
 
 

1 

The immunosuppression of macrophages underlies the cardioprotective effects of 1 

catestatin (CST)  2 

 3 

Wei Ying2*, Kechun Tang1*, Ennio Avolio2#, Jan M. Schilling1,3, Teresa Pasqua2#, Matthew 4 
A. Liu2, Hongqiang Cheng4, Hong Gao2, Jing Zhang2, Sumana Mahata2, Myung S. Ko5, 5 
Gautam Bandyopadhyay2, Soumita Das6, David M. Roth1,3, Debashis Sahoo7,8, Nicholas 6 
J.G. Webster1,3, Farah Sheikh2, Gourisankar Ghosh5, Hemal H. Patel1,3 Pradipta 7 
Ghosh1,2,9, Geert van den Bogaart10,11, and Sushil K. Mahata1,2¶. 8 
 9 
1VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA 10 
2Department of Medicine, 3Anesthesiology, 5Chemistry and Biochemistry, 6Pathology, 11 
7Pediatrics, 8Department of Computer Science and Engineering, 9Cellular and Molecular 12 

Medicine, University of California San Diego, La Jolla, CA, USA 13 
4Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of 14 

Medicine, Hangzhou, China  15 
10Department of Molecular Immunology and Microbiology, Groningen Biomolecular 16 

Sciences and Biotechnology Institute, University of Groningen, Groningen, the 17 

Netherlands,  18 
11Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, 19 

Radboud University Medical Center, Nijmegen, the Netherlands, 20 
#Present address: Department of Biology, University of Calabria, Rende, CS, Italy 21 

 22 

 23 

 24 

*Contributed equally to this work. 25 

 26 

Correspondence: Sushil K. Mahata, smahata@health.ucsd.edu. 27 

Keywords: Catestatin, hypertension, Chromogranin A, macrophages, inflammation 28 

Running Title: Catestatin regulates cardiovascular function 29 

30 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.092254
https://doi.org/10.1101/2020.05.12.092254
https://doi.org/10.1101/2020.05.12.092254
https://doi.org/10.1101/2020.05.12.092254
https://doi.org/10.1101/2020.05.12.092254
https://doi.org/10.1101/2020.05.12.092254


 
 

2 

ABSTRACT 31 
 32 

Hypertension (HTN) is a pandemic associated with inflammation and excessive 33 

production of catecholamines. Previous work has shown that hypertensive patients have 34 

reduced plasma levels of Catestatin (CST), a bioactive cleavage product of the 35 

prohormone Chromogranin A (CgA). Similarly, in mouse models, HTN symptoms can be 36 

reduced by administration of CST, but the role of CST in the regulation of cardiovascular 37 

function is unknown. In the present study, we generated mice with knockout (KO) of the 38 

region of the CgA gene coding for CST (CST-KO) and found that CST-KO mice are not 39 

only hypertensive as predicted, but also display left ventricular hypertrophy, have marked 40 

macrophage infiltration of the heart and adrenal gland, and have elevated levels of pro-41 

inflammatory cytokines and catecholamines. Additionally, intraperitoneal injection with 42 

CST reverses these phenotypes, and ischemic pre-conditioning-induced cardioprotection 43 

was also abolished in CST-KO mice. To further explore the relationship between HTN 44 

and CST/macrophages, experiments with chlodronate depletion of macrophages and 45 

bone-marrow transfer showed that macrophages produce CST and that the anti-46 

hypertensive effects of CST are mediated in part via CST’s immunosuppression of 47 

macrophages as a form of feedback inhibition. The data thus implicate CST as a key 48 

autocrine attenuator of the cardiac inflammation in HTN by reducing macrophage 49 

