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Wearable devices are now widely available to collect continuous objective behavioral data from 
individuals and to measure sleep. Here we introduce a pipeline to infer sleep onset, duration, and quality 
from raw accelerometer data and then quantify relationships between derived sleep metrics and other 
variables of interest. The pipeline released here for the deep phenotyping of sleep, as the “DPSleep” 
software package, uses (a) a stepwise algorithm to detect missing data; (b) within-individual, minute-based, 
spectral power percentiles of activity; and (c) iterative, forward- and backward-sliding windows to estimate 
the major Sleep Episode onset and offset. Software modules allow for manual quality control adjustment 
of derived sleep features and correction for time zone changes. In this report, we illustrate the pipeline with 
data from participants studied for more than 200 days each. Actigraphy-based measures of sleep duration 
are associated with self-report rating of sleep quality. Simultaneous measures of smartphone use and GPS 
location data support the validity of the sleep timing inferences and reveal how phone measures of sleep 
timing can differ from actigraphy data. We discuss the uses of DPSleep in relation to other available sleep 
estimation approaches and provide example use cases that include multi-dimensional, deep longitudinal 
phenotyping, extended measurement of dynamics associated with mental illness, and the possibility of 
combining wearable actigraphy and personal electronic device data (e.g., smartphone, tablet) to measure 
individual differences across a wide range of behavioral variation in health and disease.

 

While the human behavioral repertoire varies in many respects between individuals, prolonged daily episodes 
of sleep behavior are expressed nearly ubiquitously in all members of our species, as they are innate and undergird 
both physical and mental health across the lifespan. Multiple studies suggest that sleep loss or poor sleep quality 
are predictors (and potentially moderators and/or mediators) of mental illness symptoms and poor cognitive 
performance (Maglione et al., 2014; Phillips et al., 2017; Blake, Trinder, and Allen, 2018; Snyder et al., 2018; 
André et al., 2019; Merikangas et al., 2019). Sleep timing in modern society is affected by interactions with digital 
devices that enable low-burden approaches to measure sleep (Adams, Daly, and Williford, 2013; Demirci, 
Akgonul, and Akpinar, 2015; Cabré-Riera et al., 2019; Tashjian, Mullins, and Galván, 2019). Sleep timing 
patterns can be measured over extended periods of time to provide a window into the rhythms and dynamics of a 
person’s life. In this paper we describe an open-source sleep analysis pipeline called DPSleep, referring to the 
deep phenotyping of sleep, that we offer to the community as a platform to facilitate longitudinal studies of sleep 
using data from widely available wearable devices (https://github.com/harvard-nrg/dpsleep-extract). 

The current gold standard for documenting sleep timing and content is polysomnography (PSG), during which 
multiple physiological measures are recorded, usually in a clinic or laboratory setting (Sadeh, 2011a; Hirshkowitz, 
2017) or recently in ambulatory settings (Fonareva et al., 2011; Smith et al., 2020). Although PSG, including its 
multiple physiological measures, is a comprehensive assessment of sleep stages, there are limitations associated 
with cost and subject burden, and it is difficult to obtain in-patient or at-home versions of PSG for extended time 
periods (Newell et al., 2012; Kaplan et al., 2017). Actigraphy has been suggested as an efficient and reliable 
alternative to measure certain features of sleep patterns in natural, at-home settings (Ancoli-Israel et al., 2003; 
Sadeh, 2011b; Stone and Ancoli-Israel, 2017). Actigraphy data, estimated from accelerometers, is a common 
output of many wearable and held devices including wrist watches, ankle and wrist bands, smartglasses, sewn-in 
or attached devices, and smartphones (Schenk et al., 2011; Evenson, Goto, and Furberg, 2015; Staples et al., 2017; 
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Wright et al., 2017; Scott, Lack, and Lovato, 2020; Smith et al., 2020). Thus, actigraphy measurement provides 
a means to study sleep patterns at an unprecedented scale. At the same time, openly available feature-extraction 
algorithms with capability to retain and present the features from raw to derived measures are essential for 
reproducible large-scale understanding of human sleep, even in the presence of the proprietary algorithms 
associated with many of the devices. 

