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One Sentence Summary:  Reserve spermatogonial stem cell depletion in infertile men is 28 

regulated by an EGR4-dependent UTF1 decrease, which changes chromatin morphology. 29 

Abstract 30 

Despite the high incidence of male infertility, about 70% of infertile men do not receive a 31 

causative diagnosis. To gain insights into the regulatory mechanisms governing human germ 32 

cell function in normal and impaired spermatogenesis (cryptozoospermic patients, crypto), we 33 

combined single cell RNA sequencing (>30.000 cells), proteome, and histomorphometric 34 

analyses of testicular tissues. We found major alterations in the crypto spermatogonial 35 

compartment with increased numbers of the most undifferentiated spermatogonia (PIWIL4+ 36 

State 0 cells). We also observed a transcriptional switch within the spermatogonial 37 

compartment driven by the increased and prolonged expression of the transcription factor 38 

EGR4. Intriguingly, EGR4-regulated genes included the chromatin-associated transcriptional 39 

repressor UTF1, which was downregulated. Histomorphometrical analyses showed that these 40 

transcriptional changes were mirrored at the protein level and accompanied by a change in the 41 

chromatin structure of spermatogonia. This resulted in a reduction of Adark spermatogonia - 42 

characterized by tightly compacted chromatin and serving as reserve stem cells. These findings 43 

suggest that crypto patients are at a disadvantage especially in cases of gonadotoxic damage as 44 

they have less cells safeguarding the genetic integrity of the germline. We hypothesize that the 45 

more relaxed chromatin status of spermatogonia is dependent on decreased UTF1 expression 46 

caused by EGR4 activation. These identified regulators of the spermatogonial compartment will 47 

be highly interesting targets to uncover genetic causes of male infertility.  48 

Key words:  49 

Male germline stem cells, spermatogonial stem cells, male infertility, impaired 50 

spermatogenesis, single cell RNA sequencing, human spermatogenesis, stem cell 51 

differentiation, testis. 52 
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Introduction 53 

Infertility affects 10-15% of couples worldwide, with a male factor in half of the cases (1). 54 

Despite this high incidence of male infertility, about 70% of men do not receive a causative but 55 

only a descriptive diagnosis of impaired sperm production (2). This knowledge gap needs to be 56 

filled so that clinicians can counsel infertile men with regard to causal treatments, chances of 57 

sperm retrieval from testicular biopsies, transmission of infertility to the offspring, and potential 58 

health risks to the offspring and the males themselves. This latter aspect is of particular interest 59 

as male infertility and low sperm counts are associated with an increased risk of cancer, 60 

cardiometabolic disease and even premature mortality (3).  61 

Of the infertile men, 7% are diagnosed with a severe form of oligoasthenoteratozoospermia 62 

termed “cryptozoospermia” (from the greek “kryptós”: hidden) as they have less than 0.1 63 

million sperm in the ejaculate, rendering natural conception almost impossible (2). The surgical 64 

approach of testicular sperm extraction (TESE) often represents the only route to retrieve viable 65 

sperm for use in intracytoplasmic sperm injection (ICSI). Lower fertilization as well as 66 

implantation rates of transferred embryos (4) strongly indicate alterations not only in sperm 67 

production but also in the quality of the germ cells themselves. The underlying etiological 68 

factors for this severely impaired sperm production often remain unknown at cellular and 69 

molecular level but urgently need to be unveiled to improve clinical diagnostics, counselling, 70 

and prospectively treatment of infertile men.   71 

Spermatogenesis is a highly complex process orchestrated by up to 10% of the male genome 72 

and regulated by a delicate interplay between the somatic environment and the germline. 73 

Spermatogenesis is supported by the spermatogonial stem cells (SSCs), a subpopulation of 74 

diploid spermatogonia, which undergo mitotic divisions, enter meiosis, and ultimately give rise 75 

to mature haploid sperm. SSCs are defined based on their functional properties, their ability to 76 
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self-renew, and to give rise to differentiating germ cells. SSC systems in mice and men show 77 

species-specific differences (5). The human SSC system, according to the most accepted model, 78 

is classified as a progenitor-buffered system, containing quiescent reserve spermatogonia 79 

(Adark) in addition to self-renewing spermatogonia (Apale), the latter generating differentiating 80 

spermatogonia (B) (6–8). These three different cell populations are classified based on their 81 

morphological appearance and the chromatin structure of their nuclei. In contrast to this, single 82 

cell RNA sequencing (scRNA-seq) analyses of the normal human testicular tissues enabled the 83 

identification of multiple spermatogonial states (9–12) indicative of a SSC compartment that is 84 

more heterogeneous than anticipated based on morphological properties. Furthermore, these 85 

studies indicated PIWIL4 and EGR4 as marker genes of the most undifferentiated 86 

spermatogonia (9, 11). As the morphological appearance of these transcriptionally-defined 87 

spermatogonia remains largely unknown, it has not been possible so far to link the two 88 

classification systems. Importantly, the cellular and molecular alterations of the SSC 89 

compartment in stressful conditions such as male infertility, remain to be discovered. This will 90 

provide not only valuable information about human SSC biology but might also reveal the 91 

mechanisms behind the association of male infertility and cancer or a reduced life span (3).  92 

These insights will pave the way to understand the connection between male infertility and 93 

general health. 94 

Furthermore, infertile men display alterations of the spermatogonial microenvironment, which 95 

has been suggested as a regulatory unit for spermatogonial fate decisions. Although the 96 

molecular and cellular properties of the human SSC-microenvironment remain largely 97 

unknown, an intact interplay between spermatogonia and their microenvironment must be 98 

considered a prerequisite for intact spermatogenesis and thereby fertility (5).  Key players of 99 

the spermatogonial microenvironment include cells in direct physical contact with the 100 
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spermatogonia (e.g. Sertoli and peritubular cells) and cells outside the seminiferous tubules 101 

(e.g. Leydig, endothelial, and perivascular cells and macrophages) (5, 13).  102 

In this study, we set a framework which combines scRNA-seq, proteomic, histomorphometric, 103 

and bioinformatical analyses to unveil the cellular and molecular changes in the spermatogonial 104 

compartment and its microenvironment of cryptozoospermic men. We revealed an increase in 105 

the number of PIWIL4+ undifferentiated spermatogonia and a depletion of the quiescent Adark 106 

spermatogonia, considered as reserve stem cells. Moreover, we identified EGR4 as a regulator 107 

of these alterations. We found a proinflammatory microenvironment and identified FGF2-108 

FGFR1/3 interaction as a communication channel between advanced germ cells and 109 

spermatogonia in cryptozoospermic testes. Intriguingly, our findings highlight alterations of the 110 

stem cell compartment and its regulators as an origin of impaired spermatogenesis, representing 111 

a milestone in the understanding of pathways underlying male infertility.  112 

Results 113 

Alterations of the spermatogonial compartment in cryptozoospermic men 114 

To study cellular and molecular changes associated with male infertility, particularly in the 115 

spermatogonial compartment, we selected testicular biopsies from cryptozoospermic men 116 

(crypto) and normal controls (normal) based on clinical parameters (n=34, table S1). We used 117 

a multi-layered approach including quantitative histomorphometrical, scRNA-seq, and 118 

proteome analysis (Fig. 1A). Histological quantifications revealed a reduced proportion of 119 

tubules containing elongated spermatids as the most advanced germ cell type in the crypto 120 

group, while the percentage of tubules with round spermatids, spermatocytes, and 121 

spermatogonia remained unchanged (Fig. 1B). To assess the cellular composition of the 122 

spermatogonial compartment, we analyzed pan-spermatogonial marker MAGEA4 and 123 

undifferentiated spermatogonial marker UTF1 (Fig. 1C). We found a similar number of 124 
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spermatogonia (MAGEA4+) per tubule in tissues from normal and crypto individuals (n=6 125 

each). In contrast, tissues from the crypto group showed a reduction in UTF1+ spermatogonia 126 

(Fig. 1D and table S2).  127 

In-depth characterization of the molecular changes was performed by scRNA-seq analysis of 128 

normal and crypto testicular biopsies (n=3 each). Suitable samples were selected based on 129 

ploidy analysis, ensuring presence of haploid spermatids in all samples (Fig. 1E). To exclude 130 

genetic causes for male infertility we performed whole exome sequencing analysis. No relevant 131 

variants were identified in any of the three cryptozoospermic men rendering the potential 132 

genetic cause for their infertility unidentifiable for the time being and making a uniform cause 133 

highly unlikely. Following scRNA-seq and quality control, data from 15 546 and 13 144 cells 134 

were ultimately included in the analysis for normal and crypto samples, respectively (table S3). 135 

Unsupervised clustering resulted in a comparable number of clusters (30 versus 29) between 136 

the two groups (fig. S1, A and B). To assign identities to the clusters while still considering 137 

eventual biological differences between the groups, we used a two-step approach. Firstly, we 138 

used 55 published marker genes to identify 15 cell types in the normal dataset (fig. S1B) (9–139 

12). Notably, the latent space replicated the known differentiation process from spermatogonia 140 

to late spermatids (spiral-like shape in Fig. 1F). Using this as reference, we projected the same 141 

labels (14) onto the crypto dataset and found the expected cell types represented (Fig. 1G). 142 

Correct cluster assignment was confirmed by evaluating the expression of specific marker genes 143 

in the crypto dataset (fig. S1C). Importantly, all samples contributed to all cell type clusters in 144 

each dataset (Fig. 1, F and G). Additionally, using marker gene expression, we identified two 145 

additional clusters in the crypto group without equivalence in the normal dataset namely, 146 

perivascular cells (cluster 7) and immune cells (cluster 24; Fig. 1G). 147 

Cellular and transcriptional changes in germ and somatic cell compartments  148 
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To explore the similarities and differences between the two groups, we combined all normal 149 

and crypto datasets (Fig. 2A). Consistent with the histomorphometrical analysis (Fig. 1D) 150 

evaluation of the scRNA-seq dataset showed comparable percentages of spermatogonia in both 151 

groups (Fig. 2B). In fact, percentages were similar from spermatogonia up to zygotene 152 

spermatocytes (Fig. 2B). However, from the pachytene spermatocyte stage onwards, the crypto 153 

group displayed a striking reduction in germ cells (Fig. 2B). This was corroborated by parallel 154 

quantitative proteomic analysis, showing comparable levels of spermatogonial marker 155 

MAGEA4 and reduced expression of markers for leptotene/pachytene spermatocytes (DPH7, 156 

PIWIL1) as well as spermatids (PRM2; Fig. 2C). To assess the changes at the transcriptional 157 

level between all the identified cell types, we performed differential gene expression (DGE) 158 

analysis (table S4) and identified genes uniquely differentially expressed in each germ cell stage 159 