inflammation. 50 

 51 
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ABBREVIATIONS 53 
 54 

BMDM: bone marrow-derived macrophage; 55 

BP:  blood pressure; 56 

BMT:   bone marrow transfer;  57 

CCL:   C-C motif chemokine ligand 58 

CXC:  C-X-C motif chemokine ligand 59 

CDN:   chlodronate;  60 

CgA:   chromogranin A; 61 

CST:   catestatin; 62 

DA:   dopamine; 63 

EPI:   epinephrine; 64 

HTN:   hypertension; 65 

IFN:   interferon; 66 

IL:   interleukin; 67 

IPC:  ischemic preconditioning; 68 

IR:   ischemia/reperfusion; 69 

KO:   knockout; 70 

LV:   left ventricular; 71 

LVDP:  LV developed pressure; 72 

LVEDP: LV end diastolic pressure; 73 

LVPWd: LV posterior wall thickness; 74 

MAP:  mean arterial pressure; 75 

IVSd:  interventricular septum wall thickness; 76 

NE:   norepinephrine; 77 

SBP:  systolic blood pressure; 78 

TEM:   transmission electron microscopy; 79 

TNF:   tumor necrosis factor;  80 

WT:   wild-type;  81 
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INTRODUCTION 83 

 84 

Hypertension (HTN) is an important risk factor for cardiovascular disease and mortality 1. 85 

The burden of HTN and the estimated HTN-associated deaths have increased 86 

substantially over the past 25 years. The immune system is well recognized for the 87 

genesis and progression of HTN 2, 3 . Elevated levels of pro- and reduced levels of anti-88 

inflammatory cytokines have been reported in hypertensive or pre-hypertensive patients 89 

compared to healthy individuals 4-6 . These inflammatory cytokines can lead to vascular 90 

and renal dysfunction and progression of HTN 7. Moreover, inflammatory cytokines can 91 

increase blood pressure (BP) by increasing the production of catecholamines in the 92 

adrenal gland. Specifically, studies in animal models and cultured neuroendocrine cells 93 

show that inflammatory cytokines such as interleukin (IL)-1β, interferon (IFN)-α, IL-6 and 94 

tumor necrosis factor (TNF)-α can elevate production of dopamine (DA), norepinephrine 95 

(NE), and epinephrine (EPI) 3, 8, 9. The dysregulation of the production of catecholamines 96 

has been well recognized in HTN 10, 11. 97 

Here, we reveal an unexpected finding of how catecholamine production is 98 

attenuated by another secretion product of neuroendocrine cells: the peptide catestatin 99 

(CST). Previous work has shown that CST is a bioactive proteolytical fragment from the 100 

pro-hormone Chromogranin A (CgA; hCgA352-372) 12, which is co-stored and co-released 101 

with catecholamines in neuroendocrine cells 13. Likely as a consequence of higher 102 

catecholamine production 3, CgA levels are elevated in humans with essential HTN 14 and 103 

in rodent genetic models of HTN 14. However, unlike CgA, plasma CST levels are 104 

diminished not only in essential HTN 14, 15, but also in the normotensive offspring of 105 

patients with HTN 15, suggesting dysregulation in the processing of CgA to CST in HTN 106 
14. Moreover, HTN-associated single nucleotide polymorphisms within the CST segment 107 

of CgA have been identified 16-18.  108 

Animal experiments also indicate a role for CST in HTN: both CgA heterozygote 109 

and complete knockout (KO; CgA-KO) mice are hypertensive, and treatment with CST 110 

decreases the BP and the levels of plasma catecholamines to that seen in control 111 

littermates 19. It is increasingly clear in mouse models of diabetes 20, colitis 21 and 112 

atherosclerosis 22 that CST exerts anti-inflammatory effects by inhibiting the activation of 113 
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macrophages and shifting their differentiation to more anti-inflammatory phenotypes 23. 114 

Therefore, we hypothesized that CST exerts its cardioprotective role by skewing 115 

macrophages to more anti-inflammatory phenotypes, thereby resulting in lower 116 

catecholamine production.  117 

To directly discern the role of CST in the regulation of the cardiovascular system, 118 

we generated a precise tool: CST-KO mice, which lack only the CST-coding region of the 119 

Chga gene. As predicted, CST-KO mice display a hypertensive, hyperadrenergic, and 120 

inflammatory phenotype which is rescued by exogenous addition of CST. Thus, by 121 

exploring our CST-KO mice in conjunction with macrophage depletion via two methods, 122 

chlodronate (CDN) liposomes and from bone-marrow transfer (BMT) between CST-KO 123 

and wild-type (WT), this study sought to elucidate the neuroendocrine relationship 124 

between CST, catecholamine production, and ultimately the anti-inflammatory/anti-HTN 125 

functions of macrophages. With an increased understanding of the CST to HTN pathway, 126 

this could be an important advance to eventually utilizing CST as a novel target for the 127 

treatment and prevention of HTN.  128 
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METHODS 130 

