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Abstract. Single-cell RNA sequencing is used to capture cell-specific gene expression, thus al-6

lowing reconstruction of gene regulatory networks. The existing algorithms struggle to deal with7

dropouts and cellular heterogeneity, and commonly require pseudotime-ordered cells. Here, we8

describe DeepDRIM a supervised deep neural network that represents gene pair joint expression9

as images and considers the neighborhood context to eliminate the transitive interactions. Deep-10

DRIM yields significantly better performance than the other nine algorithms used on the eight cell11

lines tested, and can be used to successfully discriminate key functional modules between patients12

with mild and severe symptoms of coronavirus disease 2019 (COVID-19).13
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Background16

Reconstruction of gene regulatory networks (GRNs) is critical to understand the mechanisms17

of synergic gene effects and context-specific transcriptional dynamics. High-throughput technolo-18

gies such as chromatin immunoprecipitation (ChIP)-chip and ChIP-seq can directly capture the19

transcription factor (TF) binding sites of targeted genes; however, these techniques are costly and20

TF-specific, and are therefore unsuitable for use on a whole-genome scale [45]. As a consequen-21

tial observation, the fact that the co-expression of TFs and their target genes has been adopted22

to reconstruct GRNs [22, 17, 32, 26] as a means of reverse engineering. In the last two decades,23

microarrays and bulk RNA sequencing (RNA-seq) have been the two mainstream technologies used24

to capture gene expression profiles from diverse tissues. Both techniques have been widely applied25

to identify differentially expressed genes and reconstruct GRNs [43, 25]. However, microarrays and26

RNA-seq inappropriately assume that gene expression is homogeneous among cells and ignore cellu-27

lar heterogeneity. Indeed, tissue consists of a diverse range of cell types with distinct GRNs [20] and28

biological functions [7]. Several studies have sought to reconstruct GRNs using bulk gene expression29

data [24, 53], but the cell-type-specific GRNs remain largely unexplored. Single-cell RNA sequenc-30

ing (scRNA-seq) offers an opportunity to capture cell-specific gene expression, which in turn could31

provide deeper insights into the cellular heterogeneity and cell-type-specific gene activities[51].32
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Most of the available algorithms for GRN reconstruction are designed for bulk gene expression,33

and function by resolving two computational challenges. In this context, unique difficulties arise if34

scRNA-seq data are adopted instead. First, putative TF-gene interactions are derived by examining35

their co-expression. Bulk gene expression data are commonly normalized to a standard Gaussian36

distribution, such that the TF-gene correlation can be quantified by methods such as mutual infor-37

mation (MI) [37], Pearson correlation coefficient (PCC) [48, 40]. The scRNA-seq gene expression38

data are zero-inflated due to the imbalanced transcript sampling. Although it is possible to impute39

zero entries before calculating the TF-gene co-expression, this may introduce unpredictable noise40

and bias [4], given that most of the imputation algorithms make use of gene-gene co-expression.41

Second, the TF-gene pairs with strong co-expression due to transitive interactions (e.g., those42

bridged by one or more intermediate genes) should be eliminated (Additional file 1: Figure S1).43

Several strategies have been designed to remove these transitive interactions by conditioning on44

the other confounding genes; examples include the Gaussian graphical model [3], conditional MI45

[62], context-based normalization and edge removal [17], and tree-based ensemble methods [26].46

Unfortunately, these algorithms were originally developed to analyze bulk gene expression data,47

and are unsuitable for modeling scRNA-seq data [10]. Many algorithms have recently been pro-48

posed to cater for the unique characteristics of scRNA-seq for GRN reconstruction. SCODE [38]49

infers cell-specific pseudo-time and reconstructs the GRN by solving ordinary differential equations.50

PIDC [9] adopts partial information decomposition to break down the TF-gene correlation into re-51

dundant, synergistic, and unique effects. SINCERITIES [44] utilizes regularized linear regression52

to infer GRNs from time-stamped scRNA-seq data by referring to temporal changes in the gene53

expression distributions. GENIE3 [26] is a tree-based ensemble method that was initially developed54

for bulk gene expression data. Aibar et al. later applied GENIE3 to reconstruct the global GRN55

for scRNA-seq and developed AUCell to score the active gene signatures for each cell [1]. Although56

these dedicated strategies have been designed to deal with the inherent issues in scRNA-seq data,57

none of them yield acceptable results benchmarked by cell-type-specific ChIP-seq data, and some58

are even close to random guessing [46].59

CNNC [60] is a supervised deep neural network that represents the joint expression of a gene60

pair as an image and uses convolutional neural networks (CNNs) to predict gene-gene co-expression61

from scRNA-seq data. CNNC is robust to dropouts and can infer the interaction causalities using62

the information from cell-type-specific ChIP-seq data. We generated synthetic GRNs and their cor-63

responding gene expression data (Methods and Fig.1) to examine whether CNNC could effectively64

distinguish direct and transitive interactions. We noted that a substantial number of the false pos-65

itives obtained with CNNC were centered in the gene pairs with strong Pearson correlations (Fig.166

