chemogenomic data. 
 We reasoned that if a drug induces a fitness defect in a particular gene-deletion mutant, 
but does not directly inhibit that gene product, then this drug might be synergistic when 
combined with a second compound that does inhibit that gene product. To survey the possible 
drugs and mutants that satisfy these criteria, we first used our database of several thousand 
chemogenomic assays14 to define when a heterozygous deletion mutant of a known drug-target is 
sensitive. We then sought to uncover synergistic interactions so the drug can be paired with a 
second drug that inhibits the known drug-target (Figure 3). 
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Figure 3. Diagram of synergy prediction method. The HIP–HOP profile for drug X, in which red circles are 
essential genes and blue are nonessential genes. Genes are listed on the x-axis and sensitivity to drug X is on the y-
axis. The most sensitive strain in this example is the target of drug X. However, another essential gene also displays 
sensitivity to drug X. This gene is the known drug-target of drug Y. Using the synergy prediction method, drug X 
and drug Y would be predicted to be synergistic. By testing them in a drug dosage matrix, one can determine if this 
assumption is true. 

 
This principle is illustrated with miconazole, an antifungal that targets the enzyme, Erg11p. 
Because the hmg1Δ deletion strain is also sensitive to miconazole, we hypothesized that the 
combination of miconazole and an HMG1 inhibitor, (e.g., cerivastatin) would be synergistic. To 
test this hypothesis, we first examined the dataset in reference43 and all single-agent screens 
performed in our lab to ask if any of the drug targets in Table 1 exhibited a fitness defect. From 
this survey, 25 predicted synergistic combinations were selected and empirically tested to 
determine if their synergy rate was greater than the background synergy rate of 17%. We found 
40% of the tested pairs were synergistic (ε < −0.20): a 2.5-fold significant enrichment over 
random pairs (p-value < 0.01). This approach is conceptually distinct from another synergy 
prediction method introduced by Jansen et al.44 which computed a correlation between HIP–HOP 
profiles. Our approach in contrast, is empirical, asking if a drug, selected based on its drug-gene 
interactions in HIP–HOP, can induce synergy. This approach is well-suited for profiles with low 
similarity. By way of example, miconazole and fenpropimorph, is a synergistic combination that 
we identified despite a low profile similarity44. 
 
HIP–HOP Combination Profiles 
We next used a variation of the HIP–HOP assay, testing compound combinations genome-wide. 
All 14 confirmed synergistic combinations and 12 non-synergistic combinations, and each single 
agent was used for chemogenomic screening. We then used the approach described by Lee et 
al.14 to identify any significantly sensitive strain in all screens. To further scrutinize the drug 
combinations, we defined the epsilon, ε, as a fraction of uniquely sensitive genes, in both 
synergistic and non-synergistic pairs. We defined uniquely sensitive genes as those that are 
significant only when both compounds are tested together at a fitness defect score of 2.0 or 
greater. Two examples are shown in Figure 4, and the entire dataset of single agent and 
combination HIPHOP profiles is in supplementary information (synergy files). 
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Although, the primary goal of these genome-wide combinations is to serve as a resource for 
focused tests of individual combination-specific genes, several high-level observations are 
noteworthy; i) combinations vary greatly in the number of specifically sensitive genes, ii) in 
some cases the combination-specific strains appear to be subject to potentiation by one of the 
two agents (i.e., these strains can be detected at higher doses of the single agents45, and iii) the 
combination-specific genes identified are consistent with known mechanisms of actions of one or 
both of the drugs used in the combination. 
 
 