 131 

An expanded Materials and Methods section is available in the Data Supplement. Further 132 

data and protocols are also available upon reasonable request from the corresponding 133 

author.  134 

 135 

Mice. We used male WT and CST-KO (20-24 weeks old) in C57BL/6 background unless 136 

indicated otherwise. Since CgA is especially overexpressed in male patients with 137 

hypertension 24, we used only male mice in this study. Further studies will look into female 138 

mice. Mice were kept in a 12 hr dark/light cycle and fed a normal chow diet (NCD: 13.5% 139 

calorie from fat; LabDiet 5001, TX). Animals were age and sex-matched, and randomly 140 

assigned for each experiment. Control and experimental groups were blinded. Power 141 

calculations were conducted to determine the number of mice required for each 142 

experiment. For rescue experiments with exogenous CST, mice were injected 143 

intraperitoneally with CST (2 µg/g body weight) at 9:00 AM for 2-4 weeks before collecting 144 

feces or harvesting tissues. All studies with mice were approved by the UCSD and 145 

Veteran Affairs San Diego Institutional Animal Care and Use Committees and conform to 146 

relevant National Institutes of Health guidelines.  147 

 148 

Statistics. Statistics were performed with PRISM 8 (version 8.4.3) software (San Diego, 149 

CA). Data were analyzed using either unpaired two-tailed Student’s t-test for comparison 150 

of two groups or one-way or two-way analysis of variance (ANOVA) for comparison of 151 

more than two groups followed by Tukey’s post hoc test if appropriate. All data are 152 

presented as mean ± SEM and significance was assumed when p<0.05. 153 
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RESULTS 155 

 156 

Generation and validation of CST-KO mice. The CST coding region (mCgA364-384; 63 157 

bp) was removed from Exon VII of the Chga gene (Figure 1A&B). Using a mouse 158 

monoclonal antibody (5A8), we detected full-length CgA (~70 kDa) in WT mice and a 159 

proteoglycan form of CgA in CST-KO mice in adrenal gland lysates (Figure 1C), indicating 160 

the presence of CgA in CST-KO mice. Blots using a polyclonal antibody directed against 161 

the C-terminal domain of CST (CT-CST) showed a proteolytically processed CgA (~46 162 

kDa) corresponding to mCgA1-385 in WT littermates, but not in CST-KO mice (Figure 1C). 163 

Because this antibody detects synthetic CST (positive control for antibody specificity), we 164 

conclude that CST-KO mice indeed lack CST. Adrenal CgA content was comparable in 165 

WT and CST-KO mice (Figure 1D). CST was not detectable in CST-KO mice (Figure 1D). 166 

 167 

CST-KO mice are hypertensive. Consistent with the anti-HTN functions of CST 19, 25, 26, 168 

we found that the CST-KO mice are hypertensive and display diurnal increases in both 169 

systolic and mean arterial BP (Figure 2A & S1). The high BP in CST-KO mice is rescued 170 

by intraperitoneal injection of exogenous CST (2 µg/g body weight for 15 days), whereas 171 

CST had no impact on normotensive BP in WT mice (Figure 2B). In WT mice, the plasma 172 

CST level was 0.86 nM, which increased to 1.72 nM 24 hrs after administration of CST 173 

(Figure 2C). In CST-KO mice, plasma CST was 1.17 nM after 24 hr of CST 174 

supplementation, indicating that CST supplementation provided a near physiological 175 

concentration of CST.  176 

 177 

Ischemic pre-conditioning-induced cardioprotection is impaired in CST-KO mice. 178 

Since CST promotes cardioprotection in rats 27, we tested whether pre-conditioning-179 

induced cardioprotection is affected in CST-KO mice. We subjected WT and CST-KO 180 

hearts to ischemia/reperfusion (IR) followed by ischemic preconditioning (IPC). IPC 181 

significantly increased the post-ischemic left ventricular developed pressure (LVDP) and 182 

lowered the left ventricular end diastolic pressure (LVEDP) in WT hearts compared to 183 