A).67

Yet considering the image of the target TF-gene pair (primary image) as the only input for the68

prediction is insufficient (Fig.1 A). Inspired by an approach named context likelihood of relatedness69

(CLR) [17] which have been used to remove the transitive interactions by normalizing the MI of the70

target TF-gene pairs to z-scores with their corresponding neighborhood, one can in fact consider71

both the target TF-gene pair (primary image) and the images from the gene pairs that share one72

gene with the target pair (neighbor images) as the input to the model (Fig.1 and 2).73

Here we propose DeepDRIM (deep learning-based direct regulatory interaction model), a su-74

pervised deep neural network that can reconstruct highly accurate cell-type-specific GRNs from75

scRNA-seq data by considering both primary and neighbor images. The rationale and workflow76

of DeepDRIM are shown in Fig.2. DeepDRIM first transforms the primary and neighbor images77

(Fig.2 A and B) into low-dimensional embeddings using multiple convolutional layers, where their78
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embeddings are then concatenated as the input to a multiple-layer perceptron to calculate the reg-79

ulatory confidence scores (Fig.2 C). We compared the effectiveness of DeepDRIM with PCC, MI,80

GENIE3, and CNNC for the analysis of eight real scRNA-seq datasets. Our results demonstrated81

that DeepDRIM yielded the best performance with respect to both the area under the receiver op-82

erating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC), and83

significantly outperformed CNNC (Fig.3 A-D). We also compared DeepDRIM with six effective algo-84

rithms that were recently highlighted for reconstructing GRN on scRNA-seq data [46]. The results85

demonstrated that DeepDRIM substantially outperformed these algorithms on the five scRNA-seq86

datasets with the pseudotime-ordered cells (Fig.3 E-F). Further simulation demonstrated that the87

performance of DeepDRIM could be improved by involving more neighbor images, and was robust88

to the dropout rate, the cell number, and the size of the training set (Fig.4 A-D).89

We applied DeepDRIM to the scRNA-seq data collected from the bronchoalveolar lavage fluid of90

patients with mild and severe symptoms of coronavirus disease 2019 (COVID-19) [34] to discover91

the changes in B cell-specific GRNs. As a result, we observed that a large number of differentially92

expressed TFs (DETFs) were “activated” in patients with severe disease (Fig.5 A and B). Further-93

more, in patients with severe COVID-19 symptoms, the functions of the target genes were enriched94

in apoptosis, response to decreased oxygen levels, and microtubules (Fig.5 C, Fig.6 A and B), all of95

which have been previously shown to be associated with COVID-19 [8, 57] and virus infection [18].96

Results97

Effectiveness of neighbor images in removing transitive interactions.98

We generated simulated data and attempted to train CNNC using the two types of input, one with99

only the primary images and the other with the augmented images (combined primary and neighbor100

images, Methods). We observed that the overall proportion of false positives and those due to101

transitive interactions were remarkably decreased by 40.4% and 55.4%, when considering the neigh-102

bor images in the model (Fig.1 B). The rationale behind this observation can be regarded as taking103

a “normalization” on the primary image over their neighborhood to alleviate the overestimation104

of the strength of interaction. In addition, Fig.1 C and D clearly illustrate that the consideration105

of neighbor images will not undermine the power in predicting the direct interactions (e.g., gene106

1 ⇒ gene 2 in Fig.1 C, and gene 1 ⇒ gene 3 in Fig.1 D). In Fig.1 E, gene 2 connects to gene 3107

via the indirect edges gene 2 ⇒ gene 4 ⇒ gene 3. Furthermore, we noticed that the correlations108

of both {gene 2, gene 4} (|PCC| = 0.81) and {gene 4, gene 3} (|PCC| = 0.83) were stronger than109

the target {gene 2, gene 3} (|PCC| = 0.67), which provided explicit evidence that {gene 2, gene110

