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Abstract 1 

Several studies have suggested that women in science are less productive than men, and that this gap 2 

contributes to their under-representation in the ranks of senior researchers. However, few studies have 3 

examined the role of mentoring, and in particular mentor gender, on the productivity of female 4 

scientists early in their careers. Such efforts are limited by the difficulties of unambiguously linking 5 

mentees to their mentors and measuring the research productivity resulting from those relationships. 6 

Here we use our novel author disambiguation solution to investigate the role of self-identified gender in 7 

mentorship of 12,932 trainees who either successfully or unsuccessfully applied to the National 8 

Institutes of Health for research fellowships between fiscal years 2011 and 2017, applying a multi-9 

dimensional framework to assess productivity. We found that, after normalizing for the funding level of 10 

mentors, the productivity of female and male mentees is indistinguishable; it is also independent of the 11 

gender of the mentor, other than in measures of clinical impact, where women mentored by women 12 

outperform other mentee-mentor dyads.  13 

Introduction  14 

It is well established that women who pursue careers in biomedical sciences face formidable barriers. 15 

Gender bias may contribute, since for example university professors given identical resumes headed by 16 

either a male or female name are more likely to view male lab technician candidates as competent and 17 

hirable, and to offer male candidates higher salaries [1]. After controlling for prior productivity and 18 

achievements, reviewers of postdoctoral fellowship applications view male candidates as more 19 

meritorious [2, 3]. Women receive harsher teaching evaluations, are less likely to be judged as stars in 20 

their field by reviewers of R01 applications to the National Institutes of Health (NIH), and after 21 

normalizing for a number of confounding factors, including journal of publication, number of authors, 22 

and seniority, their work accrues fewer citations than that of their male colleagues [4-7]. Though women 23 

in the life sciences represent only slightly more than a third of all tenured or tenure-track professors 24 

employed by universities or four-year colleges, they are awarded roughly half of all doctoral degrees [8]. 25 

Importantly, women of color face a double bind that hinders their entry into, and retention and 26 

advancement in, biomedical careers [9].  27 

While the overall progress and remaining challenges experienced by women in biomedicine have been 28 

widely discussed, the potential effects of mentorship on their career progress have received relatively 29 

little attention. Recently though, a small number of papers have raised the possibility that mentorship, 30 
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career progress, and gender interact in important ways. Among the very small and elite group of science 31 

faculty who have funding from the Howard Hughes Medical Institute, have been inducted into the 32 

National Academy of Sciences, and/or have won a Nobel prize, men are significantly more likely to 33 

employ other men as postdoctoral fellows; members of the National Academy of Science, which is 85% 34 

male, train 58% of future faculty [10]. In contrast with these data, which suggest that the careers of 35 

female mentees may be disadvantaged by their exclusion from elite male networks, other work suggests 36 

that having a female mentor is an advantage to mentees; for example, a study of roughly 900 PhD 37 

students at a single university found that on average, doctoral candidates studying biology under female 38 

advisors publish approximately 10% more papers, and tend to publish in more influential venues, than 39 

those with male advisors [11]. In the adjacent field of chemistry, a larger study found that women who 40 

chose a female advisor for their doctoral studies were more productive and more likely to go on to 41 

faculty positions than those who chose a male advisor [12]; however, this work systematically excluded 42 

students with Chinese and Korean names because of the difficulty in assigning them algorithmically to a 43 

gender, significantly weakening its conclusions.  44 

These inconsistent findings suggest that a more comprehensive analysis of mentorship and gender 45 

might identify factors that either exacerbate or mitigate the barriers faced by women in science. In 46 

addition to their small sample sizes, previous studies have been further limited by inaccuracy of 47 

assigning mentees to their mentors, difficulty verifying the gender of both, and/or limiting the 48 

measurement of research productivity such as publications to the training experience. To overcome 49 

these drawbacks, we studied mentee-mentor relationships among applicants for individual training 50 

fellowships from the NIH. Most applicants for NIH fellowships choose to self-identify gender, and all are 51 

required to identify their mentor(s). Almost all mentors are also NIH-funded investigators who self-52 

identify gender in their own applications. We used our novel disambiguation method to accurately 53 

document mentee research productivity. Since NIH fellowships cover topics ranging from computational 54 