CST-KO hearts and their respective IR controls (Figure S2A). Furthermore, neither LVDP 184 

nor LVEDP was significantly modified in IPC-treated CST-KO hearts compared to the 185 
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respective IR controls. In WT mice, but not in CST-KO mice, IPC also improved recoveries 186 

of both the maximum and minimum rates of pressure development in the LV (dP/dtmax 187 

and dP/dtmin) compared to the respective IR controls (Figure S2B). These data show that 188 

whereas IPC conferred protection against IR damage in WT mice, with observed 189 

improvements in all functional measures in the reperfusion period, CST-KO mice could 190 

not be preconditioned. 191 

  192 

CST-KO mice have increased inflammation in heart and circulation. CST is an anti-193 

inflammatory peptide 23 28, raising the possibility that CST might regulate cardiovascular 194 

function via the immune system. Indeed, in plasma of CST-KO mice, we found increased 195 

levels of proinflammatory cytokines TNF-a, IFN-g, C-C motif chemokine ligand (CCL)-2 196 

and -3, and C-X-C motif chemokine ligand (CXCL)-1 (Figure 3A). By contrast, the anti-197 

inflammatory cytokine IL-10 was decreased in CST-KO mice. Intraperitoneal injection with 198 

exogenous CST in CST-KO mice reversed this phenotype: it decreased the levels of most 199 

proinflammatory cytokines and increased anti-inflammatory cytokines in plasma of both 200 

WT and CST-KO mice (Figure 3A). RT-PCR also revealed inflammation in the heart of 201 

CST-KO mice: the expression of anti-inflammatory genes IL10, IL4, Mrc1, Arg1, Clec7a 202 

and Clec10a was reduced, whereas the pro-inflammatory genes Tnfa, Ifng, Emr1, Itgam, 203 

Itgax, Nos2a, IL12b CcL2, and CxcL1 were upregulated (Figure 3B&C). LV protein levels 204 

of the proinflammatory cytokines TNF-a, IFN-g, CCL-2, CCL-3, CXCL-1, and IL-6 were 205 

also elevated in CST-KO mice (Figure 3D). These phenotypes were also reversable by 206 

intraperitoneal injection of CST. We also observed increased phosphorylation 207 

(Ser177/181) of IKK-β, a component of the cytokine-activated intracellular signaling 208 

pathway involved in triggering immune responses via NF-κB (Figure 4A). These findings 209 

show that the immune system of CST-KO mice is skewed towards inflammation. 210 

 211 

CST reduces pro-inflammatory macrophages in vitro. In the next set of experiments, 212 

we addressed whether CST would directly shift macrophages to more anti-inflammatory 213 

responses in vitro. Macrophages were derived from bone-marrow of WT mice (BMDM) 214 

and differentiated to an either pro-inflammatory M1-like phenotype or to an anti-215 

inflammatory M2-like phenotype 29. Culturing these macrophages for 24 hr with 100 nM 216 
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CST resulted in a small, but significant, reduction of the production of pro-inflammatory 217 

cytokines TNF-α, CCL-2, CCL-3, CXCL-1 and IL-1β (Figure 4B&C). In contrast, the levels 218 

of anti-inflammatory IL-10 were increased, especially for the M2-like macrophages.  219 

 Since macrophages are a secretory cell type, we also addressed whether 220 

macrophages produce CgA and CST. Indeed, Western blotting analysis revealed the 221 

presence of both CgA and CST in peritoneal macrophages (Figure 4D), which were 222 

isolated after thioglycolate (3% solution in water) and cultured in DMEM with 10% FBS 223 

for 48 hr with daily medium changes 29. To assess the physiological relevance of CST-224 

production by macrophages, we performed BMT experiments in which we irradiated CST-225 

KO mice and then cross-transplanted the marrow from WT mice. We analyzed plasma 226 

CST of these mice and found that WT bone-marrow recipient CST-KO mice, but not CST-227 

KO bone-marrow recipients, had near physiologic levels of plasma CST (0.52 nM) (Figure 228 

