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Abstract 
Accurate prediction of residue-residue distances is important for protein structure prediction. We 
developed several protein distance predictors based on a deep learning distance prediction 
method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction 
(CASP14). The prediction method uses deep residual neural networks with the channel-wise 
attention mechanism to classify the distance between every two residues into multiple distance 
intervals. The input features for the deep learning method include co-evolutionary features as 
well as other sequence-based features derived from multiple sequence alignments 
(MSAs).  Three alignment methods are used with multiple protein sequence/profile databases 
to generate MSAs for input feature generation. Based on different configurations and training 
strategies of the deep learning method, five MULTICOM distance predictors were created to 
participate in the CASP14 experiment. Benchmarked on 37 hard CASP14 domains, the best 
performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction 
servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances 
between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) 
and performs better than the best CASP13 distance prediction method. The best performing 
MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-
residue distances into 10 distance intervals defined by CASP14 according to the F1 measure. 
The results show that the quality and depth of MSAs depend on alignment methods and 
sequence databases and have a significant impact on the accuracy of distance prediction. Using 
larger training datasets and multiple complementary features improves prediction accuracy. 
However, the number of effective sequences in MSAs is only a weak indicator of the quality of 
MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation 
between the accuracy of contact/distance predictions and the average probability of the 
predicted contacts, which can therefore be more effectively used to estimate the confidence of 
distance predictions and select predicted distance maps.  

1 Introduction 

Accurate prediction of inter-residue distances (or its simplified representation - inter-residue 
contacts) is critical for template-free (ab initio) tertiary structure prediction, i.e., predicting the 
structure of a protein without using any known structure as templates (Kryshtafovych, et al., 
2019).  The predicted inter-residue distances can be translated into tertiary structures by off-
shelf tools such as trRosetta (Yang, et al., 2020), CONFOLD2 (Adhikari and Cheng, 2018) built 
on top of CNS (Brünger, et al., 1998), and DMPfold (Greener, et al., 2019). In the 2018 CASP13 
experiment, the top-ranked methods (Hou, et al., 2019; Kandathil, et al., 2019; Senior, et al., 
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2020; Xu and Wang, 2019; Zheng, et al., 2019) all used distance or contact predictions to guide 
template-free (FM) structure modeling to achieve significant success. Since then, the inter-
residue distance prediction has become a focal point of protein structure prediction.    
 

In the last several years, the advances in protein distance/contact prediction were mostly driven 
by two technologies:  the residue-residue co-evolutionary analysis (Ekeberg, et al., 2013; 
Kamisetty, et al., 2013; Seemayer, et al., 2014) for generating informative features for prediction 
and various deep learning methods (Goodfellow, et al., 2013; He, et al., 2016) for effectively 
extracting protein distance/contact patterns from the features. Since classifying the distances 
between residues into multiple distance intervals (commonly called distance prediction) can 
provide more detailed information about residue-residue distances than classifying them into two 
binary categories - in contact or not in contact (commonly called contact prediction), recent 
methods such as AlphaFold and RaptorX focus on the distance prediction. The multi-
classification or binary classification of distances produces a multi-class or binary-class distance 
probability map. Most recently, some methods such as DeepDist (Wu, et al., 2020) were 
developed to predict real-value inter-residue distances using deep learning regression methods, 
in addition to classifying the distances into multiple distance intervals. Moreover, the attention 
mechanism that can pick up relevant signals anywhere in the input features was also applied to 
predict protein contacts and explain the predictions (Chen, et al., 2020). In the CASP14 
experiment, the attention mechanism was also used by AlphaFold2, tFold, and our MULTICOM 
distance predictors to improve distance prediction.  
 

In this work, we describe the design and implementation of our MULTICOM distance predictors 
based on our DeepDist2 distance prediction method and analyze their results and performance 
in CASP14. Following the CASP14 norm, the analysis is focused on hard template-free modeling 
(FM) target domains instead of template-based modeling (TBM) domains that have recognizable 
known template structures in the Protein Data Bank (PDB) (Berman, et al., 2000). The FM/TBM 
domains that might have very weak templates that cannot be recognized by existing sequence 
alignment methods are also used in the evaluation.  

2 Materials and Methods 

The overall pipeline of the MULTICOM distance predictors based on our latest deep learning 
method - DeepDist2 is shown in Fig.1. Three methods are used to generate multiple sequence 
alignments (MSAs) for a target protein in parallel, including our in-house tool – DeepAln (Wu, et 
al., 2020), DeepMSA (Zhang, et al., 2019), and HHblits (Remmert, et al., 2012). DeepAln and 
DeepMSA are also used in the original DeepDist method. In CASP14,  MULTICOM predictors 
added the HHblits search against the Big Fantastic Database (BFD) (Steinegger, et al., 2019)  
(denoted as HHblits_BFD) to generate MSAs when the number sequences in MSAs generated 
by DeepAln and DeepMSA was less than 10L (L: sequence length).  

Each MSA is used to produce multiple co-evolutionary features such as covariance matrix 
(Jones and Kandathil, 2018), precision matrix (Li, et al., 2019), and pseudolikelihood 
maximization matrix (Seemayer, et al., 2014). The quality of the co-evolutionary features 
depends on the depth of MSA (i.e. the number of sequences) as well as the quality of the MSA 
(e.g., the proportion of true homologous sequences in MSA). For instance, when the number of 
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effective sequences (Neff) in an MSA is too small, the co-evolutionary scores tend to be noisy 
and less informative (Wu, et al., 2020). To complement the co-evolutionary features, the non-
coevolutionary features such as position-specific scoring matrix (PSSM) generated by PSI-
BLAST (Bhagwat and Aravind, 2007) and secondary structures are also used.  