(fig. S2 and table S5). Interestingly, UTF1 and EGR4 were down- and up- regulated 160 

respectively in the crypto undifferentiated spermatogonia (fig. S2A). Curiously, genes 161 

associated with the gene ontology (GO) terms “Cell cycle”, “Chromosome organization”, 162 

“DNA repair”, and “Telomere organization” (e.g. BRCA2, CENPA, SMC1A, SYCP3, MEIOB, 163 

CETN2) were differentially expressed in differentiating spermatogonia compared to pachytene 164 

spermatocytes (fig. S2, B to E). 165 

In the somatic cell compartment, the most striking difference was the increase in the proportions 166 

of peritubular myoid cells (PMCs), fibrotic PMCs, and macrophages (Fig. 2B); the latter finding 167 

in particular was supported by proteomic data, which revealed significantly increased 168 

macrophage marker LYZ expression (Fig. 2C). Among somatic cells, PMCs showed the most 169 

profound changes in DGE analysis, with 83 down- and 149 up-regulated genes, respectively, in 170 

the crypto group. GO analysis revealed an enrichment of genes involved in “extracellular matrix 171 

components and organization” (fig. S3A and table S5). Because perivascular and immune cells 172 

did not have equivalents in the normal dataset, no direct comparison was conducted between 173 
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normal and crypto samples (fig. S3B). DGE analysis between perivascular cells and PMCs in 174 

the crypto dataset revealed 48 genes (fig. S3C and table S6) regulating muscle contraction (fig. 175 

S3D). To localize perivascular cells at tissue level we selected the musculoskeletal marker 176 

MUSTN1 from the upregulated genes, which was exclusively expressed in this cluster at RNA 177 

level (Fig. 2D). MUSTN1 was specifically expressed in blood vessels, where it co-localized 178 

with ACTA2. Indeed, these ACTA2+/MUSTN1+ cells surrounded VWF+ endothelial cells (Fig. 179 

2E). Quantification of the total number of blood vessels/mm2 revealed a significantly higher 180 

number of blood vessels in crypto samples (Fig. 2F and table S2). Similar results were obtained 181 

for the number of MUSTN1+ blood vessels/mm2 (Fig. 2F and table S2). We therefore concluded 182 

that MUSTN1 is a specific perivascular cell marker and that an increased proportion of 183 

MUSTN1+ blood vessels is a specific feature of crypto samples. DGE analysis comparing 184 

immune cells to all other crypto cells resulted in 195 differentially expressed genes, including 185 

T-cell marker CD3E (Fig. 2G, fig. S3E and table S6). To evaluate which types of immune cells 186 

were present in crypto testes, we performed pathway analysis and found involvement of 187 

cytotoxic T lymphocyte pathways (fig. S3F). Immunofluorescence analysis localized CD3+ T 188 

cells in the vicinity of blood vessels in crypto samples but not in the normal (Fig. 2H). To 189 

investigate the crosstalk between spermatogonia and their microenvironment, we used 190 

CellphoneDB (15). We found 50 significant ligand-receptor interactions considering both 191 

datasets (Fig. 3). A significant interaction was detected between the spermatogonial-based 192 

receptors FGFR1 and 3 and the ligand FGF2 produced by pachytene and diplotene 193 

spermatocytes in the crypto group. Moreover, spermatogonial-located ACKR2 showed 194 

significant interaction with its ligands secreted by endothelial cells, perivascular cells, 195 

macrophages, and immune cells (CCL2, CCL3, CCL4, CCL5, CCL3L1 and CCL14) in the 196 

crypto datasets but not in the normal. 197 

Crypto undifferentiated spermatogonia activate the EGR4 regulatory network  198 
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SCENIC was used to identify the gene regulatory network changes in the crypto somatic and 199 

germ cell populations (16). This pipeline identifies groups of genes, named regulons, co-200 

regulated by a transcription factor. In total, in the two datasets we identified 403 regulons, each 201 

containing up to 2 450 genes (table S7). To identify differentially activated regulons between 202 

the normal and the crypto dataset, we selected the 15 regulons with the highest specificity score 203 

for each cluster in the normal dataset. We then focused on those regulons in the crypto dataset 204 

that showed at least 20% change in the proportion of cells per cluster in which that specific 205 

regulon was active (Fig. 4A and table S8). Comparative evaluation of the binarized AUC (area 206 

under the curve) score of each regulon revealed 13 regulatory networks that were differentially 207 

activated between the two datasets (bold in Fig. 4A). As perivascular and immune cells were 208 

uniquely represented in the crypto dataset, they were not included in this analysis. In the somatic 209 

compartment, although PMC and fibrotic PMC clusters presented the most striking differences 210 

in cell proportions, no regulon was differentially activated in these cells. Similarly, we could 211 

not find differentially activated regulons for Leydig cells. However, one differentially activated 212 

regulon was found in the macrophages in the crypto dataset (activation of RUNX3, 75 genes, 213 

fig. S4). 214 

Contrary to these minor changes in somatic cells, germ cells showed deeper alterations in their 215 

gene regulatory networks. Undifferentiated spermatogonia displayed four regulons with 216 

significantly enhanced activation in the crypto samples: ASCL2 (88 genes), EGR4 (594 genes), 217 

HOXC9 (139 genes), and DLX5 (104 genes) (Fig. 4B-E). Intriguingly, among the genes 218 

regulated by EGR4, we identified ASCL2, HOXC9, and DLX5 whereas none of the other 219 

transcription factors seemed to regulate the expression of EGR4. Comparison between the 220 

regulon and the DGE analysis of the undifferentiated spermatogonia showed that 23 of the 221 

differentially expressed genes were predicted to be regulated by EGR4 (Fig. 4, F and G). 222 

Follow-up histological analysis showed specific expression of EGR4 in spermatogonia (Fig. 223 

4H). Moreover, the E2F1 regulon (685 genes) showed a significant activation in differentiating 224 
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spermatogonia (fig. S4A). While no regulons in the crypto dataset were differentially active 225 

specifically in spermatocytes, early spermatids showed activation of RORA (fig. S4B), and late 226 

spermatids showed deactivation of STAT3, TBX4, ATF2, and RFX2, and activation of ETV2 227 

(fig. S4, C to G).  228 

Crypto spermatogonial compartment shows an increased number of PIWIL4+ 229 

spermatogonia 230 

To further scrutinize the changes in the spermatogonial compartment, we identified specific 231 

spermatogonial subtypes based on marker genes reported in existing single cell studies (9, 11). 232 

For this, we subset and re-clustered undifferentiated and differentiating spermatogonial clusters 233 

from both datasets (fig. S5A). Upon analyzing the expression of the different published markers 234 

in the normal dataset, we could assign the clusters and identify six spermatogonial states: State 235 

0 (PIWIL4, PHDGH, EGR4), State 0A (UTF1, SERPINE2, FGFR3), State 0B (NANOS2), State 236 

1 (GFRA1, GFRA2, NANOS3, ID4), State 2 (KIT, MKI67, DMRT1, DNMT1), and State 3 237 

(STRA, SYCP3) (fig. S5B and Fig. 5A). Notably, the markers mentioned display the highest, 238 

but not unique, expression levels in the respective states. Using the data from normal 239 

spermatogenesis as reference, these labels were projected onto the crypto dataset (Fig. 5B). For 240 

further analyses, both datasets were integrated (Fig. 5C). To compare our assignment with those 241 

published by Guo et al., and Sohni et al., we performed correlation analysis among the three 242 

datasets (9, 11). States 0, 0A and 0B in our assignment showed the highest correlation with 243 

State 0 in Guo et al. (fig. S5C) and with SSC1-B,-A, and -C respectively in Sohni et al. (fig. 244 

S5D). 245 

We assessed the cellular composition of the spermatogonial compartment and found an 246 

increased number of cells in State 0 and a significantly decreased proportion of cells in State 247 

0A in the crypto dataset. There were no differences in cell numbers in any other states (Fig. 248 

5D).  249 
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To reveal whether this shift in spermatogonial states was also represented at the cellular level, 250 

and considering that the number of UTF1+ spermatogonia is significantly decreased (Fig. 1, C 251 

and D), we analyzed PIWIL4, FGFR3, GFRA1, and NANOS3 (Fig. 5, E and F) using 252 

quantitative histomorphometric analysis. The altered proportions of the spermatogonial states 253 

identified based on scRNA-seq data were largely corroborated by cell quantification. We found 254 

a significant increase in PIWIL4+ spermatogonia (State 0) per seminiferous tubule, and no 255 

significant changes in FGFR3+, GFRA1+, and NANOS3+ spermatogonia (Fig. 5G and table S2).  256 

To further unravel the alterations of the spermatogonial compartment, RNA velocity analysis 257 

(17) was performed setting State 0 as the origin of the spermatogenic differentiation process. 258 

(9) The velocity streamlines (which depend on the mRNA maturation in each cell) indicate that 259 

States 0 and 0A in the normal samples are transcriptionally not directed toward State 1, unlike 260 

State 0B (Fig. 4I). In contrast, in the crypto samples the velocity streamlines in States 0, 0A, 261 

and 0B appear to be preferentially oriented toward State 1 (Fig. 5H). This was evident in all 262 

three crypto samples (fig. S5E).  263 

The crypto spermatogonial compartment shows reduced numbers of Adark spermatogonia 264 

To evaluate the expression profile of the morphologically-defined Adark spermatogonia, we 265 

assessed how many Adark spermatogonia were PIWIL4+, UTF1+, FGFR3+, GFRA1+, or 266 

NANOS3+. Semi-quantitative evaluation in tissues showed the majority of Adark spermatogonia 267 

in the control group were UTF1+ (78.4%), whereas only 5.8% were PIWIL4+, 5.7% were 268 

FGFR3+, 18.1% were GFRA1+, and no Adark cells were NANOS3+ (Fig. 6, A to D). 269 

We then asked whether the percentage of Adark spermatogonia is altered in the crypto samples. 270 

Assessment of the Adark spermatogonia among all spermatogonia (MAGEA4+) indeed unveiled 271 

a significant reduction of this cell type in crypto samples (Fig. 6E). Specifically, we found a 272 

general reduction in Adark cells among the PIWIL4+, UTF1+, FGFR3+, as well as GFRA1+ 273 

spermatogonia (Fig. 6, F to I). Finally, we questioned whether the Adark reduction was 274 
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dependent on the most advanced germ cell stage present in the respective tubules. 275 

Quantifications revealed that the number of Adark spermatogonia in the crypto samples was 276 

reduced independently of the spermatogenic state of the tubules (Fig. 6J), suggesting that the 277 

loss of this cell type is a general process in crypto tissues.  278 

Altered EGR4 and HOXC9 expression in crypto State 0-0A spermatogonia 279 

To assess potential changes in gene expression observed in the undifferentiated spermatogonia 280 

of crypto samples, we employed trajectory-based differential expression analysis (tradeSeq) 281 

