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Abstract

Genome-wide association studies rely on the statistical inference of untyped variants,

called imputation, to increase the coverage of genotyping arrays. However, the results

are often suboptimal in populations underrepresented in existing reference panels and

array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to cap-

ture population-specific haplotype structures, hence the full extent of common genetic

variation. Here, we propose to sequence the full genome of a small subset of an underrep-

resented study cohort to inform the selection of population-specific add-on SNPs, such

that the remaining array-genotyped cohort could be more accurately imputed. Using a

Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach

by showing improvements in imputation accuracy after the addition of our designed add-

on SNPs to the base H3Africa array.
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1. Introduction1

By mapping the associations between single-nucleotide polymorphisms (SNPs) and2

various phenotypes, genome-wide association studies (GWAS) have allowed us to gain3

unprecedented knowledge on the genetic basis of various human diseases and traits. An4

important prerequisite to conducting GWAS is the availability of a cost-effective yet5

accurate high-throughput genotyping method. Genotyping arrays have been used widely6

over the past 15 years, including in many studies facilitated by biobank resources such7

as the UK Biobank[1]. However, genotyping arrays rely on the imputation of a sparse8

set of tag SNPs (e.g. millions of SNPs) to achieve acceptable density genome-wide (e.g.9

tens of millions of SNPs). The quality of imputation is dependent on the suitability of10

the tag SNPs and the similarity of haplotype structure between the reference panel and11

the study population[2, 3, 4, 5].12

For study populations where a genetically similar reference panel or population-specific13

array content may not be available, whole-genome sequencing (WGS) offers an alternative14

to genotyping arrays. Previous studies have suggested that WGS may offer substantial15

gains in such a scenario, potentially pinpointing loci absent in GWAS conducted using16

genotyping arrays [6, 7]. However, due to the large sample sizes often required to gain17

sufficient statistical power in GWAS, the cost of WGS can still be prohibitive despite its18

recent decrease [8].19

An alternative to WGS is the development of population-specific reference panels and20

genotyping arrays. For example, African-specific reference panels and genotyping arrays21

have been developed in recent years in an attempt to rectify the underrepresentation of22

African populations in genetic studies[9, 10, 11]. Notably, the Human Heredity and Health23

in Africa (H3Africa) consortium has developed the H3Africa genotyping array, which24

contains approximately 2.2 million tags, to capture genetic variability observed in various25

African populations [12]. Furthermore, the African Genome Resource (AFGR) reference26

panel has been designed to capture the haplotype structure of various African populations27

to improve imputation accuracy. However, driven by the long evolutionary history and28
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lack of bottlenecks, the level of genetic diversity is much higher among African populations29

compared to non-African populations [13, 14]. Therefore, these resources have not yet30

been able to provide complete coverage of genetic variation across all African populations.31

For the remaining underrepresented populations, we propose the use of add-on SNPs as32

a cost-effective approach to improve genotype imputation.33

In this paper, we present an approach to select population-specific add-on SNPs that34

supplement commercially available genotyping arrays. For a GWAS cohort, we propose35

to perform WGS in a small subset (e.g. 10% of the entire cohort), in order to supplement36

existing reference panels but also to inform the selection of the add-on content, such that37

the rest of the array-genotyped cohort could be more accurately imputed. Specifically,38

the WGS data could reveal population-specific allele frequency differences (Figure 1A and39

Figure 1B) and haplotype structure differences (Figure 1C). Such information enables the40

selection of add-on tag SNPs designed for the study population, such that the imputation41

of target SNPs that are poorly tagged by existing tag SNPs could be improved.42

As a proof-of-concept example, we utilize 116 high coverage WGS samples from par-43

ticipants of the TB-DAR cohort (Tuberculosis patients recruited in a hospital in Dar es44

Salaam, Tanzania). Since the Tanzanian population is not incorporated in existing ref-45

erence panels and array designs, including the AFGR reference panel and the H3Africa46

genotyping array, this cohort provides an ideal basis to evaluate our approach. We first47

illustrate the necessity for add-on SNPs by calculating the genetic differentiation between48

our Tanzanian cohort and other African populations. We proceed to select add-on SNPs49

that target common variants that are poorly imputed under the base H3Africa array. We50

then confirm the validity of our approach by evaluating the improvement in imputation51

accuracy enabled by the addition of add-on SNPs. Finally, we present an alternative52

selection scheme for mitochondrial and Y chromosome variants to improve haplogroup53

calling.54
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2. Material and Methods55