biology, synthetic chemistry, and biophysics, to epidemiology and clinical psychology, this allowed the 55 

construction of a large, reliable set of self-reported mentee-mentor pairs spanning a wide range of 56 

scientific disciplines, which we analyze here.  57 

  58 

 59 

 60 
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Results 61 

We began our analysis with 18,600 applications for individual fellowships (predoctoral mechanisms F30 62 

and F31, and postdoctoral mechanism F32, K01, K08, K23, and K99) submitted to NIH between fiscal 63 

years (FY) 2011 and 2017. Over this time frame, women and men applied for fellowships in similar 64 

numbers and received awards at the same rate; this is true if applications for pre- or post-doctoral 65 

fellowships are considered either together (two leftmost bars, Figure 1a) or separately (two leftmost 66 

bars, Figure 1b and two leftmost bars, Figure 1c). As mentioned above, a unique feature of this dataset 67 

is that applicants communicated to NIH the names of the independent investigators who would act as 68 

their sponsor(s) or mentor(s). NIH requires that any independent investigator named by a fellowship 69 

applicant in either of these capacities (for simplicity, referred to hereafter as a ‘mentor’) must 70 

demonstrate an understanding of the candidate’s training needs, as well as the ability and commitment 71 

to assist in meeting these needs. Mentors must provide a letter of support as a part of the fellowship 72 

application package, and an evaluation of this statement, as well as evidence of successful outcomes for 73 

the mentor’s past mentees, are among the explicit criteria that review panels are instructed to use in 74 

their evaluation. Focusing on mentors identified in fellowship applications allowed us to analyze the 75 

relative impact of gender on mentee productivity, though applicants may have access to other 76 

individuals who provide advice and guidance.  77 

Consistent with previously published data on the proportion of women in the R01 applicant pool [13], 78 

approximately 30% of mentors in our dataset are female. A subset of applications (17%) were submitted 79 

by mentees who, either in a single application or in two or more different applications, identified both 80 

male and female independent investigators as mentors. To simplify our analysis and avoid double 81 

counting, we removed those applications, which reduced the proportion of female mentors from 30.4% 82 

to 25.6% but had no effect on mentee award rates (third and fourth bars, Figure 1a). Mentees of either 83 

gender who list exclusively female mentors, and those who list exclusively male mentors, have identical 84 

award rates (fifth and sixth bars, Figure 1a); further dividing applicants into four dyads based on the 85 

gender of both mentee and mentor also fails to identify any gender-based differences in award rates, 86 

regardless of whether pre- and post-doctoral fellowships are considered together (last four bars, Figure 87 

1a) or separately (last four bars, Figure 1b, c).  88 

We next asked if the genders of the mentee/mentor dyads influenced mentee research productivity. 89 

Most analyses of productivity are limited to awardees due to the need to rely on the grant number cited 90 

in the resulting publications to link an investigator to his or her papers. One major drawback of this 91 
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method is that it is unable to assign papers to unsuccessful applicants. Past studies have attempted to 92 

address this problem by creating a restrictive set of criteria to match grant applicants with the papers 93 

they have authored, such as requiring identical first names, last names, and institutional affiliations. 94 

However, such methods will fail to match authors who change names or institutions, or where 95 

mismatches have been introduced as the result of typos, inconsistent spellings, or the inconsistent use 96 

of a middle initial. To address this problem, we developed a disambiguation solution that used article-97 

level metadata [14-16] to assign 24.5M unique papers from the PubMed database to 16.0M unique 98 

author names, then used a novel neural network model trained on ORCID identifiers to determine 99 

whether author-publication pairs refer to variant representations of the same person (see Methods for 100 

details). For example, our model (Figure 2) can determine whether hypothetical records listing Jane 101 

Smith and Jane M. Smith were the same person, or two different people, based on variables that include 102 

institutional affiliation, co-authorship, and article-affiliated Medical Subject Heading (MeSH) terms. We 103 

then matched unambiguously identified author and applicant names. Importantly, the model does not 104 

require last names to match, so women who change their name can be successfully merged. We used 105 

this method to reduce the 16.0M unique author names to 13.3M disambiguated people; the F1 score for 106 

people with at least one NIH application is 0.945, indicating both high precision and high recall. 107 