3} should be marked as a false positive. By considering neighbor images, the model reduce the111

predicted confidence score of {gene 2, gene 3} from 0.672 to 0.001, with a similar situation observed112

in Fig.1 F. These findings consolidate the importance of considering the local neighborhood in GRN113

construction to eliminate false positives due to transitive interactions.114

115

Overview of DeepDRIM.116

DeepDRIM is proposed to reconstruct cell-type-specific GRNs from scRNA-seq data with high pre-117

cision and a low false positive rate. Fig.2 illustrates how DeepDRIM can be used to predict the118

interaction between gene a and gene b. First, DeepDRIM converts the joint gene expression of119

gene a and gene b into a two-dimensional histogram with 32 by 32 bins (primary image, Fig.2 A),120

where the intensity of each bin refers to the number of cells falling within it. Second, DeepDRIM121

constructs 2n+ 2 neighbor images, where the 2n images that refer to the n genes have top positive122

covariance with gene a (a, i) or gene b (b, j) and the 2 images represent the self-images (a, a) and123
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(b, b). These neighbor images are given to the model to capture the neighborhood context of the124

primary image (Fig.2 B), which provides the key information required to distinguish the direct and125

transitive interactions. We organize the neighbor images as a tensor rather than an augmented126

image to achieve better performance on real data (Additional file 1: Figure S2). Third, two CNNs127

are used to process the primary image (Network A) and the neighbor image tensor (32 by 32 by128

2n+2) (Network B), respectively (Fig.2 C, Methods and Additional file 1: Figure S3). The neural129

networks are trained by known TF-gene interactions taken from publicly available cell-type-specific130

ChIP-seq data. Finally, the unknown interactions are predicted by the directed edges with confi-131

dence scores (between 0 and 1, Fig.2 D).132

133

DeepDRIM outperforms the existing algorithms for reconstructing cell-type-specific134

GRNs.135

We collected the scRNA-seq datasets from eight cell lines (see Methods for the definitions of their136

abbreviations) and their corresponding ChIP-seq data from two sources [46, 60] to compare Deep-137

DRIM with the existing methods (Table 1) using TF-aware three-fold cross-validation (Methods).138

We first assessed DeepDRIM with PCC, MI, CNNC, and GENIE3; GENIE3 is one of the best139

algorithms for reconstructing GRNs on scRNA-seq [46] and bulk gene expression data [19, 36].140

Our results demonstrate that DeepDRIM outperformed all four methods in the eight cell types,141

and was significantly better than the second best CNNC (Fig.3 A-D, Additional file 1: Table S1142

and S2) with respect to both AUROC (p-values ∈ [1.46E − 3, 7.63E − 6]) and AUPRC (p-values143

∈ [3.42E − 3, 7.63E − 6]). We also showed that DeepDRIM efficiently eliminated false positives144

from CNNC in all the eight scRNA-seq datasets (Additional file 1: Figure S4).145

To further evaluate the effectiveness of DeepDRIM, we collected six algorithms that have been146

recently identified with the highest median AUPRC in synthetic networks and Boolean models from147

BEELINE [46]. Because some of these algorithms require pseudotime-ordered cells, we selected five148

eligible cell types (Table 1 and found the six algorithms perform differently for each of them (Ad-149

ditional file 1: Table S3 and S4). We compared the efficiency of DeepDRIM to these algorithms and150

found that DeepDRIM significantly outperformed all six tested algorithms (Fig.3 E-F). DeepDRIM151

achieved an average median AUROC of 0.789 and an AUPRC of 0.809 across the five cell types,152

while the second best methods only achieved an AUROC of 0.591 (Additional file 1: Table S3) and153

an AUPRC of 0.657 (Additional file 1: Table S4). The TF-specific AUROC and AUPRC are shown154

in Additional file 2-4.155

156

DeepDRIM is robust to the quality of scRNA-seq data and the size of the training157

set.158

The performance of DeepDRIM can be affected by the quality of scRNA-seq data (the dropout159

rate and cell number), the number of involved neighbor images, and the size of the training set. To160

evaluate the robustness of DeepDRIM toward these factors, we first selected the scRNA-seq data161

from bone marrow-derived macrophages [2] as a template and simulated a series of scRNA-seq data162

with a range of parameters (Methods). Seven scRNA-seq gene expression datasets were gener-163

ated by subsampling the involved cell numbers (from 20 to 4,000 cells), which in turn changed the164

resolution of both the primary and neighbor images. We found DeepDRIM to be robust to the165

low-resolution images when the number of cells was greater than 100 (Fig.4 A). Next, we imputed166

the dropouts in the template using MAGIC [55] and then randomly masked the entries as dropouts167

with a range of dropout rates (Methods). As shown in Fig.4 B, DeepDRIM demonstrates stable168

performance in diverse dropout configurations. Third, we compared the performance of DeepDRIM169
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by varying the number of neighbor images input into the model. As a result, we found that the170

