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Extended Data Fig. 1: Postnatal characterization
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Extended Data Fig. 1: Postnatal characterization. Related to Fig. 1. 

a, Diagram illustrating longitudinal esophageal orientation from proximal to distal as marked by 

orange diamond. b, and c, Esophageal tissue growth in length and width over time, respectively. d, 

Images showing animal body growth throughout postnatal development. e, Representative images 

showing EdU+ basal cells 24 hours post-labelling in P14 and P49 from Fig. 1e-g. f, Graphical 

representation of differential basal production rate throughout postnatal development. See 

Methods. g, 3D rendered z-stacks showing split confocal channels from Fig. 1i. h, Typical 3D 

rendered confocal z-stacks showing tilted side views from Fig. 1i. Yellow arrows indicate immature 

epithelial barrier. Scale bars. S1D(2 cm); S1E,G-H(20 µm). Stainings. Blue, DAPI; cyan, EdU; green, 

KRT14; greyscale, KRT4. Dashed white lines indicate basement membrane. 

All data derived from wild-type C57BL/6J mice, expressed as mean ± SEM and analyzed using one-

way ANOVA with Tukey’s multiple comparisons test (n = 103; ####p < 0.0001 relative to P70; ****p < 

0.0001 relative to P7). 

Dashed lines indicate P28. Orange diamonds depict longitudinal orientation of the esophagus where 

indicated. 

 



Extended Data Fig. 2: KLF4 basal cell prolife in FUCCI2a mice
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Extended Data Fig. 2: KLF4 basal cell prolife in FUCCI2a mice. Related to Fig. 2. 

a, Representative confocal z-stacks showing side views of EE wholemounts from Fig. 2a. Dashed lines 

indicate basement membrane; dotted lines mark the upper limit of the EE. Red, KLF4. b, In vivo 

protocol. Esophagi from FUCCI2a mice were collected at time points indicated. Schematic indicating 

expression pattern of fluorescent proteins in FUCCI2a mouse model. c, Confocal images showing 

basal views of typical FUCCI2a EE wholemounts in (b). Orange diamonds indicate longitudinal 

orientation of the esophagus. Green, mVenus; red, mCherry. d and e, Correlation between KLF4 

protein expression and reporter fluorescent proteins mCherry (d)/mVenus (e) in the basal layer from 

(b) and (c). Scale bars 20 µm. 

 



Extended Data Fig. 3: Single cell RNA sequencing annotation
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Extended Data Fig. 3: Single cell RNA sequencing annotation. Related to Fig. 3. 

a, Flow cytometry gating strategy for isolation of EE cells (EpCam+/CD45-). Representative plots from 

adult sample. 3-6 samples per time point were analyzed. b, UMAPs showing expression of 

representative makers for basal (left panels) and differentiated cells (right panels) in EE. c, Heatmap 

showing expression of representative marker genes for basal cells, cell cycle, and differentiation for 

the 17 clusters shown in Fig. 3c (cluster number in upper bar). The expression values were log2-

transformed normalized UMIs followed by scaling and averaging across cells in the same clusters.  d, 

Violin plots showing expression of representative epidermal (basal vs. differentiated) and cell cycle 

markers at different postnatal stages (P7 vs. P28 and Adult) split by annotated cell cohorts in Fig. 3d. 

e, UMAP showing spatial distribution of distinct cell cycle phases. The cell cycle phases were 

annotated using cell cycle analysis by R package scran (v 1.12.1) combined with manual curation 

based on expression of cell cycle genes in (c). f, Violin plots showing expression of representative cell 

cycle genes at postnatal stages split by cell cycle cohorts identified in (e). The color scheme for cell 

cycle phases is the same as that in (e). g, In vivo protocol. Mice were treated with a single EdU 

injection 2 hours prior culling at the time points indicated. h, Typical 3D rendered confocal z-stacks 

showing side views of EE wholemounts. Dashed white lines, basement membrane. Dotted white 

lines, upper EE limit. Blue, DAPI; cyan, EdU; scale bar 10 µm. For violin plots in (d) and (f) expression 

level means log2-transformed normalized UMIs and dotted lines indicate the median of the 

distribution. Color bars of UMAPs in (b) indicate log2-transformed normalized UMIs. 