Disambiguation of the people associated with the fellowship applications in our dataset indicates that 108 

we have captured a large fraction of NIH trainees and their mentors, since the papers of these 109 

unambiguously identified applicants together amount to 57.7% of all publications since 2011 that cite 110 

NIH grant support. 111 

Our data show that male-male dyads, and more specifically, male-male post-doctoral dyads, have more 112 

publications prior to the time of their first application (set at time = 0, Figure 3a-c). Male-male post-113 

doctoral dyads also start out with more papers in the top decile of Relative Citation Ratio (RCR) values 114 

(Figure 3d-f); RCR is an article-level, field- and time-normalized measure of scholarly influence [17]. This 115 

early advantage in publication and citation metrics is maintained for years after the time of first 116 

application (Figure 3a-f), consistent with a hysteretic process. Beginning around the time of application, 117 

the number of highly influential (top decile) papers authored by female-female post-doctoral dyads 118 

begins to diverge from the number published by male-female and female-male dyads (Figure 3e). Eight 119 

years after their first application, this difference is outside the confidence interval; it should be noted 120 

that this is roughly correlated with the point at which women are more likely to leave academia [18]. 121 

However, median RCR values are indistinguishable for all four types of mentee-mentor dyads over the 122 

entire eighteen-year time frame of our analysis (Figure 3g-i), and applicants for pre-doctoral fellowships 123 
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exhibit no meaningful differences outside the 95% confidence interval for any of these productivity 124 

measures, regardless of mentee or mentor gender, among applicants for pre-doctoral fellowships 125 

(Figure 3c, f, i).   126 

Publication and citation metrics are the typical, but not the only, measure of scholarly contribution to 127 

scientific progress [19]. Biomedical research also leads to patentable inventions/technological (tech) 128 

impact, measured by the citation of publications by patents, and clinical impact, measured by the 129 

citations of publications by clinical trials and guidelines. Female-female dyads appear to have less tech 130 

impact (Figure 3j-l) and more clinical impact (Figure 3m-o), in both pre- and post-doctoral applicant 131 

populations; since these forms of citations are slower to accrue than citations to peer-reviewed 132 

publications, censoring (the absence of hypothetical future citations; [20]) makes it difficult to 133 

determine whether these differences are maintained. However, clinical impact can also be measured 134 

with APT (Approximate Potential to Translate) scores, which are machine-learning based predictions of 135 

future clinical citations [21]; these predictions are particularly useful because they are less subject to 136 

censoring. Both before and after applying for a fellowship, APT scores are highest for female-female 137 

dyads. Together, the greater number of clinical citations (Figure 3m-o) and higher APT scores (Figure 138 

3p-r) indicate that this dyad generates the highest level of clinical impact.  139 

Although small dollar amounts may sometimes be budgeted for a training course or similar expense, NIH 140 

fellowships generally provide salary only. The productivity of the mentee is therefore heavily reliant on 141 

the amount of research funds available to the mentor. Interestingly, for each of the four mentee-mentor 142 

dyad categories, mentors of post-doctoral fellowship applicants have a higher level of median total 143 

costs, adjusted for inflation to 2019 dollars by using the Biomedical Research and Development Price 144 

Index (BRDPI; Figure 4). This is unlikely to be explained by the institutional affiliation of mentors, since 145 

pre-doctoral and post-doctoral applications distribute similarly across institutions receiving widely 146 

different levels of NIH support, regardless of whether aggregate inflation-adjusted funding or dollars per 147 

investigator are considered (see Supplemental Data). Our data are also consistent with previously 148 

published work [13] showing that on average, women hold fewer awards (Supplemental Data) and have 149 

fewer research dollars than men (Figure 4). This disadvantage does not influence the chance of winning 150 

a fellowship award for applicants with female mentors (Figure 1a), but might have an impact on mentee 151 

productivity. We therefore normalized the number of publications, scholarly influence, tech impact, and 152 

clinical impact of mentees to the total amount of NIH funding held by their mentors.   153 
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Strikingly, adjusting for the funding available to mentors eliminates the advantage of male-male 154 

post-doctoral dyads in number of publications (Figure 5a, b), scholarly influence (Figure 5d, e), and tech 155 

impact (Figure 5j, k). More than simply closing the gap, after adjusting for funding, female-female 156 

post-doctoral dyads have a slightly higher number of papers immediately prior to the time of their first 157 

application for a fellowship (Figure 5b). They also have greater clinical impact (Figure 5m, n) and higher 158 