4E). Thus, macrophages (and possibly other bone-marrow derived cell types) are major 229 

producers of CST in circulation. 230 

 231 

Macrophages are key effector cells responsible for the anti-inflammatory actions 232 

of CST. TEM studies revealed abundant infiltration of macrophages and fibrosis in the 233 

intercellular spaces between chromaffin cells in the adrenal medulla of CST-KO mice 234 

(Figure S3 and S4). Also, marked cardiac fibrosis and an increased presence of 235 

macrophages were observed in the heart of saline-treated CST-KO mice, as shown by 236 

TEM and flow cytometry (Figure 5A, S3, S5 and S6A). In both the adrenal gland and heart 237 

of CST-KO mice, CST supplementation reduced the abundance of macrophage infiltrates 238 

(Figure S3). This was supported by flow cytometry analysis showing a ~38% decrease of 239 

CD11b+F4/80+ macrophages in CST-supplemented CST-KO heart (Figure 5A and S6B).  240 

We assessed the functional role of the infiltrated macrophages in the heart and 241 

adrenal gland of CST-KO mice using two independent approaches. First, we depleted 242 

macrophages by CDN liposomes (Figure S6B), which not only depleted macrophages in 243 

heart and adrenal gland (Figure S3), but also reversed the hypertensive phenotype of 244 

CST-KO mice (Figure 5B). Second, we carried out BMT assays in which we irradiated 245 

both WT and CST-KO mice and then cross-transplanted their marrows: bone-marrow 246 

from CST-KO mice was transplanted into WT mice and vice versa. Both the inflammatory 247 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2020.05.12.092254doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.092254


 
 

10 

and hypertensive phenotypes were transferred by BMT: while CST-KO bone-marrow 248 

recipient WT mice showed increased BP; elevated levels in plasma and heart of TNF-α, 249 

IFN-g, CCL-2, CCL-3, and CXCL-1; and reduced levels of IL-10, WT bone-marrow 250 

recipient CST-KO mice showed the opposite phenotypes (Figure 5B-D). Since WT bone-251 

marrow recipient CST-KO mice had near physiologic levels of plasma CST (Figure 4E), 252 

we conclude that macrophages and other immune cells are not only key effectors of the 253 

anti-hypertensive actions of CST but are also main producers of CST themselves. 254 

 255 

Heightened sympathetic stimulation and hypersecretion of catecholamines in 256 

adrenal gland of CST-KO mice. Prior studies in humans, mice, and rats have shown 257 

that pro-inflammatory cytokines increase catecholamine production and secretion 3, 8, 9. 258 

In line with this, we found that compared to WT littermates, CST-KO mice has elevated 259 

levels of both adrenal and plasma catecholamine levels (Figure 6A). This phenotype was 260 

also transferable by BMT: CST-KO bone-marrow recipient WT mice showed increased 261 

levels of NE and EPI in the adrenal medulla and plasma, whereas WT bone-marrow 262 

recipient CST-KO mice showed reduced levels of NE and EPI (Figure 6A). 263 

Since heightened sympathetic nerve traffic has been documented in young, 264 

middle-aged, and elderly hypertensives; in pregnancy-induced hypertension; and in 265 

systo-diastolic hypertension or an isolated elevation of BP 30, we measured NE in the LV 266 

and kidney of WT and CST-KO mice. In contrast to the adrenal medulla and plasma, we 267 

observed reduced levels of NE in the heart and kidney of CST-KO mice (Figure 6A). 268 

Decreased NE in CST-KO mice indicates increased cardiac and renal spillover of NE, 269 

which is common in hypertensive and heart failure patients  31-34 . The CST-KO adrenal 270 

medulla exhibited abundant docked chromaffin granules and decreased acetylcholine-271 

containing vesicles at the sympatho-adreno-medullary synapse (Figure 6B-C and S7), 272 

implicating heightened sympathetic nerve activity leading to hypersecretion of 273 

catecholamines. Supplementation of CST-KO mice with CST reversed this phenotype 274 

(Figure 6B-C and S7) and led to a concomitant decrease in both plasma and adrenal 275 

catecholamines (Figure 6A). The elevated BP in CST-KO mice was reversed by the 276 

nicotinic acetylcholine receptor antagonist chlorisondamine (Figure S8).   277 
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To test whether lack of CST affected heart structure and function, we undertook 278 

gravimetry (Figure S9A) and echocardiographic ultrasound imaging (Figure S9B). CST-279 