 
Figure 4. HIPHOP screening of select drug combinations. 
For each combination screen, a drug combination that inhibited WT yeast growth by 20% was selected and screened 
alongside each single agent. To identify combination-specific strains, we required that the fitness defect in the 
combination be 4.0 or greater and that in each single agent, the fitness defect for that strain did not exceed 2.0. For 
clarity, the heterozygous essential (HIP- left scatterplots) and homozygous non-essential (HOP- scatterplots) data 
are plotted separately. Significantly sensitive strains are highlighted in green, and combination-specific strains are 
depicted in red, with the fitness defect scores shown on the y-axes. 
In the case of the fenpropimorph x rapamycin combination (top plots), only a single strain- the essential gene 
DML1. This gene product has been implicated in diverse aspects of mitochondrial function. For the hydroxyurea x 
cerivastatin combination (bottom plots), a larger number of combination-specific strains are apparent. Among these 
are essential genes involved in sphingolipid biosynthesis (LCB2), mitochondrial metabolism (SDH3, JAC1) as well 
as cell cycle checkpoints, and protein degradation at the metaphase anaphase transition (LCD1, CDC23, and CBF2). 
Non-essential strains specific to this combination include those involved in response to diverse stresses (STE3, 
CGR1) and targeted protein degradation (PEP5, KEX2). 
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We examined each combination screen, both synergistic and non-synergistic, and examined the 
biochemical pathways enriched in each pathway. Examining the Gene Ontology (GO) 
enrichments via the synergy score (Figure 5), we found that each combination provides a unique 
signature. For instance, the miconazole-cerivastatin combination screen was enriched for gene 
deletion strains involved in cell wall, cytokinesis, vesicle-related processes, and sterol 
biosynthesis. In contrast, the miconazole-hydroxyurea screen is enriched for vesicle-related 
processes and cytokinesis but not for cell wall-related or sterol biosynthesis processes. These 
combination-specific GO enrichments can identify which cellular processes are providing 
resistance to the combination and could help to understand the mechanism of synergy on a 
combination-specific basis. 
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Figure 5. Combination-specific Gene-Ontology (GO) enrichment HIP–HOP data. Examination of Gene-Ontology 
enrichment using ε score. In the clustered heat map generated from the ε scores, one the x-axis we have each drug 
combination listed on the bottom; at the top on the x-axis is a purple box which denotes if a combination is 
synergistic or not. GO terms are denoted on the y-axis. Red shows a particular GO term is highly enriched in the 
combination, grey denotes no enrichment and blue shows significant enrichment among genes with low ε scores. 
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Discussion 
 

In this study, we used genome-wide chemogenomic profiling to select drug combinations 
for synergy testing then confirmed our predictions using combined chemogenomic assays. An 
interesting observation from drug combination data is that the three inhibitors that affect the 
ergosterol pathway were highly synergistic when applied in combination, suggesting that 
compounds that inhibit different points within a pathway are more likely to be synergistic, 
consistent with Zimmermann et al.46 and the observations by Cokol (2011) that found similar 
compounds to be “promiscuously” synergistic12. We further demonstrated that, among the 
synergistic combinations, 78% of the combinations tested (Table 1) were the result of combining 
an ergosterol inhibitor with a second agent. This indicates that the ergosterol inhibitors are highly 
synergistic with other agents, which is likely due to their effect on the yeast cell membrane, 
thereby allowing compounds more effective entry40.  
 Using a modified genome-wide assay we demonstrated that synergistic combinations 
result in uniquely sensitive strains that are specific to the combinations and are not observed in 
either of the single agents. Because we used stringent cut-offs, the difference we found between 
synergistic and non-synergistic combinations likely represents a minimum level of enrichment. 
We also found that each combination has its own pathway and GO enrichments (Figure 5). 
 During the course of this work, confirmed that these drug-drug interactions (derived from 
drug combination treatment) can be recapitulated using drug-gene interactions by directly 
assaying loss-of-function (heterozygous deletion) mutants for a drug’s known target with a drug 
that inhibits a synergistic target. We further found that drug-gene interactions derived from 
synergistic drug-drug interactions were enriched for negative interactions. To extrapolate these 
observations, we analyzed our single-agent chemogenomic screening data to predict 
combinations that might exhibit synergy. Given that we observed the baseline level of synergy 
between 10-17%, between 83-90% of any random combination should not be synergistic. Our 
approach reduces the screening required by at least 2.5-fold. This experimental approach 
involves; 1) using chemogenomic data to identify drugs able to make known drug-targets 
haploinsufficient, 2) pairing the strain with the expected drug, and 3) screening a dose matrix for 
synergy.  In a pilot of 25 combinations, we identified 10 synergetic combinations This method is 
easily adaptable to include new drug-targets, as we limited our search to 11 well-characterized 
drug-targets in Table 1 and only examined one dataset43. 