APT scores (Figure 5p, q). Female-male dyads also have higher APT scores than male-female or 159 

male-male dyads (Figure 5q), suggesting that female mentees in general are more successful at 160 

producing clinical impact. Finally, the median RCR values of post-doctoral dyads are largely 161 

indistinguishable (Figure 5g, h), and the high signal to noise ratio for the four pre-doctoral dyads could in 162 

part be responsible for the failure to detect differences in those funding-adjusted metrics (Figure 5c, f, I, 163 

l, o, r). 164 

 165 

Discussion 166 

Previous reports have found that two prominent and potentially interrelated barriers faced by female 167 

scientists are the postdoc-to-faculty transition to independence and the greater difficulty in achieving 168 

higher levels of influence via citation of their research outputs. Our analysis of the productivity to date 169 

of FY11-FY17 applicants for individual NIH fellowships confirmed the latter observation: female mentees 170 

produce fewer papers in the top decile of RCR values, as well as fewer papers overall. However, 171 

normalizing to mentor funding levels eliminates both of those gaps. We also found that the median RCR 172 

for female and male mentees are indistinguishable, and male mentees, especially when they are paired 173 

with male mentors, have lower clinical impact. Taken together, the data indicate that, if there is any 174 

gender-based difference in mentorship at all, it manifests as an advantage of female mentoring of 175 

female mentees in producing clinically relevant research. 176 

Our data suggest that the initial appearance of lower productivity of female mentees might be a direct 177 

result of the funding gap between independent female and male investigators that has already been 178 

noted in the literature [13]. In addition to confirming that gap, we found that pre-doctoral mentors in 179 

each of the four dyad categories are less well funded than post-doctoral mentors (Figure 4). Since 180 

institutional affiliation makes at most a minor contribution to this difference, the funding gap between 181 

pre- and post-doctoral mentors may indicate a preference on the part of individual independent 182 
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investigators. If so, less well-funded scientists are more willing or able to sponsor individual pre-doctoral 183 

applications, while well-funded investigators prefer to sponsor post-doctoral fellowships.  184 

Among the benefits of data-driven decision making is the potential to inform the pursuit of desired goals 185 

and to dispel misconceptions that might result in unhelpful guidance or policy decisions. Large-scale 186 

metascience uses many different types of information towards this end (e.g. grant applications, 187 

publications, patents, clinical trials), and requires the careful generation of accurate linkages among 188 

these disparate sources of data. Author names, applicant names, affiliations and other metadata are 189 

presented in many different variations (e.g. John D Smith vs. JD Smith vs. John Smith); identification of a 190 

single person, accurately linked to their full publication and application record, requires a rigorous 191 

method of name disambiguation. Without such methodology in hand, attempts at meaningful analysis 192 

are plagued by incomplete records and/or multi-counting errors. Our newly developed high-193 

performance Artificial Intelligence/Machine Learning (AI/ML)-based disambiguation method improves 194 

on previous attempts [22-24] to address this problem, achieving an F1 score of 0.945 and allowing us to 195 

clean the large datasets of PubMed author names and NIH grant applicants then integrate that 196 

information to create the dataset used in this study. 197 

Our disambiguation solution also allows us to overcome several challenges created by the common 198 

practice of linking outputs to funded grants. As we have shown here, it allows publications to be linked 199 

to applicants who have not yet (or ever) received an NIH award. It also allows grants to be linked to 200 

papers if the authors failed to cite their award or cited it in a non-specific way, such as acknowledging 201 

support from the NIH without providing an identifying number. Finally, person-level links solve the 202 

problem posed by publications in journals that lack an acknowledgements section.  203 

We have relied on these person-level links, and the availability of self-identified information provided by 204 