(18). For this, cells were aligned along the latent time (fig. S6A) and then subdivided into six 282 

groups containing equal cell numbers (knotgroups) using seven knots (fig. S6B). We focused 283 

our attention on the most undifferentiated spermatogonia, State 0 and 0A, which are mostly 284 

represented by knotgroups 1 and 2. 285 

Comparing knotgroup 1, which includes 78.2% of State 0 spermatogonia, between the normal 286 

and crypto datasets revealed 21 up- and 12 downregulated genes (Fig. 7A) involved in 287 

regulating cellular development and differentiation (Fig. 7B); among those genes, we found 288 

EGR4 itself and 16 genes belonging to the EGR4 regulon (ANXA11, CEP131, CRIP2, EGR4, 289 

IDH2, NUDT14, PDLIM4, PLPP2, PODXL2, PSIP1, RAC3, SH2B2, SMARCD3, SPINT1, 290 

ST3GAL4, and importantly UTF1) (Fig. 7C and fig. S6D). We had already identified an 291 

enhanced activation of the EGR4 regulon in undifferentiated spermatogonia of the crypto 292 

samples (Fig. 4C), highlighting this regulon and gene as important regulators of spermatogonia. 293 

We then analyzed its expression in the spermatogonial states and found that, while expression 294 

of EGR4 was restricted to State 0 in the normal situation, in the crypto dataset it showed a 295 

prolonged expression, being present also in States 0A and 0B (Fig. 7D). Afterwards, the 296 

expression of all EGR4-regulated genes was examined according to the spermatogonial states, 297 
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confirming their modulation (fig. S6D). Interestingly, in the crypto group, we found a reduced 298 

expression of UTF1 in State 0, 0A, and 0B spermatogonia (Fig. 7D). 299 

For knotgroup 2, representing mostly State 0A cells, we identified 82 upregulated genes in the 300 

crypto cells (Fig. 7E), most of which are involved in cell differentiation (Fig. 7F). Again, EGR4 301 

was one of the differentially expressed genes, together with HOXC9, which we had already 302 

identified in the crypto samples as an activated regulon in undifferentiated spermatogonia (Fig. 303 

4D). Among the differentially expressed genes in knotgroup 2, we found 25 genes that are 304 

regulated only by EGR4 (Fig. 7G, fig. S6C and fig. S7A), 1 gene that is regulated only by 305 

HOXC9 (Fig. 7H), and 5 genes that are regulated by both transcription factors, including 306 

HOXC9 itself (Fig. 7I and fig. S7C). Among the 25 EGR4-regulated genes in knotgroup 2, 12 307 

were also upregulated in knotgroup 1 (fig. S6C).  308 

Assessing the expression of these genes according to the spermatogonial states, we observed 309 

that, similar to EGR4, HOXC9 also displayed a prolonged expression in the crypto samples 310 

compared to the normal situation, where it is exclusively expressed in State 0 (Fig. 7L). This 311 

altered expression pattern was also observed for additional genes regulated by one or both of 312 

these transcription factors (Fig. 7, J to L and fig. S7, B to D), indicating that crypto samples 313 

show persistent expression of State 0 genes in undifferentiated spermatogonia (State 0 through 314 

1).  315 

Discussion 316 

In this work we pioneered the study of human male germ cell defects using state-of-the-art 317 

approaches. These led us to identify novel target genes and mechanisms for explaining the 318 

etiology of infertility. At cellular level we unveiled major alterations of the spermatogonial 319 

compartment with an increase in the number of the most undifferentiated (PIWIL4+) 320 

spermatogonia but a reduction in the morphologically defined Adark reserve stem cells. 321 
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Interestingly, these alterations are contingent on a prolonged expression of EGR4 in crypto 322 

samples. Also, we identified receptor-ligand interactions modulating the interplay between 323 

spermatogonia and their microenvironment. 324 

ScRNA-seq analyses revealed six spermatogonial states based on transcriptional profile, in line 325 

with published data (11). Interestingly, we found a representation of the same states in both 326 

normal and crypto groups. Although the total number of spermatogonia remained unchanged, 327 

the states were represented in different proportions in the two groups. The most prominent 328 

finding was an increase, in the crypto group, of PIWIL4+ State 0 cells, which have been 329 

suggested as the origin of the spermatogonial differentiation process (9, 11, 19). The increase 330 

of PIWIL4+ cells occurred concomitantly with a reduction of the UTF1+ cells, which we 331 

observed both at transcriptional and protein level. Moreover, we identified changes in 332 

transcriptional dynamics of crypto spermatogonia, as visualized by cells in State 0, uniformly 333 

pointing towards the direction of 0A and 0B in the RNA velocity analysis. As, PIWIL4+ and 334 

UTF1+ spermatogonia are mostly quiescent (9, 11, 20, 21), we hypothesize that these altered 335 

cell proportions are a consequence of a change in transcriptional profiles of spermatogonial 336 

subpopulations and not due to changes in cell proliferation (Fig. 8A). We speculate that this 337 

increase in PIWIL4+ spermatogonia is the consequence of the reduced spermatogenic efficiency 338 

in cryptozoospermic men, however we cannot exclude that the failure to progress to more 339 

differentiated states might be the cause. 340 

We identified the transcription factor EGR4 as one of the gatekeepers regulating the change in 341 

transcriptional profiles of spermatogonia in the crypto group. Supporting this hypothesis we 342 

found EGR4 exclusively expressed in spermatogonia at protein level and in the most 343 

undifferentiated spermatogonial state (State 0) at transcriptional level, in accordance with recent 344 

studies (9, 11). Importantly, trajectory-based differential expression analysis showed prolonged 345 

expression of EGR4 in spermatogonial States 0, 0A, and 0B in crypto samples. Moreover, we 346 
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found enhanced activation of the EGR4, ASCL2, HOXC9 and DLX5 regulons in 347 

undifferentiated spermatogonia of crypto tissues. These four genes, including EGR4 itself, 348 

contain a putative binding site for EGR4 in their promoter region suggesting EGR4 as an 349 

upstream regulator. The crucial role of EGR4 in the germline is corroborated by data 350 

demonstrating that it controls multiple differentiation steps during mouse spermatogenesis (22). 351 

Furthermore, EGR4 gene sequence variations as well as altered gene expression profiles have 352 

been identified in men with impaired spermatogenesis (23, 24). Importantly, EGR4, ASCL2, 353 

HOXC9 and DLX5 have also been assigned pivotal roles in other cell systems. Interestingly, in 354 

small cell lung cancer EGR4 regulates proliferation through induction of DLX5 expression 355 

among other genes (25). ASCL2 activation is involved in restoring the intestinal stem cell 356 

system following damage (26) while HOXC9 and DLX5 are involved in neuronal and 357 

osteogenic cell differentiation processes, respectively (27, 28). These genes are highly relevant 358 

for cell proliferation and differentiation processes in multiple stem cell systems and therefore 359 

dysfunction in these pathways may present a link between the germline and other cell systems 360 

crucial for general health. 361 

One of the genes presenting a putative binding site for EGR4 is UTF1, whose expression 362 

negatively correlates with that of EGR4. UTF1 is a chromatin-associated protein expressed in 363 

human undifferentiated, quiescent spermatogonia (20, 21). It is involved in embryonal stem 364 

(ES) cell differentiation (29) and acts as transcriptional repressor (30). Knock-down of UTF1 365 

in ES cells results in extensive chromatin decondensation (31). Remarkably, we found a general 366 

reduction of the Adark spermatogonia - characterized by highly condensed chromatin (6, 7) - in 367 

the crypto group. Marker profiling of Adark spermatogonia shows that almost 80% are UTF1+. 368 

We therefore hypothesize that the reduction in UTF1 expression leads to a change in chromatin 369 

condensation resulting in the transition from an Adark to an Apale morphology (Fig. 8B). Thereby 370 

at cellular level, these cells with a more open chromatin are maintained in a ‘ready to react’ 371 

status. The price of this change in operating status is the reduction of the reserve stem cells 372 
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(Adark), which under normal conditions ensure the recovery of sperm production following a 373 

gonadotoxic insult, by their ability to transform into mitotically active Apale spermatogonia (32). 374 

This alteration of the stem cell pool may therefore place crypto patients at a disadvantage in the 375 

case of gonadotoxic insult. Moreover, the over-recruitment of the reserve spermatogonia into 376 

mitotically active spermatogonia may not be sustainable in the long term and is likely to lead 377 

to further quantitative and qualitative deterioration of germ cells.  378 

The Adark morphology is shared by spermatogonial subpopulations characterized by the 379 

expression of PIWIL4, FGFR3, and GFRA1, which define distinct states at transcriptional level 380 

(Fig 8A). Intriguingly, only 5.8% of the PIWIL4+ cells showed Adark morphology. These 381 

findings indicate that multiple spermatogonial states are able to display Adark spermatogonial 382 

morphology, in line with previous data (33), and also that Adark spermatogonia may not be the 383 

most undifferentiated spermatogonia in the human testis. This presents a paradigm shift in the 384 

field.  385 

The fact that the stem cell potential of the Adark spermatogonia will remain untested until it is 386 

possible to purify these cells for use in transplantation assays in primates (including the human) 387 

constitutes a limitation of this study. Unfortunately, due to profound species differences, 388 

including the lack of Adark reserve stem cells in rodents, these cannot be used as a model for 389 

mechanistic studies.  390 

The microenvironment is pivotal for SSC behavior (34, 35). We identified multiple changes to 391 

the SSC microenvironment in the crypto group. Importantly, PMCs, perivascular cells, 392 

macrophages, and immune cells showed increased numbers and enhanced expression of 393 

chemokines. These changes suggest the presence of a proinflammatory microenvironment in 394 

crypto testes. In addition to the changes in the somatic compartment, we identified a reduced 395 

number of spermatocytes from the pachytene stage onwards in crypto samples. Intriguingly, 396 

this was accompanied by an enhanced interaction between FGF2 - produced by pachytene and 397 

diplotene spermatocytes - and FGFR1 and 3 - present on spermatogonia. These interactions 398 
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were solely significant in the crypto group. The effect of FGF2 on human spermatogonia 399 

remains largely unknown, however a pro-survival role for FGF2 has been shown (36). Gain of 400 

function mutations in FGFR2 and 3 have been found in spermatogonia supporting the survival 401 

of these cells and inducing their clonal expansion (37). We suggest that FGF2-FGFR3 pathway 402 

may be relevant for maintaining the size of the human spermatogonial compartment in the 403 

crypto situation.  404 

The revelation of regulators of the human spermatogonial stem cell compartment and its 405 

properties provides enticing possibilities. We recommend screening the genes highlighted in 406 

this manuscript for pathogenic variants. This may help to decipher genetic defects affecting 407 

spermatogonia, and thus help to resolve additional cases of male infertility. Finally, this will 408 

result in improved counselling of infertile men about the chances for sperm retrieval prior to 409 

surgery. In addition, it will help avoid unnecessary surgical interventions, identify potential 410 

health risks for their offspring, and establish preventive measures regarding their own general 411 

health risks. Lastly, due to the potential long term exhaustion of the stem cell pool crypto 412 

patients may prospectively benefit from cryopreservation of sperm prior to active family 413 

planning. 414 

Materials and Methods 415 

Human testicular biopsies 416 

Adult human testis samples (n=34) were obtained from patients undergoing surgery for 417 

microdissection testicular sperm extraction (mTESE) or histological evaluation at the 418 