 
Fig.1. The overall pipeline of the MULTICOM distance predictors based on DeepDist2. The two 
data flows (branches) applied to all the targets are connected by the black solid line, while the 
optional flow (branch) is connected by the red dotted line, which is only invoked when the MSAs 
are produced by DeepMSA and DeepAln are not sufficiently deep. Each flow (branch) produces 
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four sets of features (COV_Set, PRE_Set, PLM_Set, and OTHER_Set; see details in Section 
2.2), each of which is used as input for a deep network to predict a distance map. The four 
distance maps predicted from the four sets of features of each branch are averaged as the 
predicted distance map of the branch. The final prediction is the average of the predicted 
distance maps of the first two or all the three branches.  
 

Different kinds of co-evolutionary features are combined with non-co-evolutionary features to 
generate the four sets of features (COV_Set, PRE_Set, PLM_Set, and OTHER_Set;  see details 
in Section 2.2). Each of four sets of features derived from the same MSA is used by a deep 
residual network with a channel-wise attention mechanism to predict a distance map. The 
average of the four predicted distance maps is the predicted distance map for the MSA. Different 
from DeepDist that uses four different deep architectures for different sets of features, DeepDist2 
uses the same network architecture for all the feature sets. For most CASP14 targets, the 
distance maps predicted from the features generated from DeepAln’s MSA and DeepMSA’s 
MSA were averaged as the final prediction. When the number of sequences in the combination 
of MSAs generated by DeepAln and DeepMSA was less than 10 L, the distance map predicted 
from the MSA of HHblits_BFD was averaged with the distance maps predicted from MSAs of 
DeepAln and DeepMSA as the final prediction.  
 

Based on the same protocol above, four automated MULTICOM distance predictors 
(MULTICOM-CONSTRUCT, MULTICOM-AI, MULTICOM-HYBRID, MULTICOM-DIST were 
trained with different labelings of distance intervals. MULTICOM-DEEP used the average of the 
four predictors as its prediction. The distance intervals (or bins) of MULTICOM-CONSTRUCT 
are 0 to 4 Å, 4 to 6 Å, 6 to 8 Å, …, 18 to 20 Å, and > 20 Å. MULTICOM-DIST uses 42 bins, i.e. 
dividing 2 to 22 Å into 40 bins with a bin size of 0.5 Å, plus 0 - 2 Å bin and > 22 Å bin. MULTICOM-
HYBRID shares the same distance segmentation strategy as MULTICOM-DIST, except that it 
starts with an interval 0 - 3.5 Å and its last interval is set to > 19 Å.  MULTICOM-AI has 37 equally 
spaced intervals of 0.5 Å between 0 to 20 Å and the > 20 Å interval. Though the predicted multi-
class distance prediction maps of the five predictors are based on the different distance intervals, 
they are converted into the 10-bin classification maps required by CASP14. The 10 bins defined 
CASP14 are bin1: d≤4Å, bin2: 4<d≤6Å, bin3: 6<d≤8Å, ..., bin10: >20Å, which are the same as 
MULTICOM-CONSTRUCT.   

2.1 Deep residual neural networks with channel-wise attention mechanism for inter-
residue distance prediction 

The architecture of the deep residual network with the attention mechanism is shown in 
Fig.2.  The input features (a tensor of L * L * N  dimension; L: sequence length; N: number of 
channels)  are first fed into an instance normalization layer (Ulyanov, et al., 2016), followed by 
a convolutional layer and a Maxout layer (Goodfellow, et al., 2013). The convolutional layer 
reduces the number of channels to 128 and then the Maxout layer halves it to 64.  
Following the Maxout layer are 20 residual blocks with the same input and output dimension of 
64. Each residual block starts with a normalization block (called RCIN) that includes three 
different kinds of normalization layers and one ReLU (Nair and Hinton, 2010) activation function. 
The three normalization layers of RCIN are row normalization layer (RN), column normalization 
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layer (CN) (Mao, et al., 2019), and instance normalization (IN) layer. The output of the three 
normalization layers is concatenated as input for a ReLU activation function.  Through this 
operation, the information in multiple directions can be effectively integrated to better capture 
contacts/distances between residues. The RCIN block is followed by a convolutional layer, an 
RCIN block, three convolutional layers, an RCIN block, and a convolutional layer. The final part 
of the residual block is the squeeze-and-excitation block (SE) (Hu, et al., 2018), which is a 
channel-wise attention method popular in the computer vision field. This block has good 
adaptability and can be embedded into different deep network architectures. It has two parts: 
one is the squeeze operation that can collect the global information between all the feature 
channels and another is the excitation operation that can boost the impact of relevant features 
by two fully connected layers with the ReLU activation function. The SE block recalibrates the 
feature channels through learning so that the network can assign more attention to more 
essential feature channels. We apply a softmax activation to classify inter-residue distances 
between residues into multiple intervals (bins), i.e. predict the probability distribution of inter-
residue distances. 