KO mice showed increased heart weights and sizes compared to WT mice (Figure S9A). 280 

Although CST-KO mice maintained a similar level of left ventricular (LV) function 281 

(fractional shortening) to age-matched WT mice, there were significant abnormalities in 282 

LV remodeling as evidenced by the significant increase in LV posterior wall thickness 283 

(LVPWd), which has been associated with high BP 35, 36 , and a trend towards an increase 284 

in interventricular septum wall thickness (IVSd; p=0.07) (Figure S9B). Heart rate, left 285 

ventricular internal diameter during systole, and left ventricular internal diameter during 286 

diastole were comparable between WT and CST-KO mice (Figure S9B).  287 

 288 

  289 
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DISCUSSION 290 
 291 
Inflammation and hypertension. Inflammation is well understood to contribute to the 292 

development of hypertension by inducing vascular damage, renal damage, and/or 293 

abnormal central neural regulation 37-39 . For instance, a recent study in the Japanese 294 

population found that prolonged low-grade inflammation as evaluated by increased C-295 

reactive protein (CRP) increases arterial stiffness and the consequent development of 296 

HTN 40 . CRP is also considered as an independent risk factor for the development of 297 

HTN 41 . Besides the importance of peripheral vascular inflammation in hypertension, it 298 

has been shown that inducing inflammation in the brainstem triggers hypertension in a 299 

normotensive rat 42 . 300 

From this study’s data, it is becoming increasingly clear that this inflammation and 301 

the development of HTN are counteracted by the anti-inflammatory peptide hormone CST 302 

through its feedback inhibition/regulation of macrophages. Previous studies showing low 303 

levels of CST in hypertensive subjects 15 and normalization of BP in CgA-KO mice by 304 

CST 19 as well as decreasing BP in spontaneously hypertensive rats 25 indicate that CST 305 

is sufficient to reverse HTN. The findings from this study that CST-KO mice are 306 

hypertensive with a skewed immune system towards inflammation, and that these 307 

phenotypes can be rescued by exogenous administration of recombinant CST, add to this 308 

and demonstrate that CST is not only sufficient but also necessary for regulating HTN. 309 

Since the inflammation and BP can be reduced by administration of exogenous CST, CST 310 

might be a therapeutic target for the treatment of HTN. 311 

Suppression of the immune system attenuates the development of HTN when 312 

induced by Ang II or DOCA-salt, while dysregulation of it causes sensitization to these 313 

hypertensive challenges 43 . Surprisingly, CST-KO mice already show elevated BP in 314 

absence of an additional challenge, raising the question of other mechanisms in addition 315 

to the immune activation are involved in the HTN phenotype in these mice. However, 316 

since bone-marrow transplant from CST-KO to WT mice already suffices to elicit HTN, 317 

and these mice only harbor CST lacking immune cells while the autonomic system is 318 

normal, it might be that an abnormal activation of the immune system triggers HTN. 319 

 320 

 321 
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Neurohumoral regulation of BP. We found a neuro-adrenergic overdrive-induced HTN 322 

in CST-KO mice. Existing literature reveals heightened sympathetic nerve activity in white 323 

coat syndrome and borderline hypertensive subjects 44  as well as in established 324 

hypertensive subjects of all ages, and the magnitude of this elevation is related to the 325 

magnitude of HTN 45 . In addition, hypertensive patients with metabolic risk factors, such 326 

as obesity, metabolic syndrome, or diabetes mellitus, also exhibit sympathetic overdrive 327 
46-48 . Like humans, spontaneously hypertensive rats show reduced cardiac 328 

parasympathetic nerve activity, elevated sympathetic nerve activity and increased NE 329 

release 49 .  330 

 331 

Immunoendocrine regulation of BP. The augmented sympathetic nerve activity in HTN 332 

is known to activate both myeloid cells and T cells 2, and circulating concentrations of pro-333 

inflammatory cytokines are increased in primary HTN 50 . T-lymphocytes are critical for 334 

Angiotensin II and deoxycorticosterone acetate-salt-induced hypertension 51, 52 . 335 