In actigraphy-based sleep assessment using watch-like wristbands, acceleration is typically measured in three 
dimensions; some devices also measure ambient light, temperature, heart rate, or electrodermal activity (EDA) 
(Bianchi, 2018). A body of literature investigating the sensitivity and specificity of wristbands to detect sleep 
parameters including total sleep time (TST), sleep onset latency (SOL), wake after sleep onset (WASO), and sleep 
efficiency (SE) has evolved (Soric et al., 2012; Shin, Swan, and Chow, 2015; Madrid-Navarro et al., 2019). While 
several of these approaches have been validated using PSG and self-report sleep quality ratings under certain 
controlled conditions, there is ongoing research to validate the software and develop in-house algorithms for 
different applications, and under real-world situations (Cellini et al., 2016; Mantua, Gravel, and Spencer, 2016; 
John et al., 2019). Several of the devices, in order to save memory and battery, provide pre-processed one-minute 
averaged acceleration data (Cole et al., 1992; Bakken et al., 2014; Meltzer et al., 2015; Bellone et al., 2016; 
Merikangas et al., 2019) while others provide continuous high-frequency data. (Dillon et al., 2016; Crowley et 
al., 2019; Jones et al., 2019). 

The present study contributes to this evolving field by providing a comprehensive pipeline to analyze raw 
accelerometer data to estimate minute-based activity and detect the major Sleep Episode, defined as the longest 
continuous sleep episode of at least 100 minutes. The overall goals were to (1) develop an open-source processing 
pipeline for commonly available accelerometer data to detect major Sleep Episodes, (2) apply and validate the 
estimation procedure using real-world data including individuals studied over extended time periods who 
independently rated their sleep, and (3) apply the processing pipeline to exemplar data to illustrate its application. 
For this final goal, we analyzed data from undergraduate students who were studied over 6-9 months during 
college to illustrate sleep patterns that fluctuate with environmental demands and in relation to other self-report 
measures of sleep and mental state. We also analyzed data from two individuals who were outpatients living with 
severe mental illness to illustrate the boundaries of the methods and their ability to measure dramatically altered 
sleep patterns. 

Materials and Methods 
Participants 

Participants were enrolled in two distinct cohorts to obtain actigraphy data across a range of subjects. We 
describe the samples separately. 

Study 1: Undergraduate Study. Six undergraduate participants (all 19 years old; 3 females) were recruited 
from a local private institution and participated for one academic year, including a buffer extending into summer 
break. These individuals had successfully participated in a shorter, earlier pilot study that did not use the present 
actigraphy device or processing pipeline and were enrolled here to generate extended data for the present purposes 
collected over 165-268 days. Participants were compensated per hour for the lab visits and for completing online 
daily questionnaires and given milestone bonuses to encourage continued participation. Participants were required 
to be enrolled full-time in classes and own an iPhone or Android smartphone compatible with the study 
smartphone application, Beiwe, which is part of the open-source Beiwe platform for digital phenotyping (Torous 
et al., 2016). The Beiwe application was configured to collect passive phone use, phone acceleration, and GPS 
data at an almost continuous rate as well as active self-report data on a regular, daily basis. Since each participant 
serves as her or his own baseline, participants were not excluded for current or past psychiatric disorders or 
medication use. All study procedures were approved by the Institutional Review Board of Harvard University. 

Study 2: Clinical Study. Two individuals (ages = 62, 24; 1 female) were recruited from an ongoing cohort 
following the clinical progression of severe mental illness at a local hospital. Individuals were diagnosed with 
psychotic disorders (bipolar, n=1; schizophrenia, n=1) using the structured clinical interview for DSM-IV (SCID, 
First et al., 2007). Participant enrollment for this study targeted obtaining >1 year of data for each participant 
(durations: 543, 309 days), which included nearly continuous collection of smartphone and actigraphy data via 
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the Beiwe platform (Torous et al., 2016) and wearable watch, respectively, from each participant. Participants 
were compensated for these data, as well as for monthly in-person study visits during which clinical assessments 
were recorded to quantify disease progression using clinical gold standard measures. Milestone bonuses were also 
provided to encourage continued participation. All study procedures were approved by the Institutional Review 
Board of Partners Healthcare. 
Wrist Actigraphy and Ancillary Data Acquisition 