 
Fig.2. The architecture of the deep residual network of DeepDist2 used by MULTICOM distance 
predictors. L is the length of the input sequence. N is the number of channels of the input features 
(i.e. 483 for COV_set,  482 for PLM_set, 484 for PRE_set, and 47 for OTHER_set).  
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2.2 Multiple sequence alignments and input features 

DeepAln and DeepMSA use HHblits and jackhmmer to search several protein sequence 
datasets to generate MSAs (Wu, et al., 2020).  During the CASP14 experiment, all the databases 
(i.e. UniRef90 (2020-04) (Mirdita, et al., 2017), Uniclust30 (2020-03), Metaclust50 (2018-06) 
(Steinegger and Söding, 2018), Myg_UniRef100) used for MSA generation were updated to their 
latest version. The BFD used by HHblits search was released by March 2019. 
 

The residue-residue co-evolutionary features including covariance matrix (COV), precision 
matrix (PRE), and pseudolikelihood maximization matrix (PLM) calculated from MSAs are two-
dimensional (2D) features with multiple channels and have the dimension of L×L×441. PSSM 
generated from PSI-BLAST search against UniRef90 is also a useful feature. Other features like 
the Pearson’s correlation between columns of PSSM, the co-evolutionary contact scores 
produced by CCMpred, the Shannon entropy sum, mean contact potential, normalized mutual 
information, and mutual information from DNCON2 are generated. These features are combined 
to generate four sets of features as follows. COV_Set includes COV, PSSM, Pearson correlation, 
and CCMpred contact scores; PLM_Set contains PLM, PSSM, Pearson’s correlation; PRE_Set 
has PRE, PSSM, and entropy scores (joint entropy, Shannon entropy sum); and OTHER_Set 
has PSSM, CCMpred contact scores, Pearson correlation, solvent accessibility, mean contact 
potential, normalized mutual information, and mutual information. 

2.3 Datasets and evaluation metrics 

11,234 proteins were used to train the MULTICOM distance predictors. The proteins in the 
training dataset have less than 25% sequence identity with the proteins in the three test datasets: 
43 CASP13 FM and FM/TBM domains, 37 CASP12 FM domains, and 268 CAMEO targets 
(released between 08/31/2018 and 08/24/2019). The predictors were trained and internally 
tested on the test datasets before they were blindly tested in CASP14 from May to July 2020.  
 

Our evaluation of the MULTICOM distance predictors was based on 37 hard FM and FM/TBM 
domains of CASP14 (i.e. 23 FM domains and 14 FM/TBM domains).  To be consistent with the 
analysis of CASP14, the evaluation is carried out at the domain-level. The distance predictions 
are evaluated by three metrics: (1) the precision of top L/5, L/2, or L long-range contact prediction 
after the multi-class distance predictions are converted to binary contact predictions at 8 Å 
threshold (L: sequence length), (2) mean absolute error (MAE) between predicted distances and 
true distances; and (3) the average precision, recall, and F-measure of multi-classification of 
distances between long-range residue pairs over 10 distance bins.   
 

Two residues are considered in contact if the distance between their β-carbon atoms (α-carbon 
for the glycine amino acid) is less than 8 Å. A contact map can be obtained by summing up the 
probability values of the intervals within 0-8 Å in a predicted multi-classification distance map. 
We use ConEVA (Adhikari, et al., 2016) to calculate the precision of predicted contacts. The 
CASP14’s assessment results at https://predictioncenter.org/casp14/rrc_avrg_results.cgi are also 
used. A contact is considered long-range contact if the sequence separation between the two 
residues is >= 24 residues, medium-range if the sequence separation is within [12, 23], and 
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short-range if the sequence separation is within [6, 11]. In this study, the evaluation is mostly 
focused on long-range residue-residue contact/distance predictions according to the CASP 
norm.  
 

The real-value distance between two residues is estimated as the sum of the mean distance of 
each interval times the predicted probability of the interval (i.e. the weighted average). Because 
large distances contribute little to tertiary structure prediction, only predicted distances less than 
16 Å are used for the MAE evaluation. The standard deviation of the MAE is also 
calculated.  When the MAE is close, the smaller standard deviation is preferred.  
 

For the multi-classification prediction, we apply the precision (denoted as Precision_m), recall 
(denoted as Recall_m) to evaluate the multi-classification of distances between long-range 
residue pairs. The precision and recall of each distance bin for a target are calculated first. The 
precision and recall of multiple distance bins is the arithmetic average of precision and recall of 
each bin over all the bins. Therefore, the final precision and recall (Precision_m and Recall_m) 
can evaluate the accuracy of the overall performance of multi-classification of distances for a 
target. We only calculate the precision and recall of the multi-classification prediction of the 
distances between long-range residue-residue pairs. The F1-measure is the geometric mean of 
Precision_m and Recall_m.  

3 Results 

3.1 Overall performance of distance prediction in CASP14 

In this study, we only compare CASP14 server predictors, excluding CASP14 human predictors 
that had more prediction time and might use some server predictions as input. The performance 
of the top 20 out of 30 CASP14 automated server predictors on 22 FM domains in terms of 
precision of top L/5 long-range contact predictions (called top L/5 precision) is shown in Table 
1. The top L/2 precision of the predictors is also reported in the table. The result was directly 
compiled from the evaluation data at the CSAP website after excluding human distance 
predictors. Our best server predictor MULITCOM-CONSTRUCT has a top L/5 precision of 64.99% 
and is ranked no. 5 after TripletRes from Zhang Group and three tFold servers (tFold-CaT, tFold-
IDT, and tFold) from tFold Group. Other MULTICOM predictors are also ranked among the top 
20. Moreover, the top L/5 (or L/2) precision of the MULTICOM predictors is higher than RaptorX 
- the best contact predictor in CASP13, showing that multiple predictors including ours in the 
CASP14 experiment improve over the best CASP13 contact predictor.  