NIH training fellowship applicants, to investigate the role of mentee and mentor gender on mentee 205 

productivity. This has removed the inevitable errors associated with a reliance on tenuous assumptions 206 

in defining mentee-mentor relationships. Of course, not all mentoring occurs in the context of a formal 207 

relationship with one or more doctoral or post-doctoral advisors. A variety of scenarios, ranging from 208 

structured, regular meetings with thesis committee members to informal, transient interactions in 209 

which a more senior scientist gives technical or career advice to a junior colleague, may be interpreted 210 

as mentorship. While often critically important, methods capable of fully capturing these networks must 211 

go beyond a simple analysis of co-authorship [25]. 212 
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By identifying the outsized clinical impact of female mentees, which is a previously unappreciated 213 

contribution to biomedicine, our analysis demonstrates the value of using a multifaceted framework for 214 

measuring research productivity. The development of additional metrics that measure other factors 215 

supporting scientific progress, such as rigor/reproducibility and data sharing, should further improve 216 

analyses that can be effective in informing and guiding policy [19]. We are also now poised to go beyond 217 

the current analysis to investigate the role of specific mentor and mentee characteristics (e.g. career 218 

stage, mentoring track record, affiliation, previous publication record) in promoting the successful 219 

transition to productive independent careers. This type of information has the potential to inform 220 

guidance and policy-making that provide robust support for the scientific enterprise, as former mentees 221 

in turn train the next generation of scientists and perpetuate the cycle of progress that has now proved 222 

its worth as a means of advancing knowledge that improves human health. 223 

 224 

 225 

Methods 226 

 227 

Author and applicant name disambiguation methodology  228 

Author name disambiguation was carried out in two stages (Figure 2). The first stage was 229 

disambiguation of PubMed authors and deduplication of grant applicants. The second stage of the 230 

process involved matching and merging the disambiguated PubMed author records with the 231 

deduplicated applicant records to generate disambiguated author profiles that contain specific linkages 232 

to a person’s publications and NIH funding.   233 

  234 

PubMed author disambiguation: PubMed author disambiguation was performed in a similar fashion as 235 

described previously [14-16]. Essentially, authors were disambiguated in the same first initial last name 236 

(FILN) block using hierarchical agglomerative clustering algorithm based on pairwise similarity.   237 

  238 

During preprocessing, each individual author on a publication was listed separately to form author-239 

publication entries. Author and publication metadata (author name, author affiliation, coauthor names, 240 

location, journal name, linked grant numbers, clinical trials, and patents), citations, and content features 241 

(MeSH keywords, title tokens, broad subject terms) were collected or extracted and stored in author-242 

publication entries. The author-publication entries were then grouped based on the author FILN.   243 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.429450doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429450


10 
 

  244 

In order to cluster the author-publication entries within each FILN block to form disambiguated author 245 

records, a fully connected neural network with two hidden layers was trained as a binary classifier to 246 

determine if two author-publication entries belong to the same author using the attributes stored in 247 

author-publication entries. The probability output of the model was considered to reflect the similarity 248 

of the input author-publication entries. Training and test datasets were generated using ORCID 249 

profiles. Hierarchical agglomerative clustering algorithm [26] was used to cluster the author-publication 250 

entries using similarity scores generated by the trained neural network model. The resulting 251 

disambiguated author records were used for the person record merging stage below.  252 

  253 

Grant applicant deduplication: In parallel to PubMed author disambiguation, NIH grant applicants were 254 

deduplicated by deduplicating their Principal Investigator IDs (PIIDs). Ideally, PIIDs should map to 255 

applicants in a one-to-one relationship. However, we estimated that 10-15% of all PIIDs were duplicates. 256 

These PIIDs and their associated applications needed to be merged before linking them to the 257 

disambiguated PubMed authors. PIID deduplication was performed as following: In a preprocessing 258 

step, applications were unwound on all PIs listed on the application. The following information was then 259 

extracted: PIID, PubMed IDs (PMIDs) linked from the NIH Scientific Publication Information Retrieval and 260 

Evaluation System (SPIRES; we collected links of match case 3, 4, and 5 261 

and then further screened them with our name matching algorithm), PMIDs resolved from grant 262 

applicants’ biosketches, and metadata such as applicant name and grant number. The unwound 263 

applications and all the extracted data associated with the application were aggregated to PIIDs.   264 

  265 

In the deduplication step, PIIDs were combined if they met one of two criteria: 1) Consecutive PIIDs with 266 

matched applicant names; 2) Same grant number with matched applicant names. A few hundred 267 