The present pipeline was developed using tri-axial acceleration data from a commercially available waterproof 
watch worn on the wrist (GENEActiv; Activinsights; Kimbolton, UK) and is intended as a general open resource 
for processing accelerometer data from any device saving raw tri-axial, high-frequency, continuous accelerometer 
data, sampled at a fixed and known rate. Missingness of data is assumed to occur completely at random. Data 
saved as minute-based or shorter activity estimates can also be accommodated. The frequency of data sampling 
was set to 30Hz for Study 1 and 20Hz for Study 2. Following the initial consent and receipt of the watch, 
individuals in Studies 1 and 2 visited the lab every 4-5 weeks to return the watch and receive a new fully charged 
watch with formatted memory; participants in Study 2 were given the watches during their in-patient study. 
Participants were instructed to wear the watch continuously including during sleep and when bathing. Using the 
same sampling rates across modalities of 30Hz in Study 1 and 20Hz in Study 2, the watch collected acceleration 
(g), light (lux), and ambient temperature (°C). In addition, the wristband recorded key presses. Subjects were 
instructed to press the key when they started to go to sleep and also when they woke in the morning. The 
acceleration data are the primary data used for automatic detection of episodes that would be scored as sleep with 
additional corrections from light and key press data when available and when necessary. 

Data obtained from a smartphone (iPhone or Android) were used as an ancillary data source (Onnela and 
Rauch, 2016; Torous et al., 2016). None of the automated processing and manual Sleep Episode adjustments used 
data from the smartphone. The smartphone data provided valuable independent information for validation. 
Individuals installed the research smartphone application, Beiwe, to collect active (questionnaire), passive phone 
use (via timestamping of lock-unlock events), accelerometer, and Global Positioning System (GPS) data (Torous 
et al., 2016; 2017; Barnett et al., 2018). GPS location of the phone was sampled every 10 min for a 2-min duration, 
and phone acceleration was sampled 10 sec on, 10 sec off. At 5PM each day, an in-app questionnaire appeared 
that asked about the quality of the previous night’s sleep on a Likert scale (from Terrible to Exceptional), the 
amount of caffeine consumed in the prior 24 hours (from None to Five+ drinks) (see Appendix I), and a set of 
questions about their mood and social and academic activities. Answers to these questions and passive estimates 
of phone use were used to validate the identification of the major Sleep Episode from the independent watch 
actigraphy data. 
DPSleep: A Processing Pipeline for Deep Phenotyping of Sleep 

Raw actigraphy data and removal of missing (wrist-off) data. Raw wrist actigraphy data are saved originally 
as large, compressed files each containing multiple weeks of data. Each file comprises a table with columns of 
acceleration, light, and temperature (depending on the device). To overcome the challenge of time-consuming 
access to specific rows during analysis, the first step in our processing pipeline is to parse and save the data into 
separate daily files from 12:00AM to 11:59PM. For days on which a watch change occurred (to allow continuous 
data sampling), the new, already charged watch was placed on the wrist. Since the old watch keeps collecting 
non-wrist data until it is connected back to the data extraction station, the data from the new watch were designated 
to overwrite any data from the previous watch at the same clock times. 

Raw actigraphy data (30Hz) are displayed for one daily data file illustrating each separate accelerometer trace 
(Figure 1). This type of raw actigraphy data measures acceleration and are thus most sensitive to dynamic 
movements (Yang and Hsu, 2010). The amplitude of the fluctuations, measured in units of gravity, g, reflect the 
relative acceleration of the actigraphy device in relation to the gravity of Earth. Each axis – x(g), y(g), z(g) – 
reflects linear acceleration along one of the device’s three orthogonally-positioned accelerometers. The raw data 
always includes the Earth gravity component, which can be reflected on different axes depending on the 
orientation of the device. The separate channels are highly correlated and, for our purposes here, provide 
redundant information that can be interrogated separately or combined to make estimates more robust. The 
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amplitude of the accelerometer fluctuations is variable across the awake hours but shows a stark reduction of 
fluctuations, in all three axes, during the sleep period. As will be targeted below, the DPSleep processing pipeline 
is optimized to detect the reduction in fluctuations and estimate a single extended episode each day. 