Department of Clinical and Surgical Andrology (University Hospital in Münster, Germany). 419 

One additional testicular sample was excised from each patient for this study after written 420 

informed consent. Ethical approval was obtained for this study (Ethics Committee of the 421 

Medical Faculty of Münster and State Medical Board no. 2008-090-f-S).  422 
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Patient cohort selection 423 

We subjected six testicular tissues (normal=3; crypto=3) to scRNA-seq. We selected patient 424 

samples with qualitatively and quantitatively normal spermatogenesis (normal), and with 425 

cryptozoospermia (crypto). Clinical workup prior to surgery included full physical evaluation, 426 

hormonal analysis (including luteinizing hormone (LH), follicle stimulating hormone (FSH) 427 

and testosterone (T)) (38), semen analysis (39), and genetic analyses (including karyotype and 428 

screening for azoospermia factor (AZF) deletions). Exclusion criteria were known genetic 429 

causes of infertility, acute infections, testicular tumors, and a history of cryptorchidism. Normal 430 

patients were selected from those diagnosed with obstructive azoospermia. These patients had 431 

no sperm in their ejaculate, normal testicular volume, and normal FSH levels. Age-matched 432 

cryptozoospermic patients had a sperm concentration <0.1 million/ml (cryptozoospermia) in 433 

the ejaculate, a reduced testicular size, and, in most cases, elevated FSH levels. All patients had 434 

spermatozoa in their TESE samples, regardless of histological results. Detailed clinical 435 

information about all the patients is available in table S1. Moreover, we added independent 436 

samples for proteome and histological analyses to further expand the sample cohort. Due to 437 

sample limitation, only 2 of the 3 crypto samples could be included in the proteome analysis.  438 

Exome sequencing 439 

The exomes of the three cryptozoospermic men were sequenced. Briefly, target enrichment was 440 

performed by SureSelect QXT Target Enrichment Kit according to the manufacturer’s protocol 441 

using the capture libraries Agilent SureSelect Human All Exon Kit V6. Sequencing was 442 

performed on the Illumina NextSeq®500 system. The data was evaluated for rare (minor allele 443 

frequency [MAF] in gnomAD <0.01), likely pathogenic variants (stop-, frameshift- and splice 444 

site-variants) in 170 candidate genes previously reported to be associated with impaired 445 

spermatogenesis according to Oud et al. (40). (for gene list and detected variants see table S9). 446 
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Additionally, the recently published genes ADAD2, M1AP, MSH4, RAD21L1, RNF212, 447 

SHOC1, STAG3, SYCP2, associated with non-obstructive azoospermia, were screened. Only 448 

variants with a coverage >10 and detected in genes that quantitatively impair spermatogenesis 449 

were considered for further analyses. Variants in recessive genes were only evaluated if at least 450 

two were identified in the same individual. For putative dominant and X-linked genes, variants 451 

that were also found in fertile controls were not considered for further analyses. 452 

Preparation of single cell suspensions 453 

Single cell suspensions were obtained using a two-step enzymatic digestion as previously 454 

described (41, 42). A total of 20 000 cells were used for ploidy analysis, 12 000 cells were 455 

prepared for scRNA-seq and 50 000 cells were stored at -80°C for proteomic analysis. 456 

Ploidy analysis 457 

Ploidy analysis was performed on 20 000 cells of each sample prior to scRNA-seq. After 458 

centrifugation, the cells were incubated in the dark for 30 minutes with a solution containing 459 

50 µg/ml Propidium Iodide (Sigma- Aldrich, Cat# P4170), 1 mg/ml bovine serum albumin 460 

(Sigma-Aldrich, Cat# A9647), 0.1% Triton X-100 (Sigma-Aldrich, Cat# 93443), and 10 µg/ml 461 

RNase A (Sigma-Aldrich, Cat# R6513) in phosphate-buffered saline (PBS). After incubation, 462 

approximately 10 000 cells were analyzed for each sample using a Beckman Coulter CytExpert 463 

QC Flow Cytometer. Debris was defined based on forward and side scatter and excluded from 464 

the analysis. The cells analyzed for DNA content were measured at 617 nm and assigned to the 465 

following categories according to staining intensity: 1) haploid cells (1C: spermatids), 2) 466 

diploid cells (2C: spermatogonia, somatic cells (e.g. Leydig peritubular and Sertoli cells)), 3) 467 

“double diploid” cells (4C: spermatocytes). 468 

ScRNA-seq library preparation and sequencing  469 
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12 000 cells per sample (normal=3; crypto=3) were suspended in MEMα at a concentration of 470 

500 cells/µl and loaded onto the Chromium Single Cell A Chip. Library preparation was 471 

performed following the kit instructions (Chromium Single Cell Kit [v2 chemistry]). Briefly 472 

~6 000 cells per sample were captured by the 10x Genomics Chromium controller, after cDNA 473 

synthesis, 12-14 cycles were used for library amplification. The resulting libraries were 474 

quantified using the Lab901 TapeStation system (Agilent) before shallow sequencing 475 

(NextSeq-550 sequencer, Illumina) for quality control. The final, deep sequencing was 476 

performed on a NovaSeq6 000 sequencer (Illumina), using 2 × 150 bp paired-end sequencing.  477 

ScRNA-seq and proteome analyses 478 

The scRNA-seq and proteome analyses are described in detail Supplementary Materials and 479 

Methods. 480 

PAS, immunohistochemical and immunofluorescence staining 481 

Testicular biopsies were fixed in Bouin’s solution overnight and then washed in 70% ethanol. 482 

The tissues were paraffin-embedded and sectioned at 5 µm. Tissue sections were dewaxed with 483 

AppiClear (Applichem, Cat# A4632.2500), rehydrated through decreasing ethanol 484 

concentrations, and washed in distilled water. For periodic acid-Schiff/hematoxylin (PAS) 485 

staining, the slides were first incubated in 1% PA (Sigma-Aldrich, Cat# 1.005.240.100) and 486 

then in Schiff’s reagent (Sigma-Aldrich, Cat# 1.090.330.500). Cell nuclei were counterstained 487 

with Mayer’s hematoxylin solution (Sigma-Aldrich, Cat# 1.092.490.500). After rinsing in tap 488 

water, the slides were dehydrated through increasing ethanol concentrations, incubated in 489 

AppiClear solution, and closed with Merckoglas (Sigma-Aldrich, Cat# 1.039.730.001).  490 

Immunohistochemical staining was performed as previously described (42). Briefly, after 491 

rehydration, the sections underwent heat-induced antigen retrieval using sodium citrate buffer 492 

pH 6.0. The endogenous peroxidase activity and the unspecific antibody binding were blocked 493 
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using hydrogen peroxide (Hedinger, Cat# GH06201) and a solution containing goat serum 494 

(Sigma-Aldrich, Cat# G6767-100ML) and BSA, respectively. The sections were incubated 495 

overnight at 4°C with the primary antibodies diluted in the blocking solution. The following 496 

day, sections were incubated with a biotin-labeled secondary antibody and then with 497 

streptavidin-horseradish peroxidase. The peroxidase activity was detected using 3,30-498 

diaminobenzidine tetrahydrochloride solution (Applichem, Cat# A0596.0001). The reaction 499 

was stopped with distilled water and nuclei were counterstained with Mayer’s hematoxylin. 500 

Finally, the slides were rehydrated with increasing ethanol concentrations, washed with 501 

AppiClear, and closed with Merckoglas. The sections were scanned with Precipoint M8 502 

Microscope and Scanner (Precipoint, Freising, Germany) (43). 503 

The immunofluorescent staining was performed as previously described (21). After 504 

rehydration, the sections underwent heat-induced antigen retrieval using sodium citrate buffer 505 

pH 6.0. After cooling to room temperature the tissues were permeabilized with Triton X-100, 506 

incubated with 1M glycine (Sigma-Aldrich, Cat# G7126-500G) and then covered with a 507 

blocking solution of tween (Sigma-Aldrich, Cat# 655205), BSA, and donkey serum (Sigma-508 

Aldrich, Cat# S30-100 ml). The incubation of the primary antibody was performed overnight 509 

at 4°C in blocking solution. The following day the sections were washed and incubated for 1 510 

hour with species specific secondary antibodies diluted in blocking solution. Slides were finally 511 

mounted with Vectashield Mounting Media with 4,6-diamidino-2-phenylindole as nuclear 512 

counterstain (Vector Laboratories, Cat# H-1200). Stainings were digitalized employing the 513 

Olympus BX61VS microscope and scanner software VS-ASW-S6 (Olympus, Hamburg, 514 

Germany). All antibodies are listed in table S10. 515 

Evaluation of the testicular histology 516 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429371
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

To score the spermatogenic status of each patient two PAS-stained sections from two 517 

independent biopsies per testis were evaluated using the Bergmann and Kliesch method (44). 518 

A score from 0 to 10 was assigned to each patient according to the percentage of tubules 519 

containing elongated spermatids. In the same sections, the percentage of seminiferous tubules 520 

containing spermatocytes or spermatogonia as the most advanced germ cell type was assessed, 521 

as well as Sertoli cell only and hyalinized tubules (tubular shadows).  522 

Adark, Apale, B spermatogonia identification 523 

The Adark, Apale and B spermatogonia were defined according to morphological criteria as 524 

previously published (6, 7). Briefly, the Adark spermatogonia presented a spherical or slightly 525 

ovoid nucleus containing uniformly dark stained chromatin with an unstained central 526 

rarefaction zone. Apale spermatogonia had an ovoid nucleus containing very weakly stained 527 

chromatin and 1-3 deeply stained nucleoli attached to the nuclear membrane. Finally, B 528 

spermatogonia showed a spherical nucleus with granulated and weakly stained chromatin and 529 

intensely stained nucleoli detached from the nuclear membrane. 530 

Histological quantifications and statistics 531 

Quantification of stained cells following immunofluorescence analyses was performed with 532 