Intracerebroventricular administration of IL-6 increases splenic sympathetic nerve activity 336 
53 , while central administration of IL-1β increases adrenal, splenic and renal sympathetic 337 

nerve activity 54 . Injection of TNF-α into central sympathetic nuclei, such as the 338 

paraventricular nucleus increases sympathetic nerve activity, BP and heart rate in rats 55  339 

. 340 

To our knowledge, the present study is the first to demonstrate increased 341 

infiltration of macrophages in the adrenal medulla concomitant with increased secretion 342 

of catecholamines and the consequent development of HTN in CST-KO mice, which were 343 

normalized after CST supplementation. These findings imply that CST regulates the BP 344 

through a novel immunoendocrine regulation of catecholamine secretion via 345 

macrophages.  346 

What causes the elevated BP in CST-KO mice? In these mice, the heart rate was 347 

not increased, and fractional shortening was unaltered compared to WT, indicating that 348 

the increased BP is not driven by elevated cardiac output. Consequently, it might be that 349 

the LV hypertrophy in the CST-KO mice, and possibly also the increased posterior wall 350 

thickness associated with high BP 35, 36 , is a secondary effect of the BP elevation. It 351 

seems therefore likely that the elevated BP is caused by increased vascular resistance, 352 
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due to vasoconstriction and/or increased arterial stiffness 40 . It is possible that increased 353 

cardiac and renal spillover of NE also contribute to the development of BP in CST-KO 354 

mice 31-34 .  355 

 356 

Perspectives. This study provides a key mechanism as to how CST regulates 357 

inflammation. Cardiac macrophages are critical for myocardial homeostasis 56, 57 . While 358 

a subset of macrophages orchestrate monocyte recruitment and contribute to heart failure 359 

pathogenesis 58 , others are increased during diastolic dysfunction 59 , myocardial 360 

infarction, and acute hemodynamic stress 60 . We found an abundance of infiltrated 361 

macrophages in the heart and adrenal gland of CST-KO mice. Using in vitro experiments 362 

with cultured BMDMs and two parallel approaches (CDN macrophage depletion and 363 

BMT) to decrease macrophage activity in vivo, we found that macrophages are key 364 

effector cells for the anti-hypertensive actions of CST. We also found that bone-marrow 365 

originated cells, possibly macrophages, are the main source of circulating CST. 366 

We therefore propose that the macrophages (and chromaffin cells) produce CST, 367 

which reduces inflammation in an autocrine/feedback inhibition fashion. These anti-368 

inflammatory actions underlie the anti-hypertensive effects of CST, since without CST, 369 

macrophages are more reactive, infiltrate the heart, and alter the ultrastructure, 370 

physiological makeup, and molecular makeup of the myocardium. Additionally, the data 371 

implicate CST as a key mediator of the observed crosstalk between systemic and cardiac 372 

inflammation in HTN, which hence plays a central role in cardiovascular homeostasis by 373 

regulating the immunoendocrine axis. 374 
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FIGURE LEGENDS 385 
 386 

Fig. 1. Generation of CST-KO mice. (A) Schematic diagram showing the cloning 387 

strategy for generating CST-KO mice. DTA, diphtheria toxin; FRT, Flp recognition target. 388 

(B) Screening of CST-KO mice by PCR. Primer set 1 flanks the CST domain; expected 389 

PCR products: 162 bp, CST-KO; 225 bp, WT mice. Reverse primer 2 binds within CST-390 

coding region; no band, CST-KO, 180 bp WT mice. (C) Western blots showing the 391 

presence of CgA and CST in WT and CST-KO mice using monoclonal antibody (mAb) 392 

5A8 that does not recognize CST, and rabbit polyclonal antibody directed against the C-393 

terminus of CST (pAb CT-CST), which does not recognize CgA beyond CST domain. A 394 

truncated CgA (CgA1-384) was present in WT mice but not in CST-KO mice, confirming 395 

the deletion of CST domain. (D) Adrenal CgA content (n=12) and plasma CST levels 396 

(n=6). Unpaired two-tailed t-test: ns, not significant; ***p<0.001. 397 

 398 

Fig. 2. Hypertension in CST-KO mice. (A) Diurnal systolic (SBP), diastolic (DBP) and 399 

mean arterial (MAP) blood pressure by telemetry in wild-type (WT) and CST-KO mice 400 