2.1. Study description56

This study was conducted based on a cohort of adult pulmonary tuberculosis (TB)57

patients from Dar es Salaam, Tanzania (TB-DAR). Participants were recruited at the58

Temeke Regional Hospital in Dar es Salaam. 128 patients were randomly selected from the59

cohort for WGS, and 116 samples which passed sequencing quality control were retained.60

Ethnic information of patients are based on self-reported information.61

2.2. Whole genome sequencing and quality control62

WGS was performed at the Health2030 Genome Center in Geneva on the Illumina63

NovaSeq 6000 instrument (Illumina Inc, San Diego CA, USA), starting from 1 µg of whole64

blood genomic DNA and using Illumina TruSeq DNA PCR-Free reagents for library65

preparation and the 150nt paired-end sequencing configuration. Average coverage was66

above 30× for 75 samples, between 10× and 30× for 40 samples, and approximately 8×67

for a single sample.68

Sequencing reads were aligned to the GRCh38 (GCA 000001405.15) reference genome69

using bwa[15] (Version 0.7.17), and duplicates marked using Picard (Version 2.8.14, http:70

//broadinstitute.github.io/picard/). Following the GATK best practices (Germline71

short variant discovery)[16], Base Quality Score Re-calibration (BQSR) was applied using72

the GATK package[17] (Version 4.0.9.0). Variants were called individually per sample73

and then jointly. A Variant Quality Score Re-calibration (VQSR) based filter was then74

applied, with a truth sensitivity threshold of 99.7 and an excess heterozygosity threshold75

of 54.69. Samples with a high genotype missingness rate (> 0.5) were excluded.76

To ensure that coordinates of the TB-DAR WGS data matched the GRCh37 based77

AFGR reference panel, a liftover was applied using Picard LiftoverVcf with the UCSC78

chain file (hg38ToHg19). Only SNPs that were successfully lifted over to the same chromo-79

some were retained. Within the X and Y chromosomes, SNPs within the pseudoautosomal80

regions[18, 19] were excluded.81
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2.3. Fixation index and genetic principal components82

Relatedness between individuals within the TB-DAR WGS cohort and each African83

population of the 1000 Genomes project was calculated using KING[20]. Pairs up to first84

degree relatives were excluded.85

To conduct principal component analysis (PCA), only autosomal SNPs that were86

genotyped in both 1000 Genomes and TB-DAR WGS cohorts were included. SNPs within87

long-range LD regions[21] were excluded. Using PLINK (Version 1.9)[22], LD pruning [23]88

(plink --indep-pairwise 1000 50 0.05) was applied and principal components were89

derived based on the merged cohorts (TB-DAR and all 1000 Genomes super-populations90

or TB-DAR and all 1000 Genomes African populations). To measure differentiation91

between the TB-DAR WGS cohort and various 1000 Genomes African populations, the92

fixation index (FST ) for each SNP was calculated using vcftools (v0.1.13)[24] according to93

Weir and Cockerham’s formulation [25]. Only autosomal SNPs that were genotyped and94

common (MAF> 0.05) in the merged cohort (TB-DAR and all 1000 Genomes African95

populations) were included. The reported genome-wide FST measures were defined as96

the mean across the SNP-based FST for all considered SNPs.97

To estimate differentiation within a population, each population was divided into98

halves based on the median of the top genetic principal components. FST was calculated99

between the two halves. Since the top genetic principal component explains the most100

proportion of genetic variability, this approach is expected to yield the two equally sized101

sub-populations that are the most differentiated within a population.102

2.4. Selection of add-on SNPs103

Our approach to select add-on SNPs can be divided into three main steps. In step104

1, genotype imputation was performed. Poorly imputed SNPs were identified, and act105

as candidate target SNPs which our add-on tags would be designed to tag. In step 2,106

the optimal add-on tag SNPs were selected based on the population-specific LD structure107

and allele frequencies of the study cohort. In step 3, we evaluated the improvement in108
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imputation performance when the selected add-on SNPs were incorporated onto the base109