 



Extended Data Fig. 4: Single cell RNA sequencing expression profile
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Extended Data Fig. 4: Single cell RNA sequencing expression profile. Related to Fig. 3. 

a, Violin plots showing expression of Klf4 and Krt4 for cells in individual clusters at P7 (upper), P28 

(middle) and Adult (lower). b, Violin plots showing expression of genes associated with regeneration 

vs. homeostasis for different epithelial cell types (Basal vs. Differentiated) at distinct postnatal stages 

(P7 vs. P28+Adult). Basal cells include both cycling and resting cells from Fig. 3d. c and d, UMAP 

showing expression of genes related to key biological processes from Gene Ontology analysis for 

Patterns 2 (c) and 4 (d) in Fig. 3e,f. For violin plots in (a), and (b), expression level means log2-

transformed normalized UMIs and dotted lines indicate the median of the distribution. Color bars of 

UMAPs in (c) and (d) indicate log2-transformed normalized UMIs. 
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Extended Data Fig. 5: Deep Learning based segmentation

d e

P14 P49

St
ru

ct
ur

e 
fa

ct
or

 

S(k)
5

4

3

2

1

h q

3.81

4.01

Li
qu

id
So

lid

Ja
m

m
in

g 
pa

ra
m

et
er

P14 P49g

Sh
ap

e 
an

is
ot

ro
py

P14 P49

−80
−60
−40
−20
0
20
40
60
80

Training images

Ground truth
segmentation

Deep learning
segmentation

Images

Predicted
segmentation

Human in-the-loop curation

a

b

Deep learning
segmentation

DAPI
Nuclear staining Semantic Mask Instance Mask

Mask overlay with
original image

DAPI
Seg

****

P7 P14 P28 P49 Adult
0.0

0.2

0.4

0.6

0.8

1.0

Sh
ap

e 
an

is
ot

ro
py

P7 P14 P28 P49 Adult

c

f

**** ****
***

ns

Tissue image Semantic Mask Cell centroids Delaunay triangulation Voronoi diagram Overlay



Extended Data Fig. 5: Deep Learning based segmentation. Related to Fig. 4. 

a, Schematic depicting the principle of deep learning based segmentation. Manually or semi-

automatically annotated “ground truth” images of the tissue are used to train a U-Net convolutional 

neural network to produce an automated segmentation mask of cellular features, such as the cell 

nuclei. Training of the network is assessed on a set of “validation” images and iteratively optimized 

until satisfactory segmentation performance is achieved. b, Schematic of pipeline utilized for the 

segmentation on single z-slice confocal images of the EE basal layer. Nuclear segmentation was 

based on DAPI staining (blue). Mask panels show the semantic (binary) and instance segmentation 

masks obtained as outputs of the pipeline. Mask overlay shows the match between the binary mask 

and the original fluorescence image. Scale bar, 20 µm. c, Schematic describing the computation of 

Voronoi diagrams of the tissue. Single z-slice confocal images of the EE basal layer are segmented 

using the pipeline described in (b). Cell centroids are computed using the obtained binary mask. 

Delaunay triangulation of cells in the images is performed using the coordinates of cell centroids. 

Voronoi diagrams are calculated as the dual of  Delaunay triangulation of cells in the tissue and 

overlayed onto the original fluorecence image. Scale bar 20 µm. d, Cell shape anisotropy tensor 

represented as an ellipse calculated from the nuclear centroid position of each basal cell at P14 and 

P49 (supplementary to Fig. 4d). Long axis of each ellipse is proportional to the dominant eigen value 

of the tensor. Orientation is color-coded. Results from a representative experiment are shown; n=3. 

e, Violin plots showing the distribution in cell shape anisotropy throughout postnatal development. 

n=2052-2594 number of segmented cells from 3 animals per time point. Black dashed line, median. 

One-way ANOVA with Tukey’s multiple comparisons test (****p < 0.0001 relative to P7). f, Structure 

factor shape anisotropy distribution as shown in (g) and Fig. 4e. Data represented as box plot; 

individual measurements from n=3. g, Bidimensional structure factor quantifying basal cell spatial 

organization at P14 and P49 (supplementary to Fig. 4e). Changes in the dashed white outline (from 

ellipse to circle) depict a transition from anisotropic to isotropic cell distribution over time; n=3. h, 

Jamming parameter (q=P/√A) represented as a voronoi diagram calculated from the centroid of each 

cell at P14 and P49 (supplementary to Fig. 4g). Blue, solid-like “jammed”state; red, liquid-like state. 

Results from a representative experiment are shown; n=3. 