Fiji/ImageJ (45). The number of ACTA2+ and MUSTN1+ blood vessels was evaluated in two 533 

independent sections of normal (n=12) and crypto (n=13) patients and normalized per area 534 

(mm2). To discern between the ACTA2+ seminiferous tubules and the ACTA2+ blood vessels 535 

for each stained section a consecutive section was stained with the endothelial marker VWF. A 536 

blood vessel was defined as such provided that it was positive for VWF in the consecutive 537 

section.  538 

Each immunohistochemical quantification was performed on normal (n=6) and crypto (n=6) 539 

samples using the Precipoint Viewpoint software (Precipoint, Freising, Germany). The number 540 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429371
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

of MAGEA4+, PIWIL4+, FGFR3+, GFRA1+, NANOS3+ and UTF1+ spermatogonia per tubule 541 

was assessed per round tubule. Tubules were considered round when the ratio between the two 542 

diameters was in the range of 1 - 1.5. The percentage of PIWIL4+, FGFR3+, GFRA1+, 543 

NANOS3+ and UTF1+ Adark spermatogonia was evaluated counting 100 Adark spermatogonia 544 

per sample and determining the proportion of each marker. In case of the crypto samples it was 545 

not always possible to reach 100 Adark spermatogonia. To evaluate how many MAGEA4+, 546 

PIWIL4+, FGFR3+, GFRA1+ and UTF1+ spermatogonia were Adark, we counted 100 547 

spermatogonia positive for each marker in each sample and then assessed the proportion of 548 

Adark spermatogonia. Tubules of the crypto samples were subdivided into three categories 549 

according to the most advanced germ cell type present: spermatogonia, spermatocytes and 550 

spermatids. All the quantification results were plotted as box plots (center line: median; box 551 

limits: upper and lower quartiles; whiskers: 1.5× interquartile range; points: outliers). Normality 552 

and homoscedasticity tests were performed for all variables and differences between groups 553 

were assessed by parametric (t-test) or non-parametric tests (Mann-Whitney U test) as 554 

appropriate. Kruskal-Wallis rank sum test was used to compare three or more independent 555 

groups, followed by multiple pairwise comparisons. Statistical analysis and graphs were 556 

executed using R 4.0.0 and packages stats (v4.0.0) and ggplot2 (v3.3.1). Details regarding the 557 

number of samples or cells evaluated and the statistical analysis are provided in table S2. 558 

Supplementary material 559 

Supplementary Materials and Methods 560 

Fig. S1. Clustering analysis of normal and crypto datasets. 561 

Fig. S2. DGE and GO analysis between the different germ cell clusters of the normal and crypto 562 

datasets. 563 
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Fig. S3. DGE and GO analysis between the different somatic cell clusters of the normal and 564 

crypto datasets. 565 

Fig. S4. Differential regulon activation in the normal and crypto datasets. 566 

Fig. S5. Cluster analysis and assignment of normal and crypto spermatogonial datasets. 567 

Fig. S6. EGR4-regulated genes in the knotgroup 1 spermatogonia. 568 

Fig. S7. EGR4- and HOXC9-regulated genes in knotgroup 2 spermatogonia. 569 

Table S1. Clinical parameters. 570 

Table S2. Histomorphometric and statistical analysis. 571 

Table S3. Single cell RNA sequencing stats. 572 

Table S4. Differential expression analysis results. 573 

Table S5. Genes uniquely differentially expressed in germ or somatic cell clusters and relative 574 

gene ontology analysis. 575 

Table S6. Differential gene expression analysis of perivascular cells compared toPMCs and of 576 

immune cells compared to all other cell clusters. 577 

Table S7. List of the 403 regulons obtained from the Scenic analysis. 578 

Table S8. List of regulons obtained from the Scenic analysis plotted in the heatmap in Fig. 4. 579 

Table S9. Genes with at least one potentially pathogenic variant described according to Oud et 580 

al. 2019. 581 

Table S10. Reagents & Software. 582 
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Fig. 1. Crypto tissues show stable numbers of MAGEA4+ spermatogonia but reduced 809 

numbers of UTF1+ spermatogonia. 810 

(A) Experimental outline. (B) Upper panel: Representative Periodic acid-Schiff stained 811 

micrographs of the testicular tissue of one normal (left) and one crypto (right) sample. Scale 812 

bars = 100 µm. Lower panel: Box plots showing the percentages of tubules containing germ 813 

cells (most advanced germ cell type), only Sertoli cells, or tubular shadows in the patient cohort. 814 

Values per patient can be found in table S1. * p<0.05, *** p<0.001. (C) Micrographs showing 815 

the MAGEA4 and UTF1 staining in the normal and crypto testicular tissue. Inlays show 816 

examples of positive and negative cells for each staining. IgG negative controls show no 817 

staining. Scale bar = 100 μm. (D) Quantification of MAGEA4+ (upper) and UTF1+ (lower) 818 

spermatogonia per tubule in normal (n=6) and crypto samples (n=6). No statistical difference 819 

was found in the number of MAGEA4+ spermatogonia per tubule between normal and crypto 820 

samples. A significant reduction was found in the number of UTF1+ spermatogonia per tubule 821 

in the crypto samples (* p<0.05; Statistical details are available in table S2). (E) Stacked bar 822 

plots showing the ploidy of the single cell suspensions used for scRNA-seq analysis of each 823 

patient sample. (F) Upper panel: Uniform manifold approximation and projection (UMAP) plot 824 

of the integrated normal dataset. Clusters were assigned based on the expression of 55 markers 825 

genes (fig. S1B). Lower panel: scRNA-seq data from the 3 normal samples. Each color 826 

represents a different cell type. (G) Upper panel: UMAP plot of the integrated crypto dataset. 827 

The clusters were assigned by anchoring integration using the normal dataset as reference. 828 

Lower panel: scRNA-seq data from the 3 crypto samples. 829 

 830 
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 833 

Fig. 2. Exploration of cellular and transcriptional changes in crypto testicular tissues. 834 

(A) Left panel: UMAP plot of the all integrated dataset. Right panel: Contribution of the normal 835 

(15 546 cells) and crypto (13 144 cells) datasets to the all integrated dataset. The cells are color 836 
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coded according to the respective cell types. (B) Box plot comparing the germ and somatic cell 837 

proportions in normal and crypto scRNA-seq datasets. (C) Panel of box plots representing the 838 

protein expression of 12 marker genes used in the cluster assignment (MAGEA4: 839 

Spermatogonia; DPH7: Leptotene spermatocytes; LY6K: Zygotene spermatocytes; PIWIL1: 840 

Pachytene spermatocytes; TEX29: Early spermatids; PRM2: Elongated spermatids; ACTA2: 841 

Peritubular myoid cells (PMCs); FATE1: Sertoli cells; HSD17B3: Leydig cells; VWF: 842 

Endothelial cells; LYZ: Macrophages; MUSTN1: Perivascular cells). Protein expression was 843 

measured performing bottom-up mass spectrometry analysis on single cell suspensions (normal 844 

n=5, crypto n=4 patients) and shows a reduction of germ cells, starting from the leptotene 845 

spermatocytes, and an increase of macrophages in crypto patients. * p<0.05, ** p<0.01. (D) 846 

Feature plots highlighting the expression of MUSTN1 (Perivascular cell marker gene) in normal 847 

and crypto datasets. (E) Representative micrographs showing blood vessels in consecutive 848 

sections of normal and crypto testicular tissues stained for MUSTN1 (magenta)/ACTA2 (green) 849 

and for VWF (magenta)/ACTA2 (green). The tissue sections were counterstained with DAPI 850 

(blue). Double positive MUSTN1/ACTA2 cells were found surrounding the endothelial layer 851 

of the blood vessels. The IgG control showed no immunological staining. Scale bar = 100 μm 852 

(main) and 20 μm (inlays). (F) Box plots representing the number of ACTA2+ blood vessels 853 

(Upper) and MUSTN1+ blood vessels (lower) per mm2 of tissue in the normal (n=12) and crypto 854 

samples (n=13). A significant increase of blood vessels and MUSTN1+ blood vessels was found 855 

between the two cohorts (Statistical details are available in table S2). (G) Feature plots 856 

highlighting the expression of CD3E (Immune cell marker gene) in normal and crypto datasets. 857 

(H) Representative micrographs showing CD3+ immune cells (Red) and ACTA2+ blood vessels 858 

(Green) in normal and crypto testicular tissues. The tissue sections were counterstained with 859 

DAPI (Blue). CD3+ immune cells were found solely in the crypto group in close proximity to 860 

blood vessels. The IgG control showed no immunological staining. Scale bar = 50 μm (main) 861 

and 20 μm (inlays). 862 
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 863 

Fig. 3. Ligand-receptor interaction analysis. 864 

Summary of ligand–receptor interactions between the normal and crypto undifferentiated 865 

spermatogonia and the other cell types in the tissues. P–values are represented by the size of 866 

each circle. The color gradient indicates the level of interaction. Black squares indicate selected 867 

interactions that show a different significance in the normal and crypto datasets. 868 
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Fig. 4. Undifferentiated spermatogonia activate EGR4 regulatory network in the crypto 877 

group. 878 

(A) Binarized double heatmap showing the AUC score (area under the recovery curve; it scores 879 

the activity of regulons) of the identified regulons plotted separately for the normal (teal, left) 880 

and crypto (purple, right) datasets. For each cellular cluster, the first 15 regulons showing the 881 

highest regulon specificity score (RSS) in the normal dataset were plotted. The regulons written 882 

in bold are those showing a difference of at least 20% in the proportion of cells with the active 883 

regulon in the crypto dataset and a significant difference in the regulon specific AUC score 884 

between normal and crypto datasets. (B-E) Upper panel: Stacked bar plots comparing the 885 

proportion of undifferentiated spermatogonia with active (B) ASCL2, (C) EGR4, (D) HOXC9 886 

and (E) DLX5 regulons. Lower panel: Violin plots comparing the AUC score of the (B) 887 

ASCL2, (C) EGR4, (D) HOXC9 and (E) DLX5 regulons in the normal and crypto 888 

undifferentiated spermatogonia. A significant increase was found for all four regulons in the 889 

crypto dataset (BH corrected p-value of Mann-Whitney U test). A complete list of the regulons 890 

and their RSS and AUC scores is available in table S8. (F) Overlap among the 61 genes 891 

uniquely differentially expressed in undifferentiated spermatogonia and the genes putatively 892 

regulated by ASCL2, EGR4, HOXC9 and DLX5. (G) Heatmap showing the expression in the 893 

normal and crypto undifferentiated spermatogonia of the 23 differentially expressed genes 894 

putatively regulated by EGR4. (H) Micrographs showing the expression of EGR4 in 895 

spermatogonia in normal testicular tissue. Scale bars: main=100 µm; inlay=20 µm. 896 
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Fig. 5. The crypto SSC compartment shows altered composition with an increased 904 

number of PIWIL4+ spermatogonia. 905 

(A) UMAP plot showing the cluster assignment of the normal dataset. Six clusters were 906 

assigned based on the expression of markers shown in fig. S5B: State 0, 0A, 0B, 1, 2, and 3. 907 