H3Africa array. A summary of the approach can be found in Figure 2.110

2.4.1. Step 1: Genotype imputation and identification of candidate target SNPs111

The TB-DAR WGS cohort was divided into a training set (3/4 of the data) and a112

testing set (1/4 of the data).113

To achieve optimal imputation accuracy, two reference panels were used to capture114

haplotype structures present in both the Tanzanian population and in other African115

populations. A custom Tanzanian reference panel based on the TB-DAR WGS train-116

ing set samples was constructed using Minimac3[26]. The African Genome Resources117

(AFGR) reference panel (Web Resources) hosted on the Sanger imputation service (Web118

Resources)[27] was also utilized, where EAGLE2[28] was used for phasing and the posi-119

tional Burrows-Wheeler transform (PBWT)[29] was used for imputation.120

To identify poorly imputed SNPs expected under the H3Africa array content (Version121

2, Web Resources), the TB-DAR WGS testing set was masked such that only SNPs122

present on the H3Africa array were retained. The masked data was imputed using both123

reference panels, and for each SNP the imputation was based on the reference panel124

that yielded a better imputation score. Candidate target SNPs were designated as SNPs125

that are poorly imputed (INFO < 0.8) but common in the TB-DAR WGS cohort (MAF126

> 0.05).127

2.4.2. Step 2: Add-on tag SNP selection128

For each region, the set of candidate target SNPs (S1) was defined as SNPs that are129

poorly imputed but common (See Section 2.4.1). The set of candidate add-on tag SNPs130

(S2) was defined as sequenced SNPs that are common (MAF > 0.05), part of the AFGR131

Reference Panel or the TB-DAR reference panel, and available as Illumina Infinium probes132

( probe-ability score > 0.3). The set of existing tags (S3) was initialized as SNPs that133

are part of the H3Africa array.134

LD information between SNPs were calculated based on TB-DAR WGS training set.135
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We utilized mutual information (MI) as a LD metric (See Supplemental Methods), con-136

sistent with the choice of a previous array design study for the Japanese population [30].137

To select the optimal set of add-on SNPs, we followed the framework of a forward-138

selection based algorithm [30]. In summary, the algorithm select tags that are in the139

strongest LD with the highest number of candidate target SNPs not captured by existing140

tags.141

For a single iteration of the add-on tag SNP selection algorithm:142

1. For a candidate target SNP (j), the existing tag SNP that is in strongest LD with

it was identified. The MI score of the target SNP (sj) was defined as:

sj = max
i∈S3

Iij

where Iij denotes the MI between SNP i and SNP j.143

2. For each pair of candidate add-on tag SNP (k) and candidate target SNP (j), the

add-on tag’s efficiency was defined as the expected change in MI (δjk) resulting

from the incorporation of the add-on tag:

δjk = Ijk − sj

3. The efficiency of a candidate add-on tag SNP (ek) against all candidate target SNPs

was defined based on the sum of the changes in MI:

ek =

∑
j∈S1

max(0, δjk)

Nk

where Nk denotes the number of probes required for the kth candidate add-on tag144

(2 for A/T or C/G SNPs, and 1 for all others).145

4. The optimal add-on tag SNP (k∗) was identified based on the overall rank of its
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efficiency and probe-ability scores:

k∗ = argmin
k∈S2

rek + rpk

where rek and rpk
denotes the ranking of the efficiency score and probe-ability score146

respectively for the candidate add-on tag k.147

5. k∗ was added to the set of existing tags (S3), and the above steps were repeated. The148

selection procedure was stopped when there are no candidate add-on tags remaining149

(S2 becomes empty), or when the stopping criteria were met.150

Figure S1 illustrates an example of a single iteration of the add-on tag SNP selection151

algorithm.152

2.4.3. Step 2: Region definitions and stopping criteria153

To ensure the efficiency of add-on tag SNP selection but simultaneously guarantee154

sufficient coverage in prioritized regions, a two-step procedure for tag SNP selection with155

unique region definitions and stopping criteria was established.156

Under Setting 1, regions spanning 5000 base pairs upstream and downstream of genes157

or SNPs associated with TB outcomes (reported by GWAS catalog [31], Open Targets[32],158

and other GWAS studies[33, 34, 35]) were considered. The killer cell immunoglobulin-like159

receptor (KIR) and human leukocyte antigen (HLA) gene regions were also considered.160