more neighbor images that were involved, the better the performance of DeepDRIM (Fig.4 C). In171

practice, involving more images would be more computationally costly. In our study, we chose the172

top 10 genes with the strongest positive covariance with the target TF or gene; thus involving a173

total of 22 neighbor images (if not specified) to balance the two factors. In addition, to evaluate174

the effect of the size of the training set, we subsampled 20%, 40%, 60%, 80%, and 100% of the175

benchmarked TF-gene pairs for training. Our results revealed that the size of the training set did176

not significantly affect the performance of DeepDRIM (Fig.4 D), and almost reached a plateau177

when 40% of the training set (including 20,101 TF-gene pairs) was applied.178

179

Uncovering the variation of B cell-specific GRNs between the patients with mild and180

severe COVID-19.181

Patients diagnosed with COVID-19 can have mild or severe acute respiratory distress syndrome,182

although the underlying molecular mechanisms responsible for these differences remain unknown.183

We performed a case study to elucidate the differences in B cell-specific GRNs between the patients184

with mild and severe COVID-19, because the immune responses have been reported to be distinct185

between the two situations [6]. To this end, we downloaded scRNA-seq data from the bronchoalve-186

olar lavage fluid of six patients with severe symptoms, three patients with mild symptoms, and187

three healthy controls [34]. The cell type clusters were obtained by SC3[30] and the one belonged188

to B cells was recognized according to the marker genes provided by the original paper [34]. We189

extracted validated TF-gene pairs in B cells from the Gene Transcription Regulation Database [58]190

as the positive pairs, and combined them with the negative pairs from the same TFs and the gene191

expression from the healthy controls as the training set (Methods).192

We observed a clear difference in the GRNs between the two types of patients, and also found193

that the target genes of the DETFs were highly correlated with severe acute respiratory syndrome194

coronavirus 2 (SARS-CoV-2) infection. First, we observed that DETFs had significantly more195

targets (p-values = 8.50E− 4, Wilcoxon rank sum test) in the patients with severe symptoms, sug-196

gesting that these DETFs are more “active” in working with their target genes (Methods and Fig.5197

A-B). Indeed, the DETFs in the patients with severe symptoms had 1.9 times more targets with198

high confidence (confidence scores ∈ [0.967, 1]; the last bar in Fig.5 A) than the patients with mild199

symptoms. Next, we focused on the GRNs of DETFs that were unique to the patients with severe200

symptoms (Fig.5 C, Fig.6 A and B). The informative target genes were selected based on the follow-201

ing two criteria: 1. They should belong to the top 5,000 genes with the highest expression variance202

in B cells; and 2. they should be ranked in the top 0.1% of the confidence scores of the patients203

with severe symptoms. The eligible genes were annotated with PageRank scores [21] (Methods204

and Additional file 5) and gene ontology (GO) modules by gene set enrichment analysis (GSEA)205

[59](Methods and Additional file 6). We identified four GO modules that were associated with206

two common symptoms in patients with COVID-19, hypoxemia and lymphopenia (Fig.5 C, Fig.6207

A): 1. response to decreased oxygen levels (GO:0036293; PMAIP1, CASP3, PSMB3, CCNB1,208

p-values=4.80E − 3); 2. DNA damage response (GO:0030330; PMAIP1, CCNB1, RPS27L, p-209

values=1.51E−2); 3. negative regulation of the mitotic cell cycle (GO:0045930; PSMB3, CCNB1,210

RPS27L, p-values=1.22E − 2); and 4. the intrinsic apoptotic signaling pathway (GO:0097193;211

PMAIP1, CASP3, RPS27L, p-values=6.29E − 3). The patients were reported to have low oxy-212

gen levels or hypoxemia without dyspnea [54, 15], both of which were strongly correlated with213

the GO modules “response to decreased oxygen level” and associated with “the intrinsic apoptotic214
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signaling pathway” [50]. Cao et al. [8] reported that genes related to apoptosis could lead to lym-215

phopenia in patients with COVID-19. Xiong et al. [57] identified differentially expressed genes in216

peripheral blood mononuclear cells of patients with COVID-19 and healthy controls. These genes217

were enriched in apoptosis and p53 signaling pathways, both of which could lead to lymphopenia.218

Among the genes in these four GO modules, PMAIP1 [28, 47], CASP3 [16, 35], PSMB3 [56],219

and CCNB1 [57] have been reported to be associated with COVID-19 individually (Additional file220

1: Table S5).221

In addition to these main findings, we also noted that there were four genes with top PageRank222

scores in the patients with severe symptoms in which unique GRNs could be related to SARS-223