Each color represents a different cluster. (B) UMAP plot showing the cluster assignment of the 908 

crypto dataset. The clusters were assigned by the anchoring integration method using the normal 909 

dataset as reference. Each color represents a different cluster, as in the normal dataset. (C) 910 

UMAP plot showing the integrated normal and crypto spermatogonial datasets. Each color 911 

represents a different cluster, as in the normal dataset. (D) Box plots representing the different 912 

cell proportions in the normal and crypto spermatogonial datasets. The proportion of State 0A 913 

spermatogonia was significantly reduced in the crypto dataset (* p<0.05). (E)  Feature plots 914 

showing the expression level of PIWIL4, FGFR3, GFRA1, and NANOS3 in the all integrated 915 

datasets. (F) Micrographs showing the PIWIL4, FGFR3, GFRA1 and NANOS3 staining in the 916 

testicular tissue. Inlays show examples of positive and negative cells for each staining. IgG 917 

negative controls show no staining. Scale bars: main = 50 μm, Inlay=20 μm; IgG=100 μm. 918 

(G) Quantification of PIWIL4+, FGFR3+, GFRA1+, and NANOS3+ spermatogonia per tubule 919 

in normal (n=6) and crypto samples (n=6). A significant increase was found in the number of 920 

PIWIL4+ spermatogonia per tubule in the crypto samples (* p<0.05). No statistical difference 921 

was found in the total number of GFRA1+, FGFR3+ and NANOS3+ spermatogonia between 922 

normal and crypto samples. Statistical details are available in table S2. (H) RNA velocities 923 

derived from the scVelo dynamical model for the normal and crypto spermatogonial dataset are 924 

visualized as streamlines in UMAP plots. A change in the arrow directionality can be observed 925 

in the crypto dataset. 926 
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930 

Fig. 6. The crypto group shows altered numbers of Adark spermatogonia. 931 

(A-D) Right panel: Micrographs showing (A) UTF1+, (B) PIWIL4+, (C) FGFR3+, (D) GFRA1+ 932 

Adark spermatogonia. Green arrow heads indicate Adark spermatogonia. Scale bars=20 µm. Left 933 

panel: Boxplots showing the percentage of UTF1+ (A), PIWIL4+ (B), FGFR3+ (C) and GFRA1+ 934 

(D) spermatogonia among the Adark population in normal (n=6) and crypto samples (n=6). A 935 

mean of 78.4% of the Adark spermatogonia were UTF1+, 5.8% were PIWIL4+, 5.7% were 936 

FGFR3+ and 18.1% were GFRA1+ in the normal dataset. No significant difference was found 937 

in the crypto samples. (E-I) Quantification of the percentage of Adark spermatogonia among 938 

MAGEA4+ (E), UTF1+ (F), PIWIL4+ (G), FGFR3+ (H) and GFRA1+ (I) spermatogonial 939 

populations in normal (n=6) and crypto samples (n=6). A significant reduction of Adark 940 

spermatogonia was found among all the cell types (**p <0.01, *p <0.05). (J) Quantification of 941 
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the proportion of Adark spermatogonia per tubule according to the most advanced germ cell type 942 

present. Left: Representative micrographs showing in the order one tubule from a normal 943 

sample containing spermatids as the most differentiated germ cell and three tubules from a 944 

crypto sample containing either spermatogonia (SPG), spermatocytes (SPC), or spermatids 945 

(SPT) as the most differentiated germ cell. Scale bar = 100µm. Right panel: Boxplot showing 946 

the quantification of Adark spermatogonia per tubule in normal (n=6) and crypto samples (n=6). 947 

*p <0.05. The asterisks refer to the comparison with the normal samples. Statistical details are 948 

available in table S2.  949 
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Fig. 7. Crypto State0 and 0A spermatogonia show enhanced expression of EGR4 and 968 

HOXC9. 969 

(A) Double heatmap showing the normalized expression of the 33 genes identified by tradeSeq 970 

analysis as differentially expressed in the knotgroup 1 of the crypto dataset. The cells are plotted 971 

along the latent time with the normal cells on the left side (teal) and crypto cells on the right 972 

side (purple). (B) The bar plot shows GO analysis of the 33 differentially expressed genes in 973 

the knotgroup 1. The results showed an enrichment in GO terms related to cellular 974 

differentiation and development. The red line on the bar plot represents p=0.05. (C) Line plots 975 

showing the expression of EGR4 and UTF1 in the normal (teal) and crypto (purple) cells along 976 

the latent time. The gray area highlights the cells belonging to the knotgroup 1. The plots show 977 

enhanced expression of EGR4 and reduced expression of UTF1 in the crypto knotgroup 1. (D) 978 

Double violin plots comparing the expression level of EGR4 and UTF1 in the spermatogonial 979 

states in the normal (teal, left) and crypto (purple, right) datasets. (E) Double heatmap showing 980 

the normalized expression of the 82 genes identified by the tradeSeq analysis as differentially 981 

expressed in the knotgroup 2 of the crypto dataset. The cells are plotted along the latent time 982 

with the normal cells on the left side (teal) and crypto cells on the right side (purple). (F) The 983 

bar plot shows the GO analysis of the 82 differentially expressed genes in the knotgroup 2. The 984 

results showed an enrichment in GO terms related to cellular differentiation and development. 985 

The red line on the bar plot represents the p=0.05. (G-I) Line plots showing the expression 986 

along the latent time of HDAC5 (G; regulated by EGR4 only), PVALB (H; regulated by HOXC9 987 

only) and SERPINE2 and HOXC9 (I; regulated by EGR4 and HOXC9) in the normal (teal) and 988 

crypto (purple) cells. The gray area highlights the cells belonging to the knotgroup 2. The plots 989 

show enhanced expression of all the genes in the crypto knotgroup 2. (J-L) Double violin plots 990 

comparing the expression level of HDAC5 (J; present in the EGR4 regulon only), PVALB (K; 991 

present in the HOXC9 regulon only), SERPINE2 and HOXC9 (L; present in both the EGR4 and 992 
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HOXC9 regulons) in the normal (teal) and crypto (purple) cells along the latent time. The plots 993 

show enhanced expression of the all the genes in the crypto State 0, 0A, 0B spermatogonia. 994 

 995 

Fig. 8. Model of the human spermatogonial compartment in normal and crypto samples. 996 

(A) The circles represent the State 0 (Red), State 0A (Blue), State 0B (Magenta) and State 1 997 

(Green) spermatogonia. The thickness of the black arrows indicates the proportion of cells 998 

changing their expression profile. (B) Suggested mechanism: the EGR4 mediated UTF1 999 

downregulation induces the chromatin remodeling resulting in the transition from Adark to Apale 1000 

morphology. 1001 

 1002 

 1003 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2021. ; https://doi.org/10.1101/2021.02.02.429371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429371
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

Supplementary Material 1004 

Material and Methods 1005 

ScRNA quantification and UMI/CB correction 1006 

Alevin (47) was used to deduplicate and quantify the single-cell sequencing data and to discern 1007 

the valid cellular barcodes (CB) from the background noise. The Gencode (48) human reference 1008 

v30 was used as transcriptomic reference, together with the flags --useCorrelation and --1009 

chromium in the quantification. Additionally, the --expectCells parameter was set to 6 000 1010 

(50% of the initial loading of 12 000 cells) to help the CB knee finding method. This approach 1011 

resulted in a mean of 4 783 cells (SD: 587) per sample and a mean/median number of 2 460 1012 

(SD: 799) expressed genes per cell. All software is listed in table S10. 1013 

Normalization, sample integration, dimensional reduction and label transfer 1014 

Alevin counts were processed with Seurat (14, 49). To reduce initial noise, genes expressed in 1015 

less than 0.1% of the cells were excluded, together with cells containing fewer than 200 counts. 1016 

In total, only 9 cells were removed by this filter. The analysis of mitochondrial content in regard 1017 

to the total measured expression revealed 471 cells (1.6%) with a strong mitochondrial effect 1018 

(>25% of mitochondrial counts), 306 of them (65%) later identified as Sertoli cells. It is 1019 

unknown at the moment if this high mitochondrial content is a sign of cell death or a normal 1020 

feature of Sertoli cells, therefore these cells were not excluded from the analysis. Mitochondrial 1021 

content and total RNA counts were used as a regression variable in the normalization procedure 1022 

sctransform (50), with the number of variable features set to 5 000. Anchor-based sample 1023 

integration was performed on the normalized counts, setting the number of features in the 1024 

anchor finding process to 5 000. We integrated normal and crypto samples (n=3, each) in three 1025 

ways, resulting in an integrated dataset of all normal samples, an integrated dataset of all crypto 1026 

samples and an integrated dataset consisting of all six samples. As proposed by the Seurat 1027 
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developers, scaling was disabled in the FindIntegrationAnchors() method, due to the prior 1028 

normalization by sctransform. All available genes were kept in the integrated dataset, 1029 

irrespective of their usage as anchors or not. Integrated counts were scaled and centered for 1030 

principal component (PC) analysis and dimensional reduction. For each scaled dataset, 100 PCs 1031 

were calculated using the most variable genes. Elbow-Plots of the PCs were generated to 1032 

determine the inflection point, confirming 25 PCs for further analysis. A shared nearest 1033 

neighbor graph was constructed based on the PCs. Cell clusters were identified via the smart 1034 

local moving algorithm (51) with a resolution parameter of 1 100 random starts and a maximum 1035 

of 100 iterations. For data visualization, the non-linear dimensional reduction method UMAP 1036 

(52) was used based on the specified 25 PCs. 1037 

To enable an unbiased verification of the cluster identities, the top marker genes per cluster 1038 

were computationally determined with the FindAllMarkers() function, testing with MAST (53) 1039 

only for positive marker genes with a minimal expressed-in fraction of 30% (p < 0.001). These 1040 

computational markers were used with known cell type markers from the literature (9–12) to 1041 

carefully assign cluster identities. Following the marker-based cluster identity assignment in 1042 

the normal dataset, identity labels were transferred to the crypto dataset utilizing the Seurat 1043 

label transfer functionality. Imputed cell identity labels were carefully inspected and again 1044 

confirmed by marker expression. The same clustering and dimensional reduction approach was 1045 

performed on the subgroup of spermatogonial cells of the normal and crypto dataset. 1046 