Among the 30 server predictors, 19 of them submitted multi-class distance predictions, while the 
rest only submitted binary contact predictions. Table 2 reports the precision (Precision_m), recall 
(Recall_m), and F1-measure of multi-classification distance prediction of the 19 predictors. Our 
best server predictor MULTICOM-DIST is no.6 after TripletRes from Zhang group, three tFold 
servers (tFold-CaT, tFold-IDT, and tFold) from tFold group, and Yang-Server from Yang group 
in terms of F1-measure. 

Table1. The performance of top 20 server predictors on CASP14 37 FM and FM/TBM domains 
in terms of the precision of top L/5 and top L/2 long-range contact precisions. The predictors are 
ranked by the top L/5 precision.  
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Server Predictor 
Top-L/5 

Precision(%) 
Top-L/2 

Precision(%) 

TripletRes 73.10 62.41 

tFold-CaT 70.55 61.03 

tFold-IDT 69.80 59.23 

tFold 69.51 59.57 

MULTICOM-CONSTRUCT 64.99 53.88 

Yang-Server 64.79 55.31 

MULTICOM-AI 64.66 53.12 

FoldX 64.60 54.26 

MULTICOM-DEEP 64.56 53.84 

MULTICOM-HYBRID 64.48 52.54 

PrayogRealDistance 64.10 54.88 

MULTICOM-DIST 63.97 53.26 

FALCON-DeepFolder 63.24 52.36 

MULTICOM-CLUSTER 62.27 53.34 

TOWER 62.09 52.56 

RaptorX 59.06 51.32 

Zhou-SPOT-Contact 52.22 41.77 

PrayogBinnedMSA 51.36 44.29 

ShanghaiTech 51.35 41.25 

AmoebaContact 50.61 41.64 

Table2. The performance of CASP14 server predictors on 22 FM domains in terms of 
precision_m, recall_m, and F1 measure of multi-class distance prediction. The server predictors 
are ranked by the F1 measure. 

Server Predictor 
Precision_m(%) Recall_m(%) F1 measure 
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TripletRes 
31.90 24.24 0.2493 

tFold-IDT 
29.03 20.71 0.2179 

tFold-CaT 
29.92 20.03 0.2115 

tFold 
33.25 18.61 0.1955 

Yang-Server 
26.55 18.22 0.1857 

MULTICOM-DIST 
28.22 17.70 0.1847 

FoldX 
28.88 18.07 0.1832 

MULTICOM-
CONSTRUCT 

27.12 17.64 0.1828 

MULTICOM-DEEP 
27.98 17.52 0.1815 

TOWER 
28.35 17.81 0.1792 

MULTICOM-AI 
27.72 17.37 0.1791 

MULTICOM-HYBRID 
25.85 17.10 0.1764 

Yang_FM 
27.35 16.94 0.1762 

FALCON-DeepFolder 
28.00 16.81 0.1733 

Kiharalab_Z_Server 
21.56 15.63 0.1576 

RaptorX 
26.37 13.61 0.1428 

Zhou-SPOT-Contact 
23.27 13.14 0.1374 

RBO-PSP-CP 
15.97 13.03 0.1180 

ProdGAN_Gonglab 
6.61 9.50 0.0422 

The detailed results of the MULTICOM distance predictors (precision of top L/5, L/2, L long-
range contact predictions, the mean absolute error and standard deviation of long-range 
distance predictions, and the precision_m and recall_m of multi-classification of distances) on 
37 FM and FM/TBM domains are reported in Table 3. The MULTICOM distance predictors have 
similar performance. MULTICOM-CONSTRUCT performs best in terms of contact precision, 
MULTICOM-AI has the lowest MAE, and MULTICOM-DEEP has the highest multi-classification 
precision. 
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Table 3. The performance of distance predictions of MULTICOM server predictors on the 37 
CASP14 FM and FM/TBM domains. Bold denotes the highest value. 
  

 Top-L/5 
(%) 

Top-L/2 
(%) 

Top-L (%) MAE±std Precision_
m (%) 

Recall_m 
(%) 

MULTICOM-AI 64.66 53.12 40.75 2.631±2.10 33.14 21.94 

MULTICOM-
CONSTRUCT 

64.99 53.88 41.25 2.665±2.11 32.08 22.02 

MULTICOM-DEEP 64.56 53.84 41.32 2.658±2.11 33.25 21.88 

MULTICOM-DIST 63.97 53.26 40.35 2.684±2.11 32.69 22.02 

MULTICOM-HYBRID 64.48 52.54 40.55 2.743±2.15 30.69 21.32 

3.2 Comparison of different MSAs for distance prediction 

The performance of deep learning distance predictors depends on the quality of the input 
features, particularly the most important co-evolutionary features whose quality is largely 
determined by the depth and quality of MSAs (Wu, et al., 2020).  