CoV-2 infection. Three of them (DYNLRB1, HNRNPU , and CCNB1) belong to GO:0005815224

(microtubule organizing center, p-values=5.33E− 3), which has been reported to be a major facili-225

tator of virus infection [18] due to its ability to provide invading pathogens with directed transport226

(Fig.6 B). The other gene DNMT1 is related to ACE2 [49], which is a known co-receptor for the227

SARS-CoV-2 [42].228

Discussion229

Understanding the GRNs is fundamental to the advancement of molecular biology research. Gene230

expression profiles from high-throughput sequencing enable computational algorithms to reconstruct231

GRNs by examining TF-gene co-expression. Bulk RNA-seq hides the gene activities at single-cell232

resolution and will be replaced by scRNA-seq in the near future. However, the gene expression233

distribution from scRNA-seq data is not consistent with the assumptions made by most of the234

existing methods, which leads to their poor performance in reconstructing GRNs on the scRNA-seq235

data [33]. In addition, the widely spread dropouts cause bias in calculating gene-gene co-expression,236

even after imputation [12].237

In this study, we propose DeepDRIM, a supervised deep neural network, to reconstruct GRNs238

on scRNA-seq data. Comprehensive evaluation of the performance of DeepDRIM on different239

cell types demonstrated that it outperformed the existing algorithms designed for either bulk or240

scRNA-seq gene expression data. It is inadvisable to calculate TF-gene interactions on scRNA-241

seq data using classical correlation-based methods due to the ubiquitous cellular heterogeneity and242

dropouts (Fig.3 A-D). To avoid these limitations, DeepDRIM converts the numerical representation243

of TF-gene expression to an image and applies a CNN to embed it into a lower dimension. This244

strategy also avoids data normalization and does not presume any distribution. DeepDRIM requires245

validated TF-gene pairs for use as a training set to highlight the key areas in the embedding space246

that can distinguish the direct interactions and false positives.247

We trained and tested DeepDRIM using data from the same cell type. As there is sometimes248

an insufficient number of cells or validated TF-gene pairs in the training set, we were interested in249

training the model using one cell type and then applying it to another. We trained DeepDRIM using250

bone marrow-derived macrophages and then applied it to mESC(1) and vice versa (Additional file251

1: Figure S5). The results suggest that it is necessary to apply DeepDRIM to matched cell types252

in training and test sets; thus, ideas such as transfer learning between cell types are not applicable253

to this supervised model.254

The neighborhood context of the target TF-gene pairs has been widely applied to remove false255

positives in GRN reconstruction from bulk gene expression data via z-score normalization [17],256

conditional MI [61, 62], and graphical lasso [13]. However, these methods commonly assume that257

the gene expression profiles follow a Gaussian distribution, which violates our observation in scRNA-258

seq data. Most of the existing algorithms designed for scRNA-seq are unsupervised and require259
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pseudotime-ordered cells, making them inapplicable to bone marrow-derived macrophages, dendritic260

cells, and mESC(1), as illustrated in Table 1. DeepDRIM uses the neighborhood context with261

respect to neighbor images, and consists of two parts: 1) images from the genes that positively262

correlate with the TF or gene from the target pair, and 2) two self-images. In the current model,263

we adopted covariance to select the top correlated genes. Although such linear correlation is not264

resistant to outliers and dropouts, similar method has shown its effectiveness in discovering gene-265

gene co-expression from scRNA-seq data [5]. The two self-images can highlight the variance of266

single gene expression.267

DeepDRIM can not only predict the existence of TF-gene interactions, but also determine their268

causalities. This task is not given much attention by the unsupervised algorithms, despite it being269

an important consideration if regulatory interactions exist between two TFs. For this particular270

task, DeepDRIM does not surpass CNNC, because CNNC only focuses on the primary image271

and it is easier to capture the causalities by learning the regulatory directions from the validated272

TF-gene pairs. We generated a combined model from DeepDRIM and CNNC (Additional file 1:273