All data derived from wild-type C57BL/6J mice. 
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Extended Data Fig. 6: Esophageal tissue strain and Second harmonic generation
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Extended Data Fig. 6: Esophageal tissue strain and Second harmonic generation. Related to Fig. 5. 

a, In situ and immediate ex vivo images of esophageal tubes at P28 and P49 (supplementary to Fig. 

5b). White dashed lines delineate esophageal tube; scale bar 1 cm. b, Representative images 

showing the size of combined and separate esophageal layers; Full esophageal tube (Tube), 

epithelial composite (Epi) and muscle layer (Muscle); scale bar 5 mm. c, Longitudinal tissue strain 

relative to muscle, represented as percentage. Data expressed as mean ± SEM. One-way ANOVA 

with Tukey’s multiple comparisons test (n=6-9; **p < 0.01; ns, not significant; relative to P7). d, 

Representative views of stroma underlying EE basement membrane using second harmonic 

generation (SHG). Left panels, collagen in magenta. Middle panels, color map of SHG signal intensity. 

Right panels, color-coded local orientation map of SHG signal. Scale bar 100 µm. e, Representative 

histograms depicting orientation distribution of collagen fibers in (d). n=3. 

All data derived from wild-type C57BL/6J mice. Orange diamonds depict longitudinal orientation of 

the esophagus where indicated. 
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Extended Data Fig. 7: EdU incorporation assays in organ cultures
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Extended Data Fig. 7: EdU incorporation assays in organ cultures. Related to Fig. 7. 

a, 3D model of individual parts required for 3D printing of stretcher device. Scale bar 1 cm. b, In vitro 

protocol. Esophagi were collected and the muscle removed whilst maintaining tubular structure. 

Tissues were exposed to a 40% stretch using 3D printed stretcher and kept in vitro as whole-organ 

cultures for 48 hours. EdU was added to the media 2 hours prior collection. c, Basal quantification of 

EdU+ cells expressed as percentage of DAPI+ cells from (b). n=3. d, Basal cell density, expressed in 

number of cells per field after BLEBB treatment in Fig. 7e. n=3. e, Basal quantification of EdU+ cells 

expressed as percentage of DAPI+ cells after BLEBB treatment in Fig. 7e. n=3. 

All data are presented as mean ± SD and were analyzed using Unpaired t test (*p < 0.05; ns, not 

significant). Individual points show individual measurements, greyscale indicates values from each of 

3 mice. 
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Supplemental Information. 

 

Quantitative Image Analysis  

 

1. Tissue image segmentation 

Prior to analysis, all microscopy images were converted into 8 bit TIF files from their native proprietary file 

format. In addition to immunostainings of interest, DAPI was always used to label nuclei in wholemounts of 

the esophageal epithelium (EE). Nuclei were then segmented using an automated deep learning based image 

segmentation framework coded in Python (using Keras and TensorFlow libraries) and described in greater 

details elsewhere (A. Hallou, unpublished).  

For each experiment, a “training” image set of six representative images was selected for each time 

point, with images taken from at least three biological replicates. A “ground truth” segmentation mask was 

obtained for each image of the training set using a semi-automated pipeline based on “ilastik”, a random 

forest classifier based machine learning library for image segmentation [1]. For each condition, the random 

forest classifier was trained to distinguish between background and foreground pixels of interest producing 

a probability map of the image of interest, giving each pixel a particular probability to belong to a given class 

(background or foreground). A binary mask of the image was then obtained using a thresholding of the 

probability map, followed by post-processing steps composed of morphological opening/closing operations, 

size filtering and manual corrections. 

To achieve full automation of image segmentation, we adopted a deep learning approach based on 

a U-Net network, a family of convolutional neural networks with an encoder/decoder architecture recently 

used for a variety of computer vision tasks, including biological and medical image analysis [2]. As shown in 

Extended Data Fig. 4a, we trained our U-Net network for each experiment using the training image set and 

associated ground truth binary masks prepared at the previous step. Training images were first subdivided 

into two groups, a first group containing two-thirds of the images was used to train the network while a 

second group, composed of the remaining images, was used for training validation.  

Training was performed at original image resolution and image intensity was normalised between 0 

and 1. Random rotation and elastic deformation were used as image augmentation techniques. The “loss 

function” used for training was pixel-weighted soft-max cross-entropy, with weighting used to enforce 

instance separation and class-balance (background vs. foreground objects). For initial training, the loss 

function was minimised on the training set using a stochastic gradient descent algorithm at a basal learning 

rate of 10-3 with a momentum 1 of 0.9 and momentum 2 of 0.999 for around 2.0-3.0 x 105 time-steps up until 

reaching a learning rate decay of less than 10-4 for more than 104 time-steps. Performance of the training was 

assessed on validation images using intersection over union (IoU) as a main metric for semantic segmentation 

accuracy, and was iteratively optimised until an IoU>93±3% was achieved for all training image sets. 