 

The depth of an MSA is usually measured by the number of effective sequences (Neff) in the 
MSA. Here we use the performance of MULTICOM-CONSTRUCT with three kinds of MSAs on 
the 37 FM and FM/TBM domains to compare their performance in distance prediction. Table 4 
shows the performance of the long-range distance prediction of MULTICOM-CONSTRUCT with 
MSAs of DeepAln, DeepMSA, and HHblits_BFD according to multiple metrics, including Top L/2 
and Top L precisions of long-range contact predictions, mean absolute error of long-range 
predicted distances < 16 Å (MAE_16) and their standard deviation (STD_16), the accuracy and 
recall of multi-classification of distances (Precision_m and Recall_m). HHblits_BFD performs 
best among the three according to all the metrics, DeepMSA works better than DeepAln.  For 
instance, the top L/2 precision of HHbits_BFD is 51.33%, higher than DeepMSA’s 46.18% and 
DeepAln’s 43.87%. The reason is that the BFD database (released in April 2019) contains the 
hidden Markov model (HMM) profiles for both proteins in UniProt and the metagenomics 
databases, which enables HHblits to generate high-quality alignments with the sequences in the 
databases. In contrast, DeepMSA or DeepAln uses HHblits to search the HMM profiles in 
UniProt and Jackhmmer to the sequences in the metagenomics database. Because 
Jackhammer’s alignment quality and sensitivity are lower than HHblits, even though DeepMSA 
and DeepAln search a target against a newer version of UniProt and metagenomics databases 
than the BFD database, the quality gain of HHblits search on the BFD still outweighs the increase 
of the size of databases used by DeepMSA and DeepAln, leading to the better distance 
predictions with HHblits_BFD. 
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Table 4. Distance prediction performance of MULTICOM-CONSTRUCT with MSAs of DeepAln, 
DeepMSA, and HHblits_BFD (HHblits search on the BFD database) on the 31 FM and FM/TBM 
CASP14 targets. Five different metrics are used to evaluate the long-range distance predictions. 
 

  

 Top-L/2 
Precision (%) 

Top-L 
Precision (%) 

MAE_16(Å) Precision_m 
(%) 

Recall_m (%) 

DeepAln 43.87 33.08 4.6733±7.87 29.34 18.51 

DeepMSA 46.18 35.38 4.4538±7.80 30.49 19.25 

HHblits_BFD 51.33 38.37 4.211±7.75 35.42 20.53 

 

To further quantitatively analyze the impact of different MSA generation pipelines on the 
performance of the distance prediction, we study the relationship between the accuracy of 
distance prediction and the logarithm of the number of effective sequences (Neff) in the MSAs 
generated by DeepAln, DeepMSA, and HHblits_BFD in Figure 3. Because our automatic 
domain parsing did not predict domains accurately in many cases during CASP14 and therefore 
their predicted domain boundaries are different from the ground truth, here we only analyze the 
31 full-length targets in which the 37 FM and FM/TBM domain are located.  The Neff and 
prediction accuracy are calculated on the 31 full-length targets.  

The correlation coefficients between top L/2 precision and the common logarithm of Neff for 
DeepAln and DeepMSA are 0.417 and 0.462, respectively. The correlation between the two is 
not very strong, mainly because some targets have a large Neff but low prediction accuracy due 
to the existence of the false-positive sequences in MSAs. 10 (or 9) out of 31 targets that have a 
Neff > 10 for DeepAln (or DeepMSA) have the precision of < 50%. Interestingly, the correlation 
coefficient between the top L/2 precision and the common logarithm Neff is 0.357 for the 
HHblits_BFD on all the 31 FM and FM/TBM CASP14 targets, which is even lower than DeepAln 
and DeepMSA. The correlation coefficients between the precision of the multi-class classification 
of distances and the logarithm of Neff are 0.373, 0.414, and 0.295 for DeepAln, DeepMSA, and 
HHblits_BFD, respectively, which is lower than the correlation for the binary contact prediction. 
The correlation coefficients between the MAE of multi-classification of distances and the 
common logarithm Neff are -0.488, -0.546, and -0.370 for the DeepAln, DeepMSA, and BFD, 
respectively. These results show that there is only a weak correlation between Neff and the 
accuracy of distance predictions for the three MSA generation pipelines (DeepAln, DeepMSA, 
Hblits_BFD), while the correlation is weakest for HHblits_BFD that generates the MSAs of the 
best quality.   
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Fig.3. Illustration of the effect of different multiple sequence alignment generation pipelines on 
the performance of MULTICOM-CONSTRUCT. The A, C, and E show the plots of MAE_16 of 
long-range distance predictions vs the common logarithm of Neff of DeepAln, DeepMSA, and 
HHblits_BFD and their correlation coefficients, respectively. The B, D, and F show the plots of 
the long-range top L/2 contact precisions vs the common logarithm of Neff of MSA generated by 
DeepAln, DeepMSA, and HHblits_BFD and their correlation coefficients, respectively. 

Therefore, we conclude that both the quality and depth of MSAs impact the accuracy of distance 
predictions, and the depth measured by Neff is only a weak indicator of the accuracy of distance 
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prediction. Indeed, there are some CASP14 targets (e.g., T1093) whose MSAs have a large Neff 
have low distance prediction accuracy. Different from the depth of MSAs that can be measured 
by a single quantity - Neff, the quality of MSA depends on alignment accuracy, and relationships 
between sequences (homologous or not) in MSA is hard to quantify. 