(n=8). (B) Daytime SBP by tail-cuff (n=9) and (C) plasma CST levels (n=6) of WT and 401 

CST-KO mice treated with CST or saline (Sal). Two-way ANOVA: ns, not significant; 402 

**p<0.01; ***p<0.001. 403 

 404 

Fig. 3. CST-KO mice display systemic and cardiac inflammation, which can be 405 

reversed with exogenous CST. (A) Plasma cytokines in WT and CST-KO mice (n=8). 406 

Sal: saline. (B&C) RT-qPCR data showing steady-state mRNA levels of anti- (B) and pro-407 

inflammatory (C) genes in left ventricle (n=8). (B&D) Protein levels of IL-10 (B) and pro-408 

inflammatory cytokines (D). One-way ANOVA: ns, not significant; *p<0.05; **p<0.01; 409 

***p<0.001.   410 

 411 

Fig. 4. CST exerts anti-inflammatory effects in isolated macrophages and 412 

macrophages are major producers of CST. (A) Western blot analysis of 413 

phosphorylated (Ser177/181) and total IKK2 in heart of 4 WT mice, 5 CST-KO mouse 414 

and 5 CST-KO mice with intraperitoneal injection of CST. (B&C) Protein levels of 415 
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cytokines (n=8) in supernatant of bone-marrow derived macrophages (M0-BMDMs) 416 

differentiated to proinflammatory M1-type (B) and anti-inflammatory M2-type phenotypes 417 

(C). Cells were treated with 100 nM CST. (D) Western blots showing the presence of CgA 418 

and CST in peritoneal macrophages (n=4). (E) Plasma CST levels in CST-KO mice which 419 

received BMT from CST-KO or WT mice (n=6). Panel A-C: one-way ANOVA; panel E: t-420 

test; ns, not significant; *p<0.05; **p<0.01; ***p<0.001. 421 

 422 

Fig. 5. Macrophages mediate cardioprotective effect of CST. (A) Flow cytometry data 423 

showing CD45+F4/80+CD11b+ macrophages in CST-KO heart (n=3). Sal: saline control. 424 

(B) Systolic blood pressure (SBP) after depletion of macrophages by CDN (n=8) and 425 

bone-marrow transfer (BMT) into irradiated mice (n=8). Levels of cytokines in plasma (C) 426 

and heart (D) of mice with BMT (n=8). One-way ANOVA: ns, not significant; *p<0.05; 427 

**p<0.01; ***p<0.001. 428 

 429 

Fig. 6. Increased catecholamine secretion in CST-KO mice. (A) Plasma, adrenal, 430 

heart and kidney norepinephrine (NE) and epinephrine (EPI) levels in WT and CST-KO 431 

mice. Mice were treated with saline (Sal) or CST or underwent bone-marrow transfer 432 

(BMT) into irradiated mice (n=8-12). (B) TEM micrographs of chromaffin granules (CG) in 433 

the adrenal medulla of CST-KO mice. PM, plasma membrane. (C) TEM micrographs of 434 

splanchnic-adrenomedullary synapse with acetylcholine vesicles (AChV) and dense core 435 

peptidergic vesicles (PdV). CC, chromaffin cell; CG, chromaffin granule. Two-way 436 

ANOVA: ns, not significant; *p<0.05; **p<0.01; ***p<0.001. 437 

 438 

  439 
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NOVELTY AND SIGNIFICANCE 635 

 636 

What is new? 637 

• Mice that lack the peptide hormone catestatin (CST) are hypertensive. 638 

• CST skews macrophages to an anti-inflammatory phenotype. 639 

• CST reduces inflammation in heart and adrenal gland. 640 

What is relevant? 641 

• Hypertension is associated with inflammation. 642 

• Hypertensive patients have reduced plasma levels of CST. 643 

• In mouse models, hypertension can be reduced by exogenous CST. 644 

Summary  645 

• The anti-hypertensive effects of CST are mediated via CST’s immunosuppression 646 

of macrophages. 647 

• CST is a key autocrine attenuator of the cardiac inflammation in hypertension. 648 

 649 
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