Once the network was trained, other images of the same experiment were processed automatically 

to obtain binary nuclear masks as illustrated in Extended Data Fig. 4b. Instance objects, i.e. individual nuclei, 

were subsequently identified using a seeded watershed algorithm, using the ultimate points of binary mask 

as seeds [3]. 
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2. Spatial organisation and morphological properties of cell extraction and analysis 

Using the instance mask of each image, 20 different individual spatial and morphological properties of each 

nucleus were systematically extracted: 1, surface area; 2, centroid x position; 3, centroid y position; 4, 

perimeter; 5, bounding box centre x position; 6, bounding box centre y position; 7, bounding box width; 8, 

bounding box height; 9, ellipse major axis; 10, ellipse minor axis; 11, ellipse major axis angle (with image x 

axis); 12, circularity; 13, Feret diameter; 14, Feret x start position; 15, Feret y start position; 16, Feret angle 

(with image x axis); 17, minimum Feret diameter; 18, aspect ratio; 19, Roundness and 20, Solidity. Generated 

data were stored in individual CSV files and subsequently analysed using custom Python scripts.    

The point configuration made by the ensemble of nuclear centroids was used as the start point for 

further analysis of the tissue spatial organisation as shown in in Extended Data Fig. 4c. 

The basal cell density, ρ, was evaluated as the average number of centroid points, N, per surface 

area, L2, in 2D single-plane images of the EE basal layer: 

𝜌 = ⟨
𝑁

𝐿2
⟩ 

where 〈. . 〉 denotes an average over all cells in the image. From this result, we obtained the characteristic 

neighbour distance between basal cells, 

𝑙𝑐 =
1

√𝜌
 

To further quantify the spatial organisation of tissue, the bidimensional structure factor, 𝑆(𝒌) was 

derived, which characterises the long-range spatial organisation of the tissue: 

𝑆(𝒌) =
1

𝑁
|∑ 𝑒𝑥𝑝

𝑁

𝑗=1

(𝑖𝒌 ⋅ 𝒓𝑗)|

2

 

Here rj denote centroid position vectors of nuclei and 𝒌 = (𝑘𝑥
𝑘𝑦

) is the wave vector [4]. For practical purposes, 

the non-physical “forward scattering” contribution (𝒌 = 0) was excluded, and 𝒌 was computed using periodic 

boundary conditions, which is a reasonable assumption given that L is much smaller than the overall tissue 

size:  

𝑘𝑥 = 𝑘𝑦 =
2𝜋𝑛

𝐿
(𝑛 ∈ ℕ). 

The values taken by the structure factor at small wave numbers reflect the degree to which there exists a 

large-scale spatial organisation of cells in the tissue and thus, if the tissue possesses positional order, 𝑆(𝒌) 

should significantly deviate from unity when k is small [5]. The structure factor anisotropy was then derived 

to quantify the extent to which the tissue spatial organisation varies along the different spatial coordinates 

[6]. To do so, the bidimensional structure factor was thresholded such that only values well below unity were 

kept:  

�̄�(𝒌) = 𝑆(𝒌) ≼ 1.0. 

The shape anisotropy tensor of the thresholded structure factor, �̄�(𝒌), could then be derived as:  
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𝑰�̄� = (
⟨𝑘𝑥𝑘𝑥⟩ ⟨𝑘𝑥𝑘𝑦⟩

⟨𝑘𝑥𝑘𝑦⟩ ⟨𝑘𝑦𝑘𝑦⟩
) 

where 𝑘𝑥  and 𝑘𝑦 are now the coordinates of all the points of the thresholded structure factor with their origin 

taken at their barycentre 〈𝑘𝑥〉 =  〈𝑘𝑥〉 = 0, with brackets indicating an average over space. The four terms 

that appear in 𝑰�̄� represent the coordinate covariances. From the eigenvalues of 𝑰�̄�, λ1and λ2, one can obtain 

the anisotropy of the structure factor as:  

𝐴SF =
𝜆1−𝜆2

√𝜆1
2+𝜆2

2
. 