3.3 Strong correlation between distance prediction accuracy and predicted probability 
scores and its application to select/combine predicted distance maps 

According to the analysis above, different MSAs generated by different methods may work well 
on different sets of targets. Therefore, there is a need to find good metrics to select or combine 
MSAs or distance maps to improve prediction. However, Neff of MSAs has only a correlation 
with the accuracy of distance/contact prediction and therefore it cannot accurately select MSAs 
or predicted distance maps. In order to find better metrics to select MSAs and predicted distance 
amps, we calculate the correlation between the precision of top L/2 long-range contact 
predictions and the average probability of the top L/2 contact predictions (Fig. 4)  The correlation 
between the two is 0.819. Moreover,  the average probability also has a relatively strong 
correlation with the precision of multi-class classification of distances (correlation = 0.654) and 
the mean absolute error of the real-value distance prediction (correlation = -0.790). These 
correlations are much stronger than that between Neff and contact/distance prediction 
accuracy.  

 
Fig.4. A plot of precisions of top L/2 long-range contact predictions against the average 
probabilities of the top L/2 predicted contacts.  MULTICOM-CONSTRUCT with HHblits_BFD 
alignments were used to predict the distance maps. 

The relatively strong correlation between the predicted contact probabilities and the accuracy of 
predicted distance maps provide a better approach to select distance maps predicted from 
different MSAs than Neff. To analyze the effectiveness of this approach for improving 
distance/contact predictions, we compare it with two approaches of combining MSAs or 
predicted distance maps: Combine_MSA_Map and Average_Map. Combine_MSA_Map merges 
the three MSAs generated by DeepAln, DeepMSA, and HHblits_BFD into one MSA file and uses 
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CD-HIT (Li and Godzik, 2006) and HH-filter to do two rounds of redundancy filtering to generate 
a final MSA for MUlTICOM-CONSTRUCT to predict a distance map. Average_Map simply 
calculates the average of the distance maps predicted from the three MSAs as the final distance 
map prediction. We use Probability_Map to denote the approach of using the average probability 
of top L/2 long-range contact predictions to select a distance map from the three distance maps 
predicted from the three MSAs. Finally, Optimal_Map represents the ideal approach of always 
of selecting the most accurate distance map in terms of evaluation metric (top L/2 precision, top 
L precision, Precision_m, Recall_m, and MAE_16) from the three maps predicted from the three 
MSAs, which is the upper limit that any distance map combination or selection methods can 
reach.   

Table 4 reports the distance prediction results of using these approaches to select or combine 
the distance maps predicted from the three kinds of MSAs. Probability_Map works better than 
both Average_Map and Combine_MSA_Map in terms of almost all metrics and its performance 
is even close to Optimal_Map, indicating that the probability of top predicted contacts is a good 
metric to select distance maps predicted from different MSAs to improve distance prediction.  

It is worth noting that Combine_MSA_Map performs worse than always selecting the distance 
maps predicted from the HHblits_BFD MSAs that works better than the MSAs of DeepAln and 
DeepMSA on average. The reason is that a simple combination of the MSAs from HHblits_BFD, 
DeepAln, and DeepMSA may introduce some noise (i.e. false positive - non-homologous 
sequences) into MSA, even though there are more sequences in the combined MSAs (higher 
depth).  

Table 4. The performance of different methods of selecting/combining distance maps on 31 
CASP14 full-length hard targets. The prediction distance maps were predicted by MULTICOM-
CONSTRUCT with three different MSAs generation pipelines. 
 

Method Top-L/2(%) Top-L(%) MAE_16(Å) Precision_m(%) Recall_m(%) 

Combine_MSA_Map 49.37 37.69 4.254±2.78 32.80 20.30 

Average_Map 52.10 38.99 4.405±2.71 34.18 18.86 

Probability_Map 52.25 39.27 4.078±2.77 33.38 21.44 

Optimal_Map 52.5 40.7 4.010±2.64 36.65 21.58 

 

3.4 Comparison of different feature sets on distance prediction 

Each of the MULTICOM distance predictors uses four different sets of features derived from an 
MSA to predict distance maps and then average them as the final prediction from the MSA to 
improve the accuracy and stability of prediction. Table 5 summarizes the distance prediction 
performance of four different feature sets using MULTICOM-CONSTRUCT with HHblits_BFD 
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alignments on 37 FM and FM/TBM domains in comparison with the ensemble approach of 
averaging the four predicted distance maps from the four sets of features as the prediction. The 
ensemble approach performs better than using each feature set alone in terms of all evaluation 
metrics. Its mean precision of top L/2 long-range contacts is 50.18%, which is 3.33, 3.34, 3.47, 
and 6.19 percentage points higher than COV_set, PLM_set, PRE_set, and OTHER_set, 
respectively. The mean absolute error of the ensemble approach is 3.95 Å, lower than all the 
four feature sets. Also, the precision of the multi-class classification is 33.55%, higher than each 
feature set.  
 