Supplementary Notes) and found that it can effectively reduce the false positives without losing274

any accuracy in the prediction of causality (Additional file 1: Figure S6).275

Many studies have been proposed with the aim to identify all of the cell types in the human276

tissues, with the ultimate goal of creating a human cell atlas to facilitate interpretation of the277

gene activities in individual cell types. DeepDRIM bridges the gap between cell types and gene278

functions, and will serve to increase our understanding of the activities of key TFs. We believe that279

as the cell-type-specific ChIP-seq data accumulate, DeepDRIM will attract increased attention in280

the scRNA-seq research community, and will shed light on drug target discovery and precision281

medicine in the future.282

Conclusion283

We propose DeepDRIM, a supervised deep neural network model, to predict GRNs from scRNA-284

seq data. DeepDRIM converts the joint expression of a TF–gene pair into a primary image and285

considers the neighbor images as the neighborhood context of the primary image to remove false286

positives due to transitive interactions. DeepDRIM also utilizes the training set to capture the key287

areas in the CNN embeddings that can recognize the TF-gene interactions and causalities. Our288

findings demonstrate that DeepDRIM outperforms nine existing algorithms on the eight cell types289

tested and is robust to the quality of scRNA-seq data. DeepDRIM can also identify the GRNs of290

B cells that are different between patients with mild and severe COVID-19 symptoms. We believe291

that DeepDRIM can fill the gaps in reconstructing cell-type-specific GRNs on scRNA-seq data and292

contributes to the rapidly growing single-cell research community.293

Methods294

Representation of gene pair joint expression.295

The scRNA-seq gene expression profiles are represented as a two-dimensional matrix M , where296

Mg,c represents the expression of gene g in cell c. We added a small pseudo-count to Mg,c to avoid297

empty entries before applying log-normalization:298

(1) logMg,c = log10(Mg,c + 10−2).

The joint histogram of genes i and j (Hi,j) is generated by splitting logMi,− and logMj,− (“-”:299

across all of the cells) into 32 bins, respectively. The value of each bin is derived from the number300
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of cells that falls in the corresponding slot; this value is further log-normalized to avoid extreme301

values:302

(2) logHi,j = log10(Hi,j/Σ(Hi,j) + 10−4)/4 + 1

We generated an image (Ii,j) for genes i and j of 32 by 32 pixels, where the intensity of each pixel303

is the corresponding value in logHi,j . DeepDRIM requires two image sets to predict the direct in-304

teraction between genes i and j, namely 1. the primary image Ii,j and 2. the neighbor images. The305

neighbor images consist of 1. {Ii,p1
, ..., Ii,pn

, Ij,q1 , ..., Ij,qn}, where (p1, p2, ....pn) and (q1, q2, ...qn)306

are the top n genes that have strong positive covariance with gene i and gene j, respectively; and307

2. two self-images Ii,i and Ij,j . The default value of n was 10 in the experiments.308

309

Network structure of DeepDRIM.310

The network structure of DeepDRIM consists of two components, Network A and Network B, which311

process the primary and neighbor images, respectively (Fig.2 C and Additional file 1: Figure S3).312

Network A is inspired by VGGnet [52], which contains the stacked convolutional and maxpooling313

layers, and uses the rectified linear activation function (ReLu) as the activation function. The314

structure of Network B is similar to that of Network A, and is a siamese-like neural network, where315

the weights are shared among all of the subnetworks. Each image is embedded into a vector of size316

512, and a total of 2n + 3 images (1 primary image and 2n + 2 neighbor images) are converted317

into a vector of size 512× (2n + 3). This vector is then condensed by two stacked fully connected318

layers, and is processed for binary classification using the sigmoid function. Moreover, DeepDRIM319

is trained by mini-batched stochastic gradient descent.320

321

Simulation of scRNA-seq data to examine the effect of neighbor images.322

We simulated 2,500 small datasets, each with 4 genes and 1,000 cells. The ground truth network for323

each dataset was represented by a sparse precision matrix Θ, where each entry had a 50% chance324

of being non-zero and drawn from [−1,−0.25] ∪ [0.25, 1], or otherwise was assigned zero. We sim-325

ulated the gene expression profiles from a multivariate normal distribution N(0,Θ−1) [14]. Next,326

we randomly chose two gene pairs from each dataset, one involving a direct interaction (Θi,j 6= 0)327

as a positive case, and the other involving an independent pair (Θi,j = 0) as a negative case. For328

each case, we prepared two types of images, a primary image of 32 by 32 pixels, and an augmented329

image by concatenating the primary and six neighbor images (Fig.1 C–F) of 96 by 96 pixels. We330

generated two training sets with 5,000 primary and 5,000 augmented images, respectively. These331

images were used to train CNNC and the performance was evaluated using the AUROC from the332

five-fold cross-validation.333

334

scRNA-seq data from eight cell lines.335

We prepared the real scRNA-seq data from eight cell lines and the corresponding cell-type-specific336

ChIP-seq data as the benchmarks (Table 1) to compare DeepDRIM with the existing algorithms for337