Synergistic effects (between either genes or drugs) have received renewed attention, 
especially in light of increasingly sophisticated computational approaches and the precise 
genome engineering possible with CRISPR-based technology. For example, Cokol et al. 
developed a computational framework called MAGENTA to investigate the impact of 
microenvironment on antibiotic combinations, stating that it enables tailoring antibiotic therapies 
based on the pathogen microenvironment. For MAGENTA to predict synergistic or antagonistic 
interactions on various microenvironments, it leverages chemogenomic profiles of both single 
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drugs and metabolic perturbation. They reported several synergistic combinations against E. coli 
and A. baumannii, and predicted bactericidal drug-combinations' effectiveness when grown in 
glycerol media and classified genes in glycolysis and glyoxylate pathway as top predictors of 
synergy and antagonism, respectively47. 

In 2016, Wong et al. leveraged combinatorial genetics en masse (CombiGEM) to 
systematically study gene and drug combinations modulating biological phenotypes48. Combi-
GEM allows for the rapid construction of barcoded, combinatorial genetic libraries that can be 
quantified with high-throughput sequencing. They applied CombiGEM-CRISPR to generate a 
library of 23,409 barcoded dual guide-RNA (gRNA) combinations, performing a high-
throughput pooled screen to find gene pairs that combine to inhibit ovarian cancer cell growth. In 
the same study, small-molecule drug pairs were tested against the pairwise synthetic lethal hits, 
revealing that they exert synergistic antiproliferative effects against ovarian cancer cells48. 

Combining chemogenomics and genetic interactions, Weinstein et al. studied antifungal 
combinations applied to two yeast species, C. albicans and S. cerevisiae. This study showed that, 
both synergistic and antagonistic combinations increase the cell-type selectivity of growth-
inhibiting drugs. The authors speculate that drug interactions might shift selectivity in 
comparison to single-drug effects in mixed microbial communities. Indeed, few drugs or drug 
combinations should be expected to encounter the idealized conditions in laboratory 
experiments- the variations observed by Weinstein49 can change the selectivity of compounds, 
i.e., inverting, diminishing, or enhancing therapeutic windows. 

In a recent CRISPR/Cas9 screen Huang et al. sought to identify genes whose depletion 
causes synthetic lethality with the broad-acting but not particularly potent Aurora kinase 
inhibitor VX-68050. They reported that HCT116 cells showed hypersensitivity to VX-680 when 
Haspin— a serine/threonine-protein kinase encoded by GSG2 gene — was either depleted by 
CRISPR knockout or with Haspin inhibitors, confirming the synergistic effect between VX-680 
and Haspin depletion or inhibition50. Recently, Zhou et al. reported a CRISPR-based, multi-gene, 
knockout screening system for assembly of barcoded, high-order combinatorial guide RNA 
libraries, en masse. Although combination therapies promise to improve treatment efficiency of 
various diseases, only a few effective drug combinations — especially those employing three or 
more drugs (see table S1 in reference51) — have been introduced so far. Zhou et al. used this 
approach to systematically identify both pairwise and three-agent synergistic therapeutic target 
combinations. The study claimed to uncover double- and triple-combinations that suppressed 
cancer cell growth and afforded protection against Parkinson’s disease-associated toxicity51. 
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Conclusion 
 
In this work, we introduce a strategy to use comprehensive genome-wide screens to first 

predict compounds that might be synergistic and then test novel combinations empirically. This 
approach should be extensible to other models and allow for a rational approach to selecting 
effective drug combinations.  

 
 
Methods 
 
Pair-wise screening of drug combinations 
To identify synergistic combinations, one should determine the effect of both individual agents 
and drug combinations on yeast growth rate. To accomplish this, we screened the drugs in a 
checkerboard matrix, in which, along each axis, one of the drugs is added at progressively higher 
doses. Drug concentrations were selected based on inhibitory concentration (IC), which was 
determined prior by prescreening the drugs’ effects on the wild-type cell growth; concentrations 
are such that there is an IC0 (no drug), IC2, IC5, IC10, IC20, and IC50 for each drug in the 
matrix. Hence, each drug pair was screened in a 6-by-6 dose-response curve at the IC values 
listed above. All possible pairs of the 11 drugs were screened, resulting in 55 combinations, 
including self-by-self drug combination. The yeast strain BY4743 (S288C) was used to screen 
these combinations and was grown in a 96-well microtiter plate at 30°C for 24 hours in a 
TECAN optical density reader. The optical density (OD600) was measured at 15-minute intervals. 
A diagram depicts how the combination screening was performed (Figure 1). 
 