Table.5. The performance of distance prediction on the 37 FM and FM/TBM domains with each 
of four feature sets: COV_set, PLM_set, PRE_set, and OTHER_set in comparison with the 
ensemble approach 
 

 Top-L/2 
Precision (%) 

Top-L  
Precision (%) 

MAE_16 
(Å) 

Precison_m 
(%) 

Recall_m  
(%) 

COV_set 46.85 36.00 4.094±2.66 30.60 20.82 

PLM_set 46.84 35.30 3.975±2.75 30.51 21.95 

PRE_set 46.71 35.81 4.063±2.75 30.81 20.99 

OTHER_set 43.99 33.29 4.158±2.76 28.98 20.21 

Ensemble 50.18 38.34 3.949±2.63 33.55 21.74 

Although the average performance of the ensemble approach is better, it does not perform best 
on every individual target. Fig. 7 compares the max long-range top L/2 contact precision 
(diamond shape), average long-range top L/2 contact precision of four feature sets (square 
shape), and the long-range top L/2 contact precision of the ensemble approach (triangle shape). 
The results of the ensemble are not as good as the results of the best single feature set, 
especially for the target T1040-D1, T1047s1-D1, T1049-D1, T1082-D1, and T1096-D2 which 
are marked by red arrows. The gaps between the max precision of four feature sets and the 
precision of the ensemble approach on these targets are all greater than 8%, suggesting that 
there is still some room for improving the combination of features.  
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Fig.7. The comparison between the max top L/2 precision of four feature sets, the average 
precision of four feature sets, and the precision of the ensemble approach on 37 FM and 
FM/TBM CASP14 domains. 

As a special case, Fig. 8 illustrates the top L/2  long-range contacts of T1047s1-D1 predicted by 
the ensemble approach and from the PRE_Set in comparison with true contacts.  The ensemble 
approach predicted more false positives marked in the eclipse than the PRE_Set.  

After CASP14, we tried to ensemble the distance prediction of multiple deep learning models 
trained on a single feature set and found that the integration of the results of multiple models 
can improve the stability and accuracy of the prediction. Table 6 shows the comparison of a 
single deep learning model and the ensemble of four deep learning models that were trained on 
the COV_set and based on the approach similar to MULTICOM_CONSTRUCT. The 
performance of the ensemble of the four deep learning models using COV_set on CASP14 37 
FM and FM/TBM domains is better than the single model in terms of all the evaluation metrics. 
The same phenomenon is also observed for the other three feature sets. Moreover, the 
ensemble of the four ensembles of the four feature sets obtains the long-range top L/2 contact 
prediction precision of 51.80%, the mean absolute error of 2.687Å, and the multi-classification 
precision of 34.17%, which is better than the ensemble of four single deep learning models 
trained on the four feature sets (i.e., 50.18%, 3.949Å, and 33.55% in Table 5). 
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Fig.8. Top L/2 long-range contacts predicted from PRE_set (upper triangle: red dots: correct 
predictions and blue dots: incorrect predictions) and the ensemble (lower triangle) for T1047s1-
D1 mapped onto the true contacts (gray dots). The blue eclipse circles some false positives 
predicted by the ensemble approach. 
 

Table 6. The performance of distance prediction of the single deep learning model and an 
ensemble of four deep learning models using the COV_set features on 37 CASP14 FM and 
FM/TBM domains.  
 

 
Top-L/2 

Precision 
(%) 

Top-L 
Precision 

(%) 

MAE_16(Å) Precision_m
(%) 

Recall_m 
(%) 

COV_set 
(single model) 

46.85 36.00 4.094±2.66 30.60 20.82 

COV_set 
(ensemble) 49.20 37.84 2.638±2.11 33.69 21.89 
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3.5 Impact of the size of the training dataset on prediction accuracy    

We investigated the impact of the size of training datasets on the accuracy of protein distance 
prediction using the deep learning model of MULTICOM-CONSTRUCT on CASP14 37 FM and 
FM/TBM domains. MULTICOM-CONSTRUCT was trained on two datasets of different sizes. 
Dataset_1 introduced in DeepDist1 has 6463 proteins. Dataset_2 has 11034 proteins. The 
precision of top L/2 long-range contact predictions for the deep learning model trained on 
Dataset_2 is 50.18%, nearly 3% percentage point higher than on Dataset_1. A target-to-target 
comparison of mean absolute error (MAE) on 37 domains for the two models is shown in Fig. 9. 
On almost all the domains, the model trained on Dataset_2 has a lower MAE than that on 
Dataset_1.  In some cases, such as T1038-D2, the difference is substantial. 
The comparison between the distance maps predicted by the deep learning models trained on 
Dataset_1 and Dataset_2 and the true distance map of T1038-D2 is illustrated in Fig. 10. The 
distance map predicted by the model trained on Dataset_2 is very similar to the true distance 
map, but the distance map predicted by the model trained on Dataset_1 is very different.  
 

 

Fig.9. Comparison of the mean absolute error (MAE_16) of long-rang distance predictions of the 
two deep learning models trained Dataset_1 (small) and Dataset_2 (large).  
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Fig.10. Comparison of predicted and true distance maps of T1038-D2. The upper triangle of the 
subfigure on the left is the distance map predicted by the model trained on Dataset_2 and the 
lower-triangle is the distance map predicted by the model trained on Dataset_1. The subfigure 
on the right is the true distance map. The distance map predicted by the model trained on 
Dataset_2 is much more similar to the true distance map than the model on Dataset_1. 
 

3.6 The study of good and bad CASP14 cases 

The MULTICOM distance predictors performed very well on T1052-D3. The average precision 
of top L/2 long-range contact predictions of MULTICOM predictors is close to 100%, while the 
average top L/2 precision of all CASP14 server predictors is 58.13%. T1052 is a multi-domain 
protein that has 832 amino acids, Neff of the MSA of the full-length T1052 is less than 15. The 
domain parsing program of MULTICOM predictors was able to identify a hard modeling region 
[590, 688] covering the range ([589, 668]) of the third domain of the target (T01052-D3) well. 
The sequence of the region was used to search against the sequence databases to build deeper 
MSAs to predict distance maps for the region. The distance maps predicted for the regions were 
combined with the full-length distance maps as in DeepDist (Wu, et al., 2020). This domain-
based distance map prediction substantially increased the quality of the distance prediction for 
T1052-D3.  
 