From the coordinates of nuclei centroids, it is also possible to retrieve Voronoi diagrams of the 

epithelial tissue as the dual of their Delaunay triangulation [7]. We used the standard Delaunay triangulation 

algorithm provided by the SciPy library, but calculated modified Voronoi diagrams to handle infinite cells at 

the boundary of the image as shown in Extended Data Fig. 4c. Voronoi diagrams were used to quantify the 

local topology of the tissue and also as a convenient way to display various measured quantities that were 

colour-mapped onto them. 

It is possible to carry out a similar analysis of the spatial organisation of the tissue at the individual 

cell level. Indeed, from the knowledge of the coordinates of every segmented cell outline, it was possible to 

derive the cellular shape anisotropy tensor:  

𝑰𝒄 = (
⟨𝑥𝑥⟩ ⟨𝑥𝑦⟩

⟨𝑥𝑦⟩ ⟨𝑦𝑦⟩
) 

where 𝑥 and 𝑦 are now the coordinates of all the points of the cell contour with their origin taken at their 

barycentre 〈𝑥〉 =  〈𝑦〉 = 0 (i.e. at the cell centroid), with brackets indicating an average over space. From the 

eigenvalues of I, λ1and λ2, we can obtain the cell shape anisotropy 𝐴c:  

 

𝐴c =
𝜆1 − 𝜆2

√𝜆1
2 + 𝜆2

2
 

The determination of the eigenvectors, allowed determination of the orientation of the long axis,θ, and short 

axis, which is perpendicular to it. Also, knowing λ1,  λ2 and θ, one can represent the shape anisotropy tensor 

of each cell as an ellipse centred at its centroid and whose orientation is given by θ, and long and short axis 

lengths by λ1and λ2 respectively. 

 Following the Landau-De Gennes theory of liquid crystals, the distribution of orientation of the long 

axis of each cell can also be used to quantify the orientational order of cells in the tissue, defining an 

orientation tensor [8]:  

𝑶 = (
⟨cos θ 2⟩ ⟨cos θ sin θ⟩

⟨cos θ sin θ⟩ ⟨sin θ 2⟩
) 

Basic linear algebra allows determination of the dominant eigenvalue of 𝑶, which is called the nematic order 

parameter, 

𝑆 =  √⟨cos θ 2⟩ + ⟨sin θ 2⟩ 
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This quantity is averaged over all segmented cells in an image and is thus a readout of the average 

orientational order in the tissue. The limiting case S=0 would describe a completely disordered tissue, where 

cellular orientations are uncorrelated, while the limiting case S=1, would describe a perfect nematic order 

where all cells align with their neighbours [9]. 

 The shape of each cell in the epithelium was further characterized by the “jamming parameter” or 

cell shape index, 𝑞𝑗, which is defined as the ratio of the cell perimeter, 𝑃𝑖, to the square root of its surface 

area 𝐴𝑖 [10]: 

𝑞𝑗 =
𝑃𝑖

√𝐴𝑖
 . 

Within the framework of vertex models of epithelial tissues, this quantity can be interpreted both as a 

material property of the cells because it is set by the ratio between cell–cell adhesive stress and cell cortical 

tension, and as an order parameter, which can be used to describe the solid-liquid jamming transition that 

exists in these tissue driven by cell motility or cell topological rearrangements (cell division, 

stratification/apoptosis, neighbour exchange, etc.). For a model tissue composed of cells with regular 

polygonal shapes, this transition has been demonstrated to occur for 𝑞 = 〈𝑞𝑗〉 = 3.81, with 〈… 〉 denoting an 

average over all cells in the tissue. Below this threshold, the tissue is in a solid jammed state and above in a 

fluid-like liquid state. This prediction of the model has been verified in various experimental systems [11], 

though it is thought that the actual value of q at the transition might be actually higher depending on cell 

shape anisotropy [12]. 

 

3. Second harmonic generation tissue images analysis 

Second Harmonic Generation (SHG) signals allow imaging of the collagen contained in the stromal 

compartment of the esophagus in a label-free fashion. We analysed the spatial organisation of this essential 

extracellular matrix component in single-plane images taken from z-stacks acquired immediately below the 

EE basement membrane. 