GRN reconstruction. The eight cell lines comprised bone marrow-derived macrophages [2], dendritic338

cells [2], IB10 mouse embryonic stem cells (mESC(1)) [31], human embryonic stem cells (hESC) [11],339

and 5G6GR mouse embryonic stem cells (mESC(2)) [23], as well as three mouse hematopoietic stem340

cell lines [41] of erythroid lineage (mHSC(E)), granulocyte-macrophage lineage (mHSC(GM)), and341

lymphoid lineage (mHSC(L)). All scRNA-seq data were pre-processed and normalized according to342

the descriptions in [46, 60]. In practice, GENIE3 is slow if too many genes or cells are involved;343

thus, we removed the less informative cells and genes using the strategies described in [1].344
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We extracted the validated TF targets from the ChIP-seq data as positive cases, and the same345

number of non-validated targets as negative cases. As training sets that are too large and are346

computationally insolvable in terms of generating images, we randomly selected 18 TFs and their347

validated targets as positive cases in the training data for hESC, mESC(2), mHSC(E), mHSC(GM),348

and mHSC(L) to alleviate the computational burden (Table 1).349

To improve the performance of the unsupervised methods in Fig.3 E-F, only the overlap between350

top-varying 500 genes and the TFs/genes in the training set were selected from the scRNA-seq data351

of hESC, mESC(2), mHSC(E), mHSC(GM) and mHSC(L). In cross-validation, We trained CNNC352

and DeepDRIM using 2/3 TF-gene pairs in the training set and evaluated their performance on353

the overlap between the TFs/genes in the remaining 1/3 test set and top-varying 500 genes. This354

could guarantee all the supervised and unsupervised were evaluated on the same TF-gene pairs.355

356

357

Comparison of DeepDRIM to existing algorithms for GRN reconstruction.358

We compared DeepDRIM with the nine existing algorithms using their default parameters. The359

nine algorithms were PCC, MI, CNNC [60], PIDC [9], GENIE3[26], GRNBOOST2 [39], SCODE360

[38], PPCOR [29], and SINCERITIES [44]. With the exception of PCC, MI, and CNNC, the other361

six methods were performed using the interfaces provided by BEELINE [46]. The AUROC and362

AUPRC for each TF were collected to calculate the p-values between two algorithms using the363

Wilcoxon signed rank test. Given that CNNC and DeepDRIM are supervised models, the TFs364

from the ChIP-seq data were divided into three independent parts for cross-validation (Additional365

file 1: Supplementary Note).366

367

Simulation of scRNA-seq data to evaluate robustness.368

The simulated datasets were transferred from the scRNA-seq of bone marrow-derived macrophages369

[2] to preserve the characteristics of scRNA-seq data. We simulated gene expression profiles with370

various cell numbers and sizes of training sets via sub-sampling from the total 6,283 cells and 50,254371

validated TF-gene pairs from the ChIP-seq data. We applied MAGIC [55] to impute the missing372

values in the raw gene expression matrix, and subsequently masked the corresponding entries ac-373

cording to the “dropout step” in BoolODE [46]. BoolODE has two parameters, drop− probability374

and drop− cutoff , which are used to control the number of entries to be masked. The entries have375

a probability of drop − probability to be masked if their gene expression values are at the bottom376

drop− cutoff . We set the drop− probability = 0.3, 0.5 and the drop− cutoff = 0 to 0.9.377

378

Generation of validated TF-gene pairs for B cells in patients with COVID-19.379

We extracted the ChIP-seq data with the keyword “human B cell” in the Gene Transcription Reg-380

ulation Database [58] and determined the TF target genes as those with high confidence peaks381

(p-value < 1E − 8) in the promoter regions of these genes. The promoter regions were defined382

as the 10 kb upstream and 1 kb downstream regions of the transcript start sites. To generate a383

balanced training set, we extracted an equal number of negative pairs by randomly selecting the384

non-target genes of the selected TFs.385

386

Identification of differentially expressed TFs.387

We applied SCDE [27] to determine the differentially expressed TFs if the expression fold changes388

> 2 or < 0.5, and the p-values to be < 1E − 11 after multiple testing correction.389

390
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Gene PageRank score and functional annotation.391

We calculated gene PageRank scores using “networkx” [21] (Additional file 5) and applied GSEA392

to annotate the enriched GO modules with p-value< 0.05[59]. The genes were ordered by their393

PageRank scores in GSEA analysis.394
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Figures584