A region was subject to add-on tag SNP selection if it contained a substantial number161

of poorly imputed common SNPs, defined as more than 20% of SNPs with INFO < 0.8.162

Regions were also subjected to add-on tag SNP selection if it contained an uneven spatial163

distribution of well imputed common SNPs, defined as the spread of poorly imputed164

SNPs (INFO < 0.8) being more than 1.25 times the spread of well-imputed SNPs (INFO165

≥ 0.8). To guarantee sufficient coverage, iterations of the forward-selection algorithm166

was run for each region independently until less than 0.5% of candidate target SNPs167

within the region showed δk improvements. The process was then repeated for each of168

the prioritized regions.169
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Under Setting 2, the selection of add-on tag SNPs was expanded to any region across170

the genome that contained poorly imputed common SNPs. The regions were defined as171

either a haplotype block (plink --blocks)[36, 22] or a region spanning 5000 base pairs172

upstream and downstream a candidate target SNP, whichever larger. To maximize the173

selected add-on tag SNPs’ tagging efficiencies, a single iteration of the algorithm was run174

concurrently across all regions. The tag SNP that scored the best across all regions was175

incorporated. The process was then repeated until the total number of budgeted add-on176

probes (N=5000) has been exhausted.177

2.4.4. Step 3: Evaluation of imputation accuracy178

The TB-DAR WGS testing set was utilized to measure improvements in imputation179

performance enabled by the add-on tag SNPs. For all target SNPs tagged by at least one180

add-on SNP, imputation quality (INFO score) derived from the base H3Africa array was181

compared against imputation quality derived from the H3Africa array with the addition182

of add-on tags. In addition, to measure the accuracy of the imputed genotypes, squared183

Pearson correlation coefficients (r2) was calculated between the imputed genotype dosages184

(0,1 or 2) and the ground truth dosages based on the WGS data.185

2.5. Y Chromosome and Mitochondrial Haplogroups186

The haplogroups of TB-DAR participants were called using HaploGrep2[37] and yhaplo[38]187

for the mitochondria and the Y chromosome respectively. The Phylotree mitochondrial[39]188

and Y chromosome[40] phylogeny databases were used to identify marker SNPs. Marker189

SNPs for each main haplogroup that any TB-DAR participant was part of were included190

as add-on SNPs, if not already existing on the H3Africa array. In addition, we added191

maker SNPs 2 branch points below the main haplogroup that any TB-DAR participant192

was part of.193
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3. Results194

3.1. Differentiation between the Tanzanian population and other African populations195

Study participants of the TB-DAR WGS cohort originated from various ethnic groups196

within Tanzania (Table S1). A majority of participants belonged to the Bantu-speaking197

ethnic groups (N = 108, 93.1%), with a small minority that belonged to the Nilotic198

(N = 1, 0.8%) and Cushitic (N = 3, 2.6%) speaking ethnic groups. Self-reported ethnic199

information was not available for four participants.200

To quantify the population differentiation between the TB-DAR WGS cohort and the201

1000 Genomes African populations, for each pair of populations we calculated the genome-202

wide fixation index (FST ). Figure 3A illustrate the pairwise FST measures between the203

TB-DAR WGS cohort and 1000 Genomes African population, along with their respective204

sampling locations. In general, genetic differentiation was greater between populations205

that are further away geographically. For example, TB-DAR displayed the least differen-206

tiation with the Bantu-speaking Luhya population (LWK) in neighbouring Kenya, but the207

most differentiation with West African populations such as the Gambian in the Western208

Division of Gambia (GWD) and the Mende in Sierra Leone (MSL). A similar pattern was209

observed among 1000 Genomes African populations (Figure 3B), where population pairs210

in the same geographic region (e.g., YRI and ESN) were among the least differentiated211

population pairs. In addition, the genetic principal components (PCs) shown in Figure212

S2 also illustrate a similar pattern, where distances in PC space approximately scaled213

with geographic distances between the sampling locations of populations.214

To further evaluate the significance of differentiation between populations, we com-215

pared the inter-population FST against the within-population FST . The within-population216

FST was calculated between two halves of each population that are expected to be the217

most differentiated, defined based on the median of the top genetic principal component.218