PIIDs were also manually curated and used for deduplication. The resulting applicant records were used 268 

for the person record merging stage below.  269 

  270 

Person record merging: The disambiguated PubMed authors and deduplicated grant applicants from 271 

the first stages were merged based on name matching and publication overlap for records that shared 272 

the same FILN. However, we observed that a small percentage of applicants had name variants with 273 

different FILNs caused by various reasons. The most common reasons include typos in the last names, 274 

re-arranged first/middle names, and name change due to marriage. As a result, their publications were 275 
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disambiguated in different FILN blocks. To allow combining over-split records of the same applicant from 276 

different FILN blocks, we merged records across FILN if they were associated with the same PIID.    277 

  278 

Enrichment: To facilitate downstream analyses, disambiguated person records were enriched by 279 

generating the best name for the person using all the name variants that appeared in their publications 280 

and grant applications, and populating any useful data for each publication and grant application in the 281 

disambiguated record.  282 

  283 

Assessing performance of the disambiguation method: We developed an evaluation method using 284 

ORCID profiles which we treated as ground truth. ORCID authors were mapped to disambiguated author 285 

records by name matching and publication overlap. Precision and recall were computed accordingly. If 286 

one ORCID author was mapped to more than one disambiguated author records, the record that had 287 

the highest F1 was designated as the disambiguated author for that ORCID author. Because ORCID data 288 

are largely incomplete in terms of their publication records, we only considered PMIDs that could be 289 

found or resolved in ORCID profiles for precision calculation.   290 

  291 

Since only about 1.8% of all disambiguated authors are associated with NIH grants and this study 292 

concerns grant applicants, we evaluated the performance of our disambiguation process in two groups 293 

of authors: those with grants and those without grants. Micro-precision, micro-recall, and micro-F1 were 294 

computed for random samples of these two groups. For one experiment, 7000-7500 samples for authors 295 

without grants and 450-500 samples for authors with grants were randomly selected to compute the 296 

performance metrics for each group. This experiment was repeated five times and the metrics were 297 

compared using unpaired Student’s t-test.  298 

  299 

We found no statistically significant difference between the precision of disambiguated authors with 300 

grants and without grants (0.985 ± 0.003 for authors without grants vs. 0.984 ±0.007 for authors with 301 

grants, p = 0.86). In contrast, disambiguated authors with grants had significantly higher recall than 302 

disambiguated authors without grants (0.783±0.008 for authors without grants vs. 0.908±0.016 for 303 

authors with grants, p < 0.0001). F1, as a result, showed the same trend as recall (0.872 ±0.006 for 304 

authors without grants vs 0.945 ±0.010 for authors with grants, p < 0.0001).  305 

 306 

 307 
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Identifying fellowship applications  308 

Mentees were defined as NIH grant applicants who had applied for pre-doctoral or post-doctoral 309 

training fellowships (F30 and F31 for pre-doctoral; F32, K01, K08, K23, and K99 for post-doctoral) in fiscal 310 

years 2011-2017. 2011 was chosen as the initial analysis year since it was the first year fellowship 311 

applicants were able to self-identify their mentors/sponsors as a “Key Person” during the application 312 

process. This official record of self-identified mentee-mentor relationships was considered critical in 313 

identifying valid and accurate mentee/mentor dyads. 2017 was chosen as the final year of analysis to 314 

give the mentees sufficient time to produce publications after their fellowship 315 

application, while allowing time for reliable publication-related metrics to subsequently accrue.   316 

  317 

A total of 57,425 applications from 37,918 mentee applicants were first identified. The 318 

following selection criteria was then applied to the dataset: 1. mentors should have a PIID in the Key 319 

Person field or the name/organization search should return a single profile match (for mentors that did 320 

not have a PIID associated with the mentee application, mentor PIIDs were added from the matched 321 

profile; n=35,999 applications from 21,856 applicants were excluded); 2. mentors should have 322 

only one PIID (those with zero or >1 were excluded; n=3,902 applications from 2,853 applicants); 323 

3) mentees should have no more than one PIID (those with >1 PIIDs were excluded; n=414 applications 324 

and 277 applicants).   325 

  326 

The selection criteria above yielded a dataset of 18,600 unique applications from 12,932 327 

mentee applicants. All these mentees were initially analyzed, including those who had mixed-gender 328 

mentors (Figure 1a). To simplify the analysis, avoid double counting, and avoid conflating effects of 329 

mixed (both gender) mentors, 3,215 applications (17%) from 1,858 mentee applicants who had a 330 

combination of female and male mentors were eliminated for the subsequent analysis. This yielded a 331 

final dataset of n=15,386 applications from 11,074 mentee applicants with single-gender (i.e. female-332 

only or male-only) mentors.   333 

  334 

Fellowship award rates are presented as a percentage of total awards.   335 

  336 

 337 

 338 

 339 
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Assignment of gender   340 