Fig. 1. The effectiveness of neighbor images in reconstructing GRN on the sim-
ulated data. A. The distribution of false positives from CNNC. B. The false
positives of the two models with primary (Prim) and augmented (Aug) images as
inputs due to randomness and transitive interactions. C and D. Two examples
that demonstrate both of the models can correctly identify the direct interactions
(C: g1 ⇒ g2, D: g1 ⇒ g3). E and F. Two examples that demonstrate the model
trained by augmented images can recognize and eliminate the false positives caused
by the transitive edges (E: g2 ⇒ g3, F: g3 ⇒ g4). The primary images are high-
lighted in the red squares, and S(·) denotes the confidence scores from the models
with primary (S(Prim)) or augmented images (S(Aug)) as input. The correlation
matrices and absolute correlation are calculated by Pearson correlation coefficient.
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Fig. 2. Overview of DeepDRIM. A. Representation of the joint gene expression
of gene a and gene b as a primary image. B. The 2n + 2 neighbor images are
generated from the genes with strong positive covariance with gene a or gene b.
C. The network architecture of DeepDRIM, including Network A and Network
B, which are two stacked convolutional embedding structures designed to process
the primary and neighbor images, respectively. Detailed network structures are
shown in Additional file 1: Figure S3. D. An example for the prediction of a
cell-type-specific GRN using DeepDRIM.
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Fig. 3. Comparison of DeepDRIM with the existing algorithms for GRN recon-
struction on the scRNA-seq data from eight cell lines. A, B, C and D: p-values
were calculated between CNNC and DeepDRIM. E and F: The p-values were cal-
culated between DeepDRIM (the best performer) and the second best algorithms
(Additional file 1: Table S3 and S4).
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Fig. 4. Performance of DeepDRIM with a wide range of the qualities of scRNA-seq
data (cell numbers and dropout rates), the number of involved neighbor images,
and the size of training set.
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Fig. 5. Comparison of B cell-specific gene regulatory networks (GRNs) for patients
with mild and severe COVID-19. A. The distribution of the confidence scores of the
differentially expressed transcription factors and their target genes. B. The average
target numbers of DETFs given different confidence score thresholds. C. The GO
modules and the involved key transcription factors/genes related to COVID-19
symptoms.
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Fig. 6. The unique GRNs of DETFs from the patients with severe COVID-19. A.
GRNs related to: response to a decreased oxygen level (GO:0036293); DNA damage
response (GO:0030330); negative regulation of the mitotic cell cycle (GO:0045930);
and the intrinsic apoptotic signaling pathway (GO:0097193). B. GRNs related to
the microtubule organizing center (GO:0005851). The edges are shown if their
absolute Pearson correlation coefficients larger than 0.4. DETFs: differentially
expressed transcription factors.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429484
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables585

Table 1. scRNA-seq datasets from the eight cell lines used in the experiments.

Cell lines Genes Cells Size of train-
ing set

Number of
TFs

Pseudo-
time

Bone marrow-derived macrophages [2] 20,463 6,283 50,254 13 N
Dendritic cells [2] 20,463 4,126 28,046 16 N
mESC(1) [31] 24,175 2,717 154,931 38 N
hESC [11] 17,735 758 100,720 18 Y
mESC(2) [23] 18,385 421 94,332 18 Y
mHSC(E) [41] 4,762 1,071 49,114 18 Y
mHSC(GM) [41] 4,762 889 43,712 18 Y
mHSC(L) [41] 4,762 847 48,884 18 Y

mESC(1): IB10 mouse embryonic stem cells, hESC: human embryonic stem cells, mESC(2): 5G6GR mouse

embryonic stem cells , mHSC(E), mHSC(GM) and mHSC(L): three mouse hematopoietic stem cell lines of
erythroid lineage, granulocyte-macrophage lineage, and lymphoid lineage.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429484
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additional Files586

Additional file 1 — Supplementary Note, Supplementary Figures and Supplementary Tables.587

Additional file 2 — AUROCs and AUPRCs of PCC, MI, GENIE3, CNNC, and DeepDRIM for each588

TF on bone marrow-derived macrophages, dendritic cells, and mESC(1).589

Additional file 3 — AUROCs and AUPRCs of PCC, MI, GENIE3, CNNC, and DeepDRIM for each590

TF on hESC, mESC(2), mHSC(E), mHSC(GM), and mHSC(L).591

Additional file 4 — AUROCs and AUPRCs of PIDC, GENIE3, GRNBOOST2, SCODE, PPCOR,592

SINCERITIES, and DeepDRIM for each TF on hESC, mESC(2), mHSC(E), mHSC(GM), and593

mHSC(L).594

Additional file 5 — PageRank scores, degree and betweenness of the genes in the GRNs from the595

patients with severe COVID-19.596

Additional file 6 — GO annotation for the genes in the GRNS from the patients with severe597

COVID-19.598
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