The diagonal of Figure 3B represent within-population FST measures. For every popu-219

lation, the within-population FST was lower than the inter-population FST against the220

population which it is the least differentiated from. For example, the within-population221
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FST of the TB-DAR WGS cohort (0.001) is lower than the inter-population FST against222

the LWK population (0.003).223

These results quantify the genetic diversity of populations within Africa, and illustrate224

the differentiation between the TB-DAR cohort and African populations of the 1000225

Genomes project. Thus, the need to supplement external reference panels with Tanzanian226

specific haplotypes and to design population-specific add-ons for the TB-DAR cohort is227

warranted.228

3.2. Selection of add-on SNPs and improvements in imputation accuracy229

The selection of add-on SNPs was conducted under two different settings (Section230

2.4.3). Under a coverage-guaranteeing setting (Setting 1), we selected 1669 add-on SNPs231

within 337 prioritized TB-associated regions. In addition, under an efficiency-driven232

setting (Setting 2), we selected 2734 further add-on SNPs across the rest of the genome.233

Figure S3 shows the distribution of all selected SNPs across chromosomes.234

To confirm the validity of our approach, we used the TB-DAR WGS testing set to235

compare the imputation accuracy based on the base H3Africa array against the improved236

H3Africa array with our add-on content. Figure 4A shows the mean imputation quality237

of target SNPs that our add-on SNPs were designed to tag across different minor allele238

frequency (MAF) percentile bins. Under both settings, we observed strong overall im-239

provement across MAF bins in imputation accuracy with the incorporation of add-on240

tag SNPs, reflected by the increase in mean INFO score and r2 (correlation with WGS241

ground truth). While the magnitude of increase in mean imputation accuracy was similar242

for both settings, in general, target SNPs in prioritized regions were better imputed. This243

was as intended since, under Setting 1, even relatively well-imputed SNPs within each244

region would be tagged by add-on SNPs in order to guarantee coverage.245

An example region where our approach functioned as expected is shown in Figure246

4B. Our designed add-on SNPs lead to improved imputation of target SNPs, reflected by247

increases in both INFO score and r2. Noticeably, add-on SNPs were mainly located in248

proximity to the previously poorly imputed target SNPs (left side of the region). This249

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429542
http://creativecommons.org/licenses/by-nc-nd/4.0/


indicates, as designed, that only add-on SNPs that are in relatively strong LD with target250

SNPs were selected, as LD generally scales inversely with distance.251

To quantify the efficiency of the selected add-on SNPs, Table 1 shows the number252

of targeted SNPs with INFO score improvements. Under an INFO score threshold of253

0.8 (commonly used in GWAS), our 4403 add-on SNPs would allow the incorporation254

of an additional 10,349 and 38,336 target SNPs in GWAS, in TB associated regions255

(Setting 1) and all other regions (Setting 2) respectively. This translates to the addition256

of approximately 6 and 14 target SNPs per add-on SNP, under Setting 1 and Setting257

2 respectively. As expected, the number of successfully tagged target SNPs per add-on258

SNP is lower under Setting 1. This is because to guarantee coverage, relatively short259

haplotypes are tagged, resulting in the reduced efficiency of each add-on tag SNP.260

3.3. Mitochondria and Y chromosome haplogroups261

Since mitochondrial and Y chromosome haplogroups provide an efficient manner to262

track human evolutionary history, we targeted haplogroup markers to improve the accu-263

racy of haplogroup calling. The distribution of mitochondrial and Y chromosome hap-264

logroups within the TB-DAR WGS cohort are shown in Figure S4A and Figure S4B265

respectively. With regards to the mitochondrial DNA, most individuals belonged to the266

L haplogroup. This was consistent with findings based on the 1000 Genomes project[41],267

where the L haplogroups were found to be the dominant haplogroups in African pop-268

ulations. For the Y chromosome, a majority of male individuals belonged to the E269

haplogroups, with a small minority belonging to the B, R, and others. This was also270

consistent with the 1000 Genomes project[42], where the E haplogroups were found to be271

dominant in African populations. Also in the Luhya population in neighbouring Kenya a272

small minority belonged to the B haplogroup[42].273

To ensure that our add-on content includes haplogroup markers that complement the274

existing content on the H3Africa array, we selected 103 and 31 haplogroup marker SNPs as275

add-ons for the mitochondria and Y chromosome respectively. For the mitochondria, we276

saw an average improvement in haplogroup calling of 22% compared to the H3Africa array.277
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For the Y chromosome, due to the limited number of add-on SNPs and sufficient coverage278

by the H3Africa array, we did not observe any significant differences in haplogroup calling.279