Gender is self-identified by NIH applicants during the application process. Of the mentee/mentor dyads 341 

in our dataset, 94.1% of mentees and 90.09% of mentors had self-identified records of 342 

gender. Genderize (genderize.io) was used to assign gender to those without self-343 

identified gender information, as done in previous studies [12, 27, 28]. The agreement between self-344 

identified gender and Genderize was 98%, allowing confidence in using Genderize to populate the small 345 

portion of non-self-identified records.  346 

  347 

Statistical significance was calculated using Fisher Tests compared to the rest of the population.  348 

  349 

  350 

Analysis of mentee productivity over time  351 

Productivity metrics were analyzed for each mentee, and time-shifted for each mentee-352 

mentor dyad such that year 0 represented the year of the mentee’s first fellowship grant application 353 

(regardless of awarded status).  Mentees were split between pre-doctoral mentees who 354 

received only F30 or F31 awards over the course of the analysis period (right columns in Figures 3 and 355 

5), and post-doctoral mentees who received any other type of award listed in the section above (middle 356 

columns in Figures 3 and 5). n=138 mentees had both pre- and post-doctoral fellowship applications and 357 

were counted in the post-doctoral group.  358 

  359 

In each case four subpopulations of mentee/mentor dyads were measured independently, based on 360 

their respective gender: male mentee/male mentor (MM), male mentee/female mentor (MF), 361 

female mentee/male mentor (FM), female mentee/female mentor (FF).  As noted above, mentees with 362 

multiple mentors of both genders were excluded from the analysis.  Shaded regions indicate 95% 363 

confidence intervals, determined through bootstrap analysis.  364 

   365 

Six research productivity metrics were examined, per mentee, per year, before and after the first 366 

fellowship application (Figures 3 and 5): Mean number of publications, mean number of high-367 

influence publications (defined as having an RCR [17] in the top 10% of all NIH publications), median RCR 368 

of all publications, technological impact (fraction of publications which have been cited by at least one 369 

US patent submission), clinical impact (fraction of publications which have been cited by at least one 370 

clinical trial or guideline), Approximate Potential to Translate (APT, [21]) score (predicted clinical impact 371 
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fraction based on citation trends). Dyads with no mentee publications (n=1,999, or 11.0%) were 372 

excluded from the analysis. Further, to facilitate comparisons with funding information (see below), 373 

dyads with no funding information (e.g. those with mentors entirely funded outside of NIH) were also 374 

excluded from the normalized analysis (n=3,236, or 20.0%). 375 

   376 

The same six mentee productivity metrics noted above were subsequently re-analyzed to normalize 377 

to mentor funding levels (Figure 5). Mentor funding levels were defined as the amount of NIH mentor 378 

funding (averaged between mentors if multiple are linked to the same mentee) in the fiscal year of the 379 

mentee’s training application, adjusted for inflation to BRDPI 2019 dollars. Time points before the first 380 

training application use the first application’s value, and time points after use the most recent 381 

application. Each mentee’s productivity metric was divided by their mentors’ funding level, and 382 

normalized to productivity per million PI dollars. For example, mean publications per year presented in 383 

Figure 3 are presented as mean publications per million dollars per year in Figure 5.   384 

  385 
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Figure legends 386 

Figure 1. Fellowship applications and awards by mentee and mentor gender. NIH fellowship 387 
applications (pre-doctoral: F30 and F31; post-doctoral: F32, K01, K08, K23, and K99) submitted by 388 
females (F) and males (M) in FY11 through FY17. Light blue and orange bars represent unawarded and 389 
awarded applications, respectively; black dots indicate award rates (secondary Y axis). (a) The first two 390 
bars represent applications from all mentees with single-gender or mixed-gender mentors; the third and 391 
fourth bars represent applications from mentees with single-gender mentors, separated by mentee 392 
gender; the fifth and sixth bars represent applications from mentees with single-gender mentors, 393 
separated by mentor gender. The remaining four bars show the data analyzed by mentee-mentor dyads 394 
for mentees with single-gender mentors. Mentee gender is presented first, mentor gender second, e.g., 395 
FM = female mentees with male mentors. (b and c) Same data as in (a), analyzed by pre- or post-396 
doctoral career stage of the mentee applicant, respectively. The first two bars represent applications 397 
from all mentees with single-gender or mixed-gender mentors. The remaining four bars show the data 398 
analyzed by mentee-mentor dyads for mentees with single-gender mentors. There is no statistically 399 
significant difference in award rate for any group. 400 