Determination of synergistic combinations based on growth curve analysis 
Following growth, data for all growth curves were extracted using AUDIT software15 as 
described.  First, the curves were smoothed, and the area under the curve was calculated. The 
area under the curve was then compared to the area of no drug control (AREADrug/AREANo Drug) 
to create an inhibition ratio. We then used the Bliss multiplicative model3 to calculate epsilon for 
each dose matrix, ε = Drug ABRatio – (Drug ARatio × Drug BRatio). Specifically, we considered 
“drug epsilon” to be the different between the actually combined growth and the ‘expected’ 
which the multiplication of the two single agents. For example, if Drug A grew at 90% compared 
to no drug and Drug B grew at 80% compared to no drug, the expected defect would be 90% x 
80% (e.g., 72%). If the actual combination grew at 50% compared to no drug then elision would 
be 50% - 72% = -23% When epsilon is zero, then no interaction is observed; when epsilon is 
negative, there is a synergy, and positive epsilon denotes antagonism. An antagonistic interaction 
indicates that one of the drugs buffers the effect of the second agent— Fig. 1 illustrates how 
growth data was transformed into a quantitative trait to determine epsilon. 
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Drug-gene interaction screening using isogenic cultures 
To determine whether a deletion mutant was hypersensitive to the drug, we had to know growth 
rate of both the mutant and wild-type strains with and without drug. We used heterozygous 
deletion mutants of the known drug-targets (listed in Table 1). The yeast strains BY4743 and 
corresponding heterozygous mutants were grown, as isogenic cultures, in 96-well microtiter 
plates, at 30°C for 24 hours in a TECAN optical density reader. The optical density (OD600) was 
measured at 15-minute intervals. Here, the growth metric average generation time (aka AvgG) 
was used to assess the fitness of wild-type and mutant strains with and without drug; this metric 
is comprehensively described in the protocol written by our lab52. We normalized each strain’s 
fitness to the wild-type and subtracted any single mutant fitness that was contributed by any 
particular mutant, i.e., we normalized the various heterozygous mutants’ growth to wildtype to 
take into account any fitness defect that was caused by haploinsufficiency.  
 
Predicting synergistic combinations via chemogenomic interactions 
Following up on how drug-drug interactions predict drug-gene interactions. To predict synergy 
using chemogenomic data, we examined 18 datasets (see Table 2) and assessed if the known 
drug-targets listed in Table 1 were sensitive in any of the treatments based on the log2 ratio of 
control over treatment. We then identified combinations available in our laboratory for testing; 
25 combinations were selected based on the availability of compounds present in the 
Giaever/Nislow laboratory as well as Boone lab, at the University of Toronto. To determine if 
this method can successfully predict synergistic combinations, the chances of observing synergy 
between randomly paired compounds need to be known.  
 
Determination of background synergy rate and experimental validation of predicted 
combinations 
To define enrichment for synergistic combinations, the chances of observing synergy between 
randomly paired compound combinations must be known. To address this, 105 combinations in a 
4-by-4 dosage matrix were screened. We used a smaller matrix in this experiment to maximize 
the number of combinations that could be screened in a short time. As a result, 6 combinations 
can be screened per 96-well plate per TECAN plate reader, instead of 2 combinations when 
screened in a 6-by-6 matrix. The drug concentrations were such that there was an IC0 (no drug), 
IC10, IC20, and IC50 for each drug in the matrix (Table 2). The yeast strain, BY4743, was used 
to screen these combinations and was grown in a 96-well microtiter plate at 30°C for 24 hours in 
a TECAN optical density reader. The optical density (OD600) was measured at 15-minute 
intervals. 
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Pooled competitive growth assays 
Two deletion pools, a homozygous deletion pool of 5054 strains representing non-essential genes 
and a heterozygous pool of 1194 strains representing genes essential for viability, were thawed 
and diluted in YPD to an OD600 of 0.0625; 700 µL cultures were then grown at 30°C with a 
chemical inhibitor(s) applied at a dose that produced 10-20% growth inhibition of wild-type. An 
automated liquid handler robot was used to maintain logarithmic growth of pools by collecting 
0.7 OD600s of heterozygous pool following 20 generations of growth, and 1.4 OD600s of 
homozygous pool following 5 generations of growth, for further processing as described below. 
 