Fig.11 compares the domain-based distance map prediction and the full-length distance map 
prediction made by MULTICOM-CONSTRUCT with the true distance map of T1052-D3. The 
domain-based distance map prediction is much better and clearer than the full-length distance 
map prediction for T1052-D3. The results show that good domain parsing can improve the quality 
of MSAs and therefore the quality of distance prediction.   
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Fig.11. Comparison of the domain-based distance prediction and the full-length distance 
prediction with true distance map of T1052-D3. In the subfigure on the left, the upper triangle 
denotes the domain-based distance prediction, and the lower triangle the true distance map.  In 
the figure on the right, the upper triangle denotes the full-length distance prediction, and the 
lower triangle the true distance map. The patterns in the domain-based distance prediction map 
are much clear and closer to the true distance map than the full-length distance prediction map. 
 

Usually, the poor prediction of protein distances is due to a lack of effective sequences in MSAs 
(e.g., lower Neff on T1029, T1033, T1043, T1064) to generate good input features. The deep 
learning predictors cannot effectively extract distance patterns from them. However, in some 
cases, MSAs have high Neff, but the accuracy of the distance prediction is still very low. For 
instance, the Neff of the MSAs generated by DeepAln for T1093 is 689.36 and that generated 
by DeepMSA is 425.12, which are high values. However, all of the MULTICOM predictors got 
0% top L/2 contact prediction precision, even the domain of the target can be reasonably 
identified.  Fig. 12 compares the distance maps predicted by four different approaches with the 
ground truth: (1) the distance map predicted from MSAs generated from DeepAln and DeepMSA 
with the predicted domain information (our original CASP14 submission, denoted as 
Original_dm), (2) the distance map predicted from MSA generated by HHblits_BFD without 
utilizing the domain information (denoted as BFD_full), (3) the distance map predicted from MSA 
generated by HHblits_BFD with the predicted domain information (denoted as BFD_dm). All 
these four distance maps above were predicted by MULTICOM-CONSTRUCT to ensure 
consistency. 
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Fig.12. (A) The distanced map predicted from MSAs generated by DeepAln and DeepMSA with 
predicted domain information (upper triangle) versus the true distance map (lower triangle), (B) 
The distance map predicted from the HHblits_BFD MSA without domain information (upper 
triangle) versus true distance map (lower triangle), (C). The predicted distance map from the 
HHblits_BFD MSA with predicted domain information (upper triangle) versus the true distance 
map (lower triangle). 
 

It can be seen that although MSAs generated by DeepAln and DeepMSA have a lot of 
sequences, most of them are false-positive positives leading to the prediction of many false-
positive contact predictions (Fig. 12A). In Fig. 12B, the distance map predicted from the 
HHblits_BFD MSA without using predicted domain information is somewhat better, indicating 
that HHblits_BFD MSA (Neff = 133.0) has the better quality than MSAs of DeepAln and 
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DeepMSA. If the predicted domain information is used, the distance prediction predicted from 
HHblits_BFD MSA is further improved in Fig. 12C, even though the Neff of the HHblits_BFD 
MSA for the domain is only 15, which is much lower than MSAs of DeepAln and DeepMSA. The 
long-range top L/2 contact prediction precision, the MAE of long-range distance prediction less 
than 16 Å, and the precision of multi-classification of distances using the different approaches 
for this domain are reported in Table 7. This case shows the quality of MSAs is important for 
distance prediction, and Neff is not always a good indicator of the quality of MSAs when there 
are false positives in MSAs. 
 

Table 7. The accuracy of the distance prediction of using the three different approaches to 
generating MSAs for T1093.  
 
 

Top-L/2  
Precision (%) 

Top-L 
Precision (%) 

MAE_16(Å) Precision_m 
(%) 

Recall_m  
(%) 

Original_dm 0.00 2.83 3.343±2.47 10.90 12.60 

BFD_full 0.00 4.72 3.834±2.61 16.63 11.16 

BFD_dm 37.74 33.96 3.581±2.42 18.16 13.20 

 

4 Conclusion and future work 
 

We developed several deep learning distance predators and rigorously benchmarked them in 
CASP14. The predictors performed reasonably well in the highly competitive CASP14 
experiment. The results demonstrate that MSAs generated from different alignment methods on 
different databases for distance prediction have different quality. The MSAs generated by 
HHblits on the BFD database leads to the most accurate distance prediction, but different MSAs 
are still complementary and can be combined to improve distance prediction. However, the 
number of effective sequences of MSAs has only a weak correlation with the quality of MSA and 
therefore is not a strong factor of the quality of MSAs and the accuracy of the distance maps 
predicted from them because of the frequent existence of false positives in MSAs. In contrast, 
the predicted probabilities of top long-range contact predictions have a strong correlation with 
the accuracy of distance map predictions, and therefore is a better metric to select or combine 
predicted distance maps to improve distance prediction. Moreover, we show that the distance 
maps predicted from different features generated from the same MSA are also complementary 
and can be integrated to improve prediction accuracy. Finally, using larger training datasets to 
train deep learning models, ensembling multiple deep learning models, or applying domain 
predictions to MSA generation of some multi-domain targets can also improve the accuracy of 
the distance prediction.     
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