4. Discussion280

The strategy to supplement external reference panels with WGS samples from an281

internal study cohort has been employed by previous studies[43, 44]. Specifically, it has282

been shown that the addition of even a relatively small number of samples from the283

internal cohort leads to improved imputation accuracy, especially if the study population284

is genetically dissimilar from the populations captured by existing reference panels[45, 6].285

Our work confirms the utility of including population-specific haplotypes in the reference286

panel used for imputation, but it also shows that the use of add-on SNPs further improves287

imputation accuracy of common variants in the study population.288

Our add-on tag SNP selection procedure did not explicitly target population-specific289

SNPs, such as ancestry informative markers[46, 47], but rather targeted any SNP observed290

in our study population that are expected to be poorly imputed under the existing base291

array content. Such a choice was driven by the aim of GWAS, which is to map any SNP292

associated with the trait of interest, which may not necessarily be population-specific.293

Nevertheless, we did apply an allele frequency based (MAF) cutoff to ensure that only294

SNPs polymorphic in the study population were targeted. As a result, a substantial295

fraction of the targeted SNPs were successfully imputed based on the TB-DAR reference296

panel (Table 1). This suggested that our add-on SNPs were able to tag population-specific297

haplotype structures, which contributed to improved imputation accuracy.298

An add-on tag SNP that most efficiently tags a target SNP (in the strongest LD)299

may not necessarily be the optimal tag, as the genotyping error rate of the probe for the300

particular SNP may be high. To rectify such issue, we limited our selection to add-on301

tags SNPs with probes that have high success rates (Illumina probe-ability score > 0.3),302

and weighted the trade-off between LD strength and probe quality equally when selecting303

the optimal add-ons. Nevertheless, a more complex weighting scheme may result in even304
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better performance.305

We introduced two settings for the selection of add-on SNPs, namely either coverage-306

guaranteeing (Setting 1) or efficiency-driven (Setting 2). For users of our approach, the307

number of regions assigned to each setting could be adjusted depending on the study.308

For example, if there exists strong prior knowledge with regards to genes implicated in309

or loci associated with the trait of interest, these regions could be assigned to Setting310

1. Conversely, for traits with a lack of prior knowledge, a greater proportion of regions311

could be assigned to Setting 2, such that tag selection would be conducted in a more312

hypothesis-free manner.313

A limitation of our approach is that only common SNPs (MAF > 0.05) were targeted314

by the selected add-on SNPs. Such a choice was made due to the limited sample size of315

our WGS cohort, where for rarer target SNPs there would be insufficient observations to316

estimate LD. Nevertheless, the imputation accuracy of rarer SNPs (for example, 0.01 <317

MAF < 0.05) which are in strong LD with the targeted SNPs could still increase if tested318

in a larger testing set.319

In conclusion, in order to improve imputation accuracy in populations underrepre-320

sented in existing reference panels and genotyping array designs, we propose a framework321

where a subset of a cohort is sequenced and the rest genotyped using an array supple-322

mented with the selected add-on SNPs. Using a Tanzanian-based cohort as a proof-of-323

concept, we demonstrated that under our approach, the WGS data could be leveraged324

to supplement existing reference panels and to select add-on SNPs, such that imputa-325

tion accuracy is improved. Our approach is generalizable to any other population to326

improve genotype imputation, and thus provides a cost-effective solution to increase the327

power of GWAS in a diverse range of underrepresented populations and to further our328

understanding of human genetic diversity.329

Supplemental Data

Supplemental Data include 5 figures and 1 table.
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and Möller, M. (2019). Evaluating the accuracy of imputation methods in a five-way
admixed population. Frontiers in Genetics 10.