Assessing fitness of barcoded yeast strains by barcode microarray 
Except where indicated, pooled assays were performed as described in the protocol by Pierce et 
al53. Genomic DNA was isolated from cells and barcodes, amplified, and hybridized to barcode 
microarrays, where each barcode deletion mutant is represented by ten hybridization signals (the 
uptag and downtag for each strain are each represented on the array five times)53. Array 
measurements were quantile normalized such that all tags hybridized with the sample pool had 
similar distributions. Following normalization, we applied a correction factor to the array data to 
correct for feature saturation53 and determined the fitness of each barcoded deletion strain using 
the average of both barcodes. A Z-Score was calculated based on the average barcodes signal 
intensity against a control probe sets distribution. Positive fitness defect scores signify a decrease 
in strain abundance during drug treatment.  
 
Haploinsufficiency profiling (HIP) and Homozygous profiling (HOP) of synergistic 
combinations 
A key parameter in performing genome-wide screens in yeast is to determine an appropriate 
screening dose. This value has been empirically determined to be 10-30% of inhibition of wild 
type growth14. In practice, when performing synergy screens with two agents, one must eliminate 
any effects due to the action of a single agent alone. Therefore, we screened each single agent at 
its IC20, as well as at the dose that was used to generate a combined IC20. We therefore needed 
data from both the combination and individual agents. For each combination genome-wide 
assays 5 screens were performed. Specifically, Agent A at its IC10-30, Agent A the dose used 
when combined (usually an IC2), along with Agent B at its IC10-30, Agent B at the dose used 
when combined (usually an IC2). Accordingly, each genome-wide synergy assay comprises five 
separate screens; 1) the combined screen (A+B), 2,3) each single agent at an IC10-30 (A and B, 
4,5) each single agent at the dosed used in A+B. 
 
Analysis of combination profiles 
Defining the sensitivity score. For each drug treatment, a Z-Score based on the averaged Up 
and DOWN barcode signal intensity was calculated.  Using a Z-Score of greater than 4, we 
defined a list of sensitive strains in each treatment. Filtering out strains that arose from the single 
drug treatments, we were able to identify unique, combination-specific sensitive strains. To aid 
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in the analysis of drug combinations, we defined factor ε that is the sensitivity of genes in the 
combination minus the sum of sensitivity in the single agents — ε = Z-ScoreAB – (Z-ScoreA + Z-
ScoreB). 
 
Clustering of combination HIPHOP profiles sensitivity scores. We took raw intensity values 
from the barcode microarrays and normalized the logged raw intensities using a method called 
Supervised Normalization of Microarrays (SNM). This method54 was supplied with batch 
definitions — each batch as the arrays that have the same chip date. We also supplied this 
method with array descriptors corresponding to the chemical treatments (i.e., which compounds 
were used); this is meant to preserve biologically relevant signal. After SNM, we selected either 
the uptag or downtag for each strain based on the lowest variation coefficient to avoid noisy tags. 
The logged intensities were then used to compute robust Z-Scores. We used the median and 
median absolute deviation to calculate the Z-Score, and then clustered strains and chemical 
treatments separately. The similarity between strains/chemical treatments was based on the 
Pearson correlation of Z-Scores. 

 
Examination of gene-ontology terms. Gene-Ontology has the aim to standardize terms for 
describing gene products. This vocabulary defines a set of cell terms for which a gene can be 
annotated to. These annotations cover a vast range from location within the cell to specific 
cellular functions such as nucleotide excision repair. In this study, we used Gene-Ontology terms 
with more than 5 genes and less than 200 genes. To determine enrichment, we used the 
sensitivity score. Following ranking each gene sensitive in a specific combination, we used Gene 
Set Enrichment Analysis (GSEA)55 to determine enrichment in each category. 
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