Differential gene expression analysis 1047 

Intra- and inter-dataset differential gene expression analysis was performed using MAST (53). 1048 

The original Alevin expression counts (after default Seurat normalization) were used to avoid 1049 

bias by the scaling effect of sample-wise sctransform normalization or sample integration. Filter 1050 

criteria for differentially expressed genes (DEG) were: default log fold change threshold of 1051 
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0.25, FDR-corrected p-value below 0.01 and expression in at least 10% of the cells of one 1052 

comparison group. 1053 

PAGA trajectory inference 1054 

Partition based graph abstraction (PAGA) (54) from the Scanpy package (55) was used for 1055 

trajectory inference. The neighborhood graph was based on the top 25 PCs from Seurat with 1056 

the number of nearest neighbors set to 20. Cell identity labels were used as partition categorical 1057 

for the PAGA construction. Based on the PAGA, a new UMAP embedding was computed to 1058 

better reflect the global topology, using 100 optimization iterations (epochs). 1059 

RNA velocity estimation and embedding 1060 

RNA velocity is the time derivative of the measured mRNA abundance (mature spliced/ nascent 1061 

unspliced transcripts) and allows to estimate the future developmental directionality of each 1062 

cell. As the abundance estimation relies on genomically aligned nascent reads, it is not possible 1063 

to use the transcriptomic pseudo-alignment of Alevin. Therefore, we used the 10x Genomics 1064 

Cell Ranger pipeline to create a genomic BAM file for each sample. Subsequently, aligned 1065 

reads were used separately as input for velocyto (17), as well as the 10x Genomics genomic 1066 

annotation file and UCSC expressed repeats annotation file. Velocyto analysis of each sample 1067 

was limited to cell barcodes validated by Alevin. Due to differences in the barcode correction 1068 

methods of Alevin and Cell Ranger, RNA velocity could not be estimated for a total of 24 cells 1069 

(0.08% of total cells). Per sample abundance estimates were combined with the loompy 1070 

package, analogous to the scheme in the Seurat integration step. Combined abundance data was 1071 

merged with the PAGA anndata object using scVelo (56). Abundance estimates were 1072 

normalized and filtered, requiring a minimal abundance of 5 per gene, simultaneously in the 1073 

spliced and unspliced counts. First and second order moments were calculated utilizing the first 1074 

30 PCs and 30 neighboring cells from the neighbor graph. The likelihood-based dynamical 1075 
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model from scVelo was applied, recovering full splicing kinetics before estimating the 1076 

velocities. In addition to the velocity graph and the projection of the velocities into the UMAP 1077 

embedding, a gene-shared latent time was calculated. The latent time is solely based on the 1078 

transcriptional dynamics and represents the internal clock of a cell. For the latent time 1079 

calculation, a cell from the most undifferentiated cell type was used as a root cell, if applicable. 1080 

Gene regulatory network inference 1081 

The python version of the SCENIC (16) pipeline was used for gene regulatory network 1082 

inference. Briefly, SCENIC links cis-regulatory sequences to single-cell gene expression data 1083 

to predict interactions between transcription factors (TFs) and target genes. Pairs of genes and 1084 

co-expressed TFs were identified with the GRNBoost2 algorithm from Arboreto (57), using the 1085 

standard normalized Alevin counts. Additionally, a list of 1390 curated human TFs was used, 1086 

provided in the SCENIC repository. Co-expression modules derived from this analysis were 1087 

pruned to remove indirect targets and false positives (using human motifs v9 and hg38 1088 

databases from cisTargetDB). In accordance with the SCENIC publication we refer to modules 1089 

with significant motif enrichment of the correct upstream regulator as ‘regulons’. Cells with 1090 

enriched expression for genes in a regulon were marked as active for this specific regulon. 1091 

Additionally, a Jensen-Shannon divergence based regulon specificity score (58) (RSS) was 1092 

used for ranking purposes.  1093 

As we experienced highly variable results for different SCENIC runs on the same data, we 1094 

choose a strategy to increase the stability of the adjacency calculation, i.e. the target gene and 1095 

transcription factor co-expression measurement and weighting. Because of its nondeterministic 1096 

nature, we decided to perform this calculation 10 times and only carry over gene–TF links that 1097 

appeared in each of the runs. This “meta-adjacency” table, consisting of the median weight per 1098 

link, was used in subsequent SCENIC steps. 1099 
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Differential expression analysis along latent time 1100 

We utilized the R package tradeSeq (18) to perform differential expression analysis along the  1101 

common gene-shared latent time between the spermatogonial cells of the normal and crypto 1102 

datasets. Standard normalized Alevin counts were filtered, excluding genes with a total 1103 

expression below 10 (excluding 28% of 33 679 genes). For each gene, a negative binomial 1104 

generalized additive model was fitted to seven knots along the latent time, in accordance to the 1105 

results of evaluateK(). The knots are equally distributed among the cell density along the 1106 

trajectory, with the first and last knot representing the minimal and maximal trajectory value, 1107 

respectively. Knots were comprised to knot groups, where all cells between adjacent knots are 1108 

included. We focused on identifying genes differentially expressed exclusively in a single knot 1109 

group. For this, we adopted the stageR (59) two-staged testing scheme, performing a whole-1110 

trajectory patternTest() for the screening stage and a earlyDETest() for each knot group in the 1111 

confirmation stage. All tests were performed against a foldchange of log2 (1.2) with an overall 1112 

false discovery rate of 0.05. The fitted distributions of the significant genes of each 1113 

earlyDETest() were clustered, using 100 cluster points and a minimal cluster size of 20, except 1114 

for knotgroup 1, where a minimal cluster size of 10 was used. 1115 

Correlation analysis of spermatogonial cell types 1116 

Cell types of the subset of spermatogonial cells were assigned based on the conjunction of 1117 

markers of spermatogonial states, as described by Guo et al. and Sohni et al. (9, 11). To asses 1118 

that the cell type assignment worked as expected, correlation analysis of spermatogonial states 1119 

between our dataset and the datasets of Guo and Sohni was performed. Spearman correlation 1120 

of common genes was based on an “average” cell, consisting of the genewise mean of all cells 1121 

of the specific state. 1122 

Cell-cell communication analysis 1123 
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Analysis of cell-cell communication was performed with CellphoneDB (15) (Version 2.1.2), 1124 

using the “statistical_analysis” method. Ligands and receptors were required to be expressed in 1125 

at least 50% of the cells (--threshold) and the number of iterations was set to 10 000. Significant 1126 

interactions (p < 0.05) were subsequently visualized. 1127 

Gene ontology and pathway analysis 1128 

Gene ontology analysis was performed using the Gene Set Enrichment Analysis (GSEA) 1129 

(https://www.gsea-msigdb.org/gsea/index.jsp). Pathway analysis was performed using 1130 

Ingenuity Pathway Analysis (Qiagen). 1131 

Sample preparation and LC-MS/MS analysis 1132 

Single cell suspensions obtained by digestion of a biopsy (see “Single cell suspension 1133 

preparation” section) from either normal (n=5) or crypto patients (n=4) were prepared for 1134 

bottom-up mass spectrometry analysis, combining a one-pot sample preparation method (iST-1135 

NHS; Preomics) with isobaric tandem mass tags (TMT) labeling and subsequent stepwise 1136 

reversed-phase fractionation at high pH (Thermo Fisher Scientific, Pierce, Cat# 84868). Cell 1137 

lysis, digestion and labeling were performed according to the manufacturer’s protocol, except 1138 

for the two samples containing 1.0x106 cells (assuming a protein content of ~200 µg), where 1139 

volumes of buffers and reagents were adjusted accordingly (N1, N2). In addition, to support 1140 

complete degradation of released chromatin, 1 µl of Benzonase was added to each sample after 1141 

the initial lysis/denaturation step and incubated for 10 minutes at room temperature (RT). TMT 1142 

labeling was performed following digestion by directly adding the TMT labeling reagent 1143 

resuspended in 41 µl dry acetonitrile to the corresponding digest (RT, 500 rpm, 1hr). Prior to 1144 

quenching the labeling reaction with 5% hydroxylamine, a “label check” was performed by 1145 

analyzing 1 µl of each sample by mass spectrometry. A second mass spectrometry analysis was 1146 

performed by mixing 1 µl of each sample to obtain normalization factors for the correct 1:1 1147 
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ratio across all channels. Following desalting and lyophilization of the mixture, labeled peptides 1148 

were resuspended in 300 µl of 0.1% TFA and submitted to a reversed-phase fractionation 1149 

procedure at high pH on spin columns according to the manufacturer’s instructions (5% - 50% 1150 

acetonitrile, 0.1% triethylamine). This resulted in 8 fractions (plus desalted flowthrough and 2 1151 

wash fractions) that were dried down in an Eppendorf concentrator before being resuspended 1152 

in 0.1% formic acid for mass spectrometry analysis. All samples were measured twice as 1153 

technical replicates. Samples were measured on an Easy nLC 1200 system coupled to a Q 1154 

Exactive HF MS via a Nanospray Flex ion source (ThermoFisher Scientific). Peptides were 1155 

dissolved in buffer A (0.1% formic acid) and separated on a 25 cm column, in-house packed 1156 

with 1.9 µm C18 beads (Reprosil -Pur C18 AQ, Dr. Maisch) using a multi-linear gradient from 1157 

5%-18% buffer B (80% acetonitrile; 0.1% formic acid) and from 18%-40% B in 55 min each, 1158 

followed by an increase to 60% B in 10 min, a final washout for 7 min at 90% B and re-1159 

equilibration at starting conditions (100% buffer A; flow rate 250 nl/min). The Q-Exactive HF 1160 

mass spectrometer was operated in data-dependent acquisition mode (spray voltage 2.1 kV; 1161 

column temperature maintained at 45°C using a PRSO-V1 column oven (Sonation, Biberach)). 1162 

MS1 scan resolution was set to 120 000 at m/z 200 and the mass range to m/z 350-1 600. AGC 1163 

target value was 3E6 with a maximum fill time of 50 ms. Fragmentation of peptides was 1164 

achieved by higher-energy collisional dissociation (HCD) using a top15 method (MS2 scan 1165 

resolution 60 000 at 200 m/z; AGC Target value 1E5; maximum fill time 108 ms; isolation 1166 

width 1.3 m/z; normalized collision energy 32). Dynamic exclusion of previously identified 1167 

peptides was allowed and set to 30 s, singly charged peptides and peptides assigned with a 1168 

charge > 8 were excluded from the analysis. Data were recorded using Xcalibur software 1169 