[6] Sidore, C., Busonero, F., Maschio, A., Porcu, E., Naitza, S., Zoledziewska, M., Mulas,
A., Pistis, G., Steri, M., Danjou, F. et al. (2015). Genome sequencing elucidates
sardinian genetic architecture and augments association analyses for lipid and blood
inflammatory markers. Nature Genetics 47, 1272–1281.
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Tables and Figures
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Figure 1: Scenarios under which add-on tags could improve genotype imputation. Array population
represents the population that the existing genotyping array is designed for. Study population represents
the population that the add-on tags are designed for. A) A target SNP that is rare in the array population,
and was thus not designed to be tagged by any existing tag SNPs. However, it is common the study
population, which justifies the use of an add-on tag. B) An existing tag SNP that is common in the
design population but rare in the study population, thus reducing its tagging efficiency in the study
population. C) The presence of population-specific haplotype structures in the study population, where
the target SNP is no longer on the same haplotype block and no longer in strong LD with the existing
tag SNP.
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Figure 2: Schematic of our add-on tag SNP selection procedures, with steps illustrating: Step 1)
Constructing a Tanzanian reference panel. Identifying candidate target SNPs, which are derived
from poorly imputed SNPs when the H3Africa array is imputed based on the Tanzanian and AFGR
reference panel. Step 2) Selecting add-on tag SNPs that optimally tag candidate target SNPs based
on population-specific LD structures, allele frequencies, and probe qualities. Step 3) Evaluating
improvements in imputation performance after adding add-on tag SNPs to the base H3Africa array.
Calculating imputation quality metrics, including INFO score and r2 (correlation between imputed and
sequencing-based genotypes).

WGS, Whole-Genome Sequencing; AFGR, African Genome Resource; MAF,Minor Allele Frequency;
MI, Mutual Information; LD, Linkage Disequilibrium.
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Figure 3: Genetic differentiation of African populations A) Sampling locations of 1000 Genomes African
populations and the TB-DAR WGS cohort. Line colors illustrate the degree of differentiation (FST )
between TB-DAR and 1000 Genomes populations. B) Pairwise FST measures between 1000 Genomes
African population and TB-DAR. Diagonals of the matrix represent differentiation within a population,
calculated between two halves of the population defined based on the median of the top genetic principal
component.

1000 Genome Populations: GWD - Gambian in Western Divisions in the Gambia; MSL - Mende
in Sierra Leone; YRI - Yoruba in Ibadan, Nigeria; ESN - Esan in Nigeria; LWK - Luhya in Webuye,
Kenya.
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Figure 4: Improvement in imputation performance subsequent to the addition of add-on tag SNPs. A)
Mean INFO score and r2 (between imputed and sequenced ground truth) of target SNPs designed to be
tagged by add-on SNPs, prior and subsequent to the incorporation of add-on SNPs. Facet grids illustrate
results based on two tag SNP selection settings: coverage guaranteeing within prioritized regions (Setting
1) and efficiency driven in all other regions (Setting 2). B) Example region on chromosome 10 where the
incorporation of add-on tag SNPs lead to the increase in imputation performance. Facet grids illustrate
imputation performance prior and subsequent to the incorporation of add-on tags. Color of dots represent
type of SNP (existing H3Africa tags, add-on tags, or any other imputed SNPs).

Table 1: Efficiencies of add-on tag SNPs, categorized based on source reference panel and selection
settings. Imputation improvements categorized as any increase in INFO score, or any increase that
resulted in INFO score exceeding 0.8 when previously under 0.8.

Reference
Panel

Tags
Added

INFO Score
Improvement

INFO Score
> 0.8

Prioritized Regions (Setting 1) - Coverage Guranteeing
All 1669 52,798 10,349
Tanzanian 666 33,516 2881
African Genome Resource (AFGR) 1003 20,010 6753

Other Regions (Setting 2) - Efficiency Driven
All 2734 26,3192 38,336
Tanzanian 1417 16,7040 8749
African Genome Resource (AFGR) 1317 95,892 26,564

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429542doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429542
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Material and Methods
	Study description
	Whole genome sequencing and quality control
	Fixation index and genetic principal components
	Selection of add-on SNPs
	Step 1: Genotype imputation and identification of candidate target SNPs
	Step 2: Add-on tag SNP selection
	Step 2: Region definitions and stopping criteria
	Step 3: Evaluation of imputation accuracy

	Y Chromosome and Mitochondrial Haplogroups

	Results
	Differentiation between the Tanzanian population and other African populations
	Selection of add-on SNPs and improvements in imputation accuracy
	Mitochondria and Y chromosome haplogroups

	Discussion