 401 

Figure 2. Disambiguating authors and NIH applicants. Graphical representation of the workflow used to 402 
disambiguate unique author names and link publications and NIH applications to specific authors and 403 
applicants. The process began by assigning 24,453,076 unique publications to 15,985,142 unique author 404 
names, and resulted in 13,324,796 disambiguated people. A fully connected neural network with two 405 
hidden layers, trained on a series of author and publication features, generated pairwise author-406 
publication entry similarity scores (left side of the illustration; see Methods). Those similarity scores 407 
were used by a hierarchical agglomerative clustering algorithm to merge author-publication entries, 408 
resulting in disambiguated PubMed author records (blue oval). In parallel, preprocessing of NIH 409 
applications and applicant deduplication (see Methods) generated applicant records (red oval). 410 
Subsequent matching and merging of disambiguated PubMed author records with deduplicated 411 
applicant records generated disambiguated author profiles that contain specific linkages to a person’s 412 
publications and NIH applications. The disambiguated person records were enriched with the person's 413 
metadata and data for each publication and grant application to facilitate downstream analyses (grey 414 
oval). 415 

 416 

Figure 3. Mentee productivity over time. Six different measures of mentee research productivity, 417 
shown per mentee per year, where the first fellowship application is set to time=0 (vertical dashed grey 418 
line): a-c, mean number of publications; d-f, mean number of high-influence publications (defined as 419 
having an Relative Citation Ratio (RCR) value in the top decile); g-i, median RCR; j-l, technological impact; 420 
m-o, clinical impact; p-r, mean Approximate Potential to Translate (APT) score (see Methods for 421 
additional details). First column, all (both post- and pre-doctoral fellowship applicants; second column, 422 
post-doctoral applicants only; third column, pre-doctoral applicants only). Shaded regions indicate 95% 423 
confidence intervals, determined via bootstrap analysis. The dyads are annotated with mentee gender 424 
first, mentor gender second (e.g., FM – female mentees with male mentors) 425 

  426 
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Figure 4. Mentor funding over time. Mentor funding levels per mentee for gender-based mentee-427 
mentor dyads in the six years following a mentee’s first fellowship application (set to time=0). Left 428 
graph, all (both post- and pre-doctoral fellowship applicants; middle graph, post-doctoral applicants 429 
only; right graph, pre-doctoral applicants only). Shaded regions indicate 95% confidence intervals, 430 
determined via bootstrap analysis. The dyads are annotated with mentee gender first, mentor gender 431 
second (e.g., FM – female mentees with male mentors) 432 

 433 

Figure. 5. Funding-normalized mentee productivity over time. In order to account for the effect of 434 
differing mentor resources on mentee productivity, Figure 3 data was re-analyzed to normalize for 435 
mentor funding levels. As in Figure 3, the six different measures of mentee research productivity are 436 
presented for gender-based mentee/mentor dyads, normalized per million mentor Principal Investigator 437 
dollars: Mean number of publications (a-c), mean number of high-influence publications (d-f), median 438 
RCR of all publications (g-i), technological impact (j-l), clinical impact (m-o), and APT score (p-r). Data are 439 
analyzed per mentee per year, grouped by post- or pre-doctoral career stage of the mentee applicant 440 
(columns left to right), and are presented across a time scale of ten years before and after a mentee’s 441 
first post-doctoral (middle column) or pre-doctoral (right column) fellowship application. The first 442 
fellowship application is indicated at time=0 (vertical dashed grey line). Shaded regions indicate 95% 443 
confidence intervals, determined via bootstrap analysis. When a mentee is linked to multiple mentors, 444 
their funds are averaged. See Methods for more details. The dyads are annotated with mentee gender 445 
first, mentor gender second (e.g., FM – female mentees with male mentors) 446 

  447 
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Figure 5
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