 To extract the local orientation of collagen fibres in these images, we followed an approach based on 

the image structure tensor [13]. This quantity is defined for all pixels in an image as: 

𝑱 = (
⟨𝜕𝑥 𝐼(𝑥, 𝑦),  𝜕𝑥 𝐼(𝑥, 𝑦)⟩𝑤 ⟨𝜕𝑥  𝐼(𝑥, 𝑦) , 𝜕𝑦 𝐼(𝑥, 𝑦)⟩

𝑤

⟨𝜕𝑥  𝐼(𝑥, 𝑦), 𝜕𝑦 𝐼(𝑥, 𝑦)⟩
𝑤

⟨𝜕𝑦 𝐼(𝑥, 𝑦), 𝜕𝑦 𝐼(𝑥, 𝑦)⟩
𝑤

) 

where 𝐼(𝑥, 𝑦) is the image intensity and ⟨𝑓, 𝑔⟩𝑤 = ∬ 𝑤(𝑥, 𝑦)𝑓(𝑥, 𝑦)𝑔(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 is the convolution by a 2D 

Gaussian kernel  𝑤(𝑥, 𝑦) of width 𝜎. Using basic linear algebra, it is possible to determine the eigenvalues 

and eigenvectors of this tensor, and to define the local dominant orientation θ as the direction of the largest 

eigenvector of 𝑱: 

θ =
1

2
tan−1 (2

⟨𝜕𝑥 𝐼(𝑥, 𝑦),  𝜕𝑦 𝐼(𝑥, 𝑦)⟩
𝑤

⟨𝜕𝑦 𝐼(𝑥, 𝑦),  𝜕𝑦 𝐼(𝑥, 𝑦)⟩
𝑤

− ⟨𝜕𝑥 𝐼(𝑥, 𝑦),  𝜕𝑥 𝐼(𝑥, 𝑦)⟩𝑤

) 

In practice, we used a 2D Gaussian kernel of 𝜎 = 6 pixels width, and the values obtained for θ were locally 

averaged on a grid with a mesh size of 20 pixels in order to cancel out local variability due to intensity 

variation and edge effects.  
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The collagen fibre orientation distributions obtained this way were averaged over at least 3 technical 

replicates per biological replicate, and data from at least 3 biological replicates per time point were used to 

plot angular distribution histograms shown in Extended Data Fig. 5d. We also characterised for each time 

point the dominant orientation, the standard deviation of the orientation, and the orientational order 

parameter of collagen fibre 𝑄. This quantity is defined, from the mathematical standpoint, in a similar fashion 

to the nematic order parameter i.e. as the dominant eigenvalue of the orientation tensor 𝑶: 

𝑄 =  √⟨cos θ 2⟩ + ⟨sin θ 2⟩. 

The physical interpretation of this quantity is also similar even if its biophysical origin or the space scales 

involved are completely different.  

 

References  

1. S. Berg et al. (2019). ilastik: interactive machine learning for (bio)image analysis. Nature Methods 16, 1226–

1232. 

2. T. Falk et al. (2019). U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods 

16, 67-70.  

3. D. Legland, et al. (2016). MorphoLibJ: integrated library and plugins for mathematical morphology with 

ImageJ. Bioinformatics 32(22), 3532-3534. 

4. J-P. Hansen and I.R. McDonald (2013). Theory of Simple Liquids (4th Edition), Oxford University Press, Oxford, 

UK. 

5. D. Chen, et al. (2016). Structural Characterization and Statistical-Mechanical Model of Epidermal Patterns. 

Biophysical Journal 111(11), 2534-2545. 

6. M. Durande, et al. (2019). Fast determination of coarse-grained cell anisotropy and size in epithelial tissue 

images using Fourier transform. Physical Review E 99, 062401. 

7. S. Kaliman, et al. (2016). Limits of Applicability of the Voronoi Tessellation Determined by Centers of Cell 

Nuclei to Epithelium Morphology. Frontiers in Physiology 7, 551.  

8. P-G. de Gennes and J. Prost (2003). The physics of liquid crystals (2nd Edition), Oxford University Press, 

Oxford, UK. 

9. G. Duclos, et al. (2014). Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 

10(14), 2346–2353. 

10.  D. Bi, et al. (2015). A density-independent rigidity transition in biological tissues. Nature Physics 11, 1074-

1079. 

11. J.-A Park, et al. (2015). Unjamming and cell shape in the asthmatic airway epithelium. Nature Materials 14, 

1040-104. 

12.  X. Wang, et al. (2019). Anisotropy links cell shapes to a solid-to-fluid transition during convergent 

extension. bioRxiv 781492, doi: https://doi.org/10.1101/781492. 

13. R. Rezakhaniha, et al. (2012). Experimental Investigation of Collagen Waviness and Orientation in the 

Arterial Adventitia. Biomechanics and Modeling in Mechanobiology 11, 461-473. 

https://doi.org/10.1101/781492