(ThermoFisher Scientific).  1170 

MS data analysis and quantification 1171 
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Raw MS files were processed using MaxQuant (version 1.6.6.0) (60). Identification of peptides 1172 

and proteins was enabled by the built-in Andromeda search engine by querying the 1173 

concatenated forward and reverse mouse Uniprot database (UP000005640_9606.fasta; version 1174 

from 04/2019) including common lab contaminants. Allowed initial mass deviations were set 1175 

to 7 ppm and 20 ppm, respectively, in the search for precursor and fragment ions. Trypsin with 1176 

full enzyme specificity and only peptides with a minimum length of 7 amino acids was selected. 1177 

A maximum of two missed cleavages was allowed; the ‘match between runs’ option was turned 1178 

on. Carbamidomethylation (Cys) was set as fixed modification, while Oxidation (Met) and N - 1179 

acetylation at the protein N-terminus were defined as variable modifications. For peptide and 1180 

protein identifications, a minimum false discovery rate (FDR) of 1% was required. First, the 1181 

list of identified proteins was filtered and potential contaminants, reverse hits derived from the 1182 

target-decoy search as well as proteins that were identified only by a single modified peptide 1183 

were removed. Only proteins identified by at least one unique peptide were retained for further 1184 

analysis. Next, a sample loading normalization step was performed using an R script 1185 

(https://pwilmart.github.io/TMT_analysis_examples/CarbonSources_MQ.html), which was 1186 

adapted to our own experimental setup. The list of proteins containing the normalized reporter 1187 

ion intensities was imported into the Perseus bioinformatics tool. Proteins that did not show 1188 

reporter ion intensities in all 10 TMT channels were removed, and reporter ion intensities were 1189 

log2 transformed. To screen for differentially expressed proteins, a two-sided Student’s t-test 1190 

was performed using permutation-based FDR calculation as truncation (FDR = 0.05), also 1191 

taking into account the contribution of the difference of the means (s0 = 0.1).(61) 1192 

 1193 

 1194 

 1195 

 1196 
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Supplementary figures 1197 

 1198 
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Fig. S1. Clustering analysis of normal and crypto datasets. 1199 

(A) Uniform manifold approximation and projection (UMAP) plot of the clustering analysis of 1200 

the integrated (left) normal (15 546 cells, 30 clusters) and (right) crypto (13 144 cells, 29 1201 

clusters) datasets. (B) Dot plot showing the relative expression of 55 marker genes in the 30 1202 

normal clusters. Cell identity was assigned according to marker expression. The color and size 1203 

of the dots represent the average expression and the percentage of cells expressing each marker 1204 

in a cluster, as indicated in the key. (C) Feature plots showing the expression of germ cell and 1205 

somatic cell marker genes in the normal and crypto datasets. 1206 
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Fig. S2. DGE and GO analysis between the different germ cell clusters of the normal 1218 

and crypto datasets. 1219 

(A)  Volcano plot (Left) and gene ontology (GO) analysis (Right) of the 61 genes uniquely 1220 

differentially expressed in the undifferentiated spermatogonial cluster. (B)  Volcano plot (Left) 1221 

and GO analysis (Right) of the 32 genes uniquely differentially expressed in the differentiating 1222 

spermatogonial cluster. (C) Volcano plot (Left) and GO analysis (Right) of the 164 genes 1223 

uniquely differentially expressed in the leptotene spermatocyte cluster. (D)  Volcano plot (Left) 1224 

and GO analysis (Right) of the 180 genes uniquely differentially expressed in the zygotene 1225 

spermatocyte cluster. (E)  Volcano plot (Left) and GO analysis (Right) of the 271 genes 1226 

uniquely differentially expressed in the pachytene spermatocyte cluster. (F)  Volcano plot of 1227 

the 66 genes uniquely differentially expressed in the diplotene spermatocyte cluster. (G)  1228 

Volcano plot (Left) and GO analysis (Right) of the 121 genes uniquely differentially expressed 1229 

in the meiotic division cluster. (H)  Volcano plot of the 142 genes uniquely differentially 1230 

expressed in the early spermatid cluster. (I) Volcano plot (Left) and GO analysis (Right) of the 1231 

405 genes uniquely differentially expressed in the late spermatid cluster. See table S5 for the 1232 

statistical details. 1233 
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 1234 

Fig. S3. DGE and GO analysis between the different somatic cell clusters of the normal 1235 

and crypto datasets. 1236 

(A) Volcano plot (Left) and gene ontology (GO) analysis (Right) of the 232 genes uniquely 1237 

differentially expressed in the PMC cluster. See Supplementary information, Table S5 for the 1238 

statistical details. (B) Uniform manifold approximation and projection (UMAP) plot of the 1239 
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normal (Left) and crypto (Right) datasets showing the unique presence of the peritubular (Red) 1240 

and immune (Green) cell clusters in the crypto dataset. (C) Heatmap showing the differential 1241 

gene expression analysis between the perivascular cell clusters and the PMCs in the crypto 1242 

dataset. The analysis identified 48 differentially expressed genes (DEG), including MUSTN1, 1243 

with a higher expression in perivascular cells (table S6). (D) The bar plot shows the GO analysis 1244 

of the 48 DEG found in perivascular cells. The results were enriched in GO terms related to 1245 

muscle and cytoskeletal contraction. The red line on the bar plot represent p=0.05. (E) Heatmap 1246 

showing the first 50 genes of the differential gene expression analysis between immune cells 1247 

and the rest of the cells in the crypto dataset. A total of 195 genes showed higher expression in 1248 

cluster 24 (A complete list of the DEG is available table S6). (F) The bar plot shows the pathway 1249 

analysis of the 195 DEG. The results were enriched in immune cell associated pathways. The 1250 

red line on the bar plot represents the p=0.05. The z_score represents the activation level of 1251 

each pathway. 1252 
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Fig. S4. Differential regulon activation in the normal and crypto datasets.  1260 

(A-I) Left panel: Stacked bar plot comparing the proportion of cells with active regulons. Right 1261 

panel: Violin plots comparing the AUC score of the regulons in the normal and crypto dataset. 1262 

The regulons are organized as follow: (A) E2F1 in the differentiating 1263 

spermatogonia/preleptotene, (B) RORA in the early spermatids, (C) STAT3, (D) TBX4, (E) 1264 

ATF2, (F) RFX2 and (G) ETV2 in the late spermatids, (H) EGR3 in the Sertoli cells and (I) 1265 

RUNX3 in the macrophages. A significant change was found for all the nine regulons in the 1266 

crypto dataset. 1267 
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 1268 

Fig. S5. Cluster analysis and assignment of normal and crypto spermatogonial datasets. 1269 

(A) Uniform manifold approximation and projection (UMAP) plot of the integrated normal 1270 

(upper panel, 13 clusters) and crypto (lower panel, 10 clusters) spermatogonial datasets. The 1271 

cells are color coded according to the cluster. (B)  Dot plot showing the relative expression of 1272 

selected marker genes in the 13 normal clusters. The color and size of the dots represent the 1273 
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average expression and the percentage of cells expressing each marker in a cluster, as indicated 1274 

in the key. According to the marker expression, six clusters were defined: State 0, 0A, 0B, 1, 2, 1275 

and 3. (C-D) Correlation analysis comparing the  transcriptome of the different spermatogonial 1276 

states defined in this publication with those defined in Guo et al., 2018 (C) and Sohni et al., 1277 

2019 (D). The ‘other’ state is comprised of all non-spermatogonial cell types available in this 1278 

publication. The black boxes show the states where we expected the highest correlation in each 1279 

state. (E) Contribution of each normal and crypto sample to the RNA velocity derived from the 1280 

scVelo dynamical model visualized as streamlines in UMAP plots. 1281 
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Fig. S6. EGR4-regulated genes in the knotgroup 1 spermatogonia. 1284 

(A)Uniform manifold approximation and projection (UMAP) plot showing the integrated 1285 

normal-crypto spermatogonial dataset aligned along the latent time. The cells are color-coded 1286 

according to their progression along the latent time. State 0 was set as starting point of the 1287 

differentiation process. (B) UMAP plot showing the subdivision of the integrated normal-1288 

crypto spermatogonial dataset into six knotgroups. The cells are color coded according to their 1289 

respective knotgroup. (C) Line plots show the expression along the latent time of the EGR4-1290 

regulated differentially expressed genes in normal (teal) and crypto (purple) spermatogonia 1291 

included in the knotgroup 1: ANXA11, CEP131, CRIP2, IDH2, NUDT14, PDLIM4, PLPP2, 1292 

PODXL2, PSIP1, RAC3, SH2B2, SMARCD3, SPINT1, and ST3GAL4. The gray area 1293 

highlights the cells belonging to the knotgroup 1. The asterisk indicates EGR4-regulated genes 1294 

that were also differentially expressed in knotgroup 2. (D) Double violin plots comparing the 1295 

expression levels of EGR4-regulated ANXA11, CEP131, CRIP2, IDH2, NUDT14, PDLIM4, 1296 

PLPP2, PODXL2, PSIP1, RAC3, SH2B2, SMARCD3, SPINT1, and ST3GAL4 in the 1297 

spermatogonial states of the normal (teal) and crypto (purple) datasets. 1298 
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Fig. S7. EGR4- and HOXC9-regulated genes in knotgroup 2 spermatogonia. 1302 

(A) Line plots showing the expression along the latent time of EGR4-regulated, differentially 1303 

expressed genes between the normal (teal) and crypto (purple) spermatogonia in the knotgroup 1304 

2: ACAP3, AP2A1, BAIAP2L1, BDH2, C1QBP, CDK17, CRYBA2, GABRG2, MPPED2, 1305 

PRDM13, TSPAN13, and WIPF3. The gray area highlights the cells belonging to the knotgroup 1306 

2. (B) Double violin plots comparing the expression levels of EGR4-regulated genes ACAP3, 1307 

AP2A1, BAIAP2L1, BDH2, C1QBP, CDK17, CRYBA2, GABRG2, MPPED2, PRDM13, 1308 

TSPAN13, and WIPF3 between the normal (teal) and crypto (purple) spermatogonial states. 1309 

(C) Line plots showing the expression along the latent time of the EGR4- and HOXC9-1310 

regulated, differentially expressed genes between the normal (teal) and crypto (purple) 1311 

spermatogonia in knotgroup 2: DLGAP3, ENHO, and SPINT1. The gray area highlights the 1312 

knotgroup 2. (D) double violin plots comparing the expression levels of EGR4- and HOXC9-1313 

regulated genes DLGAP3, ENHO, and SPINT1 between the normal (teal) and crypto (purple) 1314 

spermatogonial states. 1315 

 1316 

Supplementary tables 1317 

Data files table S1-S10 1318 
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