------------------------------------------------------------ 
Insert Figure 1 About Here 

------------------------------------------------------------ 
An immediate challenge is that, even for compliant subjects with charged, waterproof actigraphy watches, the 

subjects occasionally remove their devices. Figure 2 shows an epoch where the watch is off the wrist. Unlike the 
Sleep Episode that contains residual periodic low-levels of fluctuations, the accelerometer traces are nearly flat 
during the wrist-off periods. The first step is to detect and remove the wrist-off minutes. Since the focus of these 
analyses is on identifying the major Sleep Episode, a window size of 150 minutes is used. The standard deviation 
of the acceleration time series for each of the three axes are calculated for each minute. A forward and backward 
moving window of standard deviation for each axis is calculated for window size of 150 minutes. Then, the Root 
Mean Square (RMS) of the moving average standard deviation values for three axes is compared to a small 
experimental threshold of 0.0185 to detect the wrist-off minutes. This threshold was determined based on more 
than 600 hours (five lab volunteers for 5-7 days) of annotated data collected in-house. The minute of data is 
considered wrist-off if the RMS of the three channels’ variance shows a value below this threshold. The remaining 
data are considered for further analysis. 

------------------------------------------------------------ 
Insert Figure 2 About Here 

------------------------------------------------------------ 
Scoring activity level for each minute. After removing the wrist-off minutes from the analysis, the power 

density spectrum of the acceleration signal in each minute is calculated using Welch’s formula (Welch, 1967). 
The power of the signal in each minute is the area under the curve of the power density spectrum. Within-
individual power thresholds are then determined for 10, 25, 50, and 75 percentiles. A 15-min wide window of the 
average RMS power that combines across the three axes is used to find the percentile thresholds specific to each 
individual. Data from each minute of the study are classified based on their spectral power in comparison with 
these percentile cut-offs and color-coded daily maps of the activity scores for each individual are generated 
(Figure 2, center left). Highly active minutes are colored in red and orange, minutes with medium activity in 
green, and low active minutes in blue and cyan. The daily maps provide intuitive information about the sleep 
pattern of the individual. Since the watch is recording continuous actigraphy without reference to the external 
world, when the time zone is changed due to traveling, the sleep pattern is shifted and will need to be 
accommodated at a later stage of processing, as can be seen in this figure at approximately day 150. Standard/ 
Daylight Saving Time transitions similarly require correction. 

Estimating the major Sleep Episode. To automatically estimate the timing of the Sleep Episode, we utilize 
multiple moving windows that slide over a weighted transformation of the minute-based activity levels. The 
minutes with less than 25% activity (25th percentile of the empirical distribution of activity for the person) are 
assigned a sleep score of 1 and those with higher than 50% activity are penalized by negative experimental scores 
(-0.75 and -1). Then, two moving windows of narrow (60-min) and wide (100-min) sizes are used to sweep the 
scores and find a provisional nocturnal episode of sleep while the narrower window adjusts the beginning and the 
end estimates of the major Sleep Episode. The separation of task between two window sizes was found, in pilot 
analyses, to better capture the distinct targeted events, where detecting the nocturnal Sleep Episode benefitted 
from the larger window, but the precision of the sleep onset and offset time estimates benefitted from the smaller 
window. A ‘clean-up’ 90-min wide moving window was then used to connect adjacent short candidate Sleep 
Episodes with more than three-quarter sleep-scored minutes in each 90-min window. However, this process, on 
some occasions, still left two separate candidate Sleep Episodes that were separated by a period of activity during 
the middle of the night. As a convention, the automated algorithm joined discontinuous Sleep Episodes into one 
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longer episode if they fell within 22.5 minutes (a quarter of the 90-min window) of one another. This is a decision 
of convention and occurred in 2.3% of the cases in which sleep was measured in healthy young adults. 

The outcome of these steps is an estimate of a single provisional Sleep Episode for each day. The estimate, 
via the filtering approaches used, usually underestimates the full Sleep Episode duration by not including minutes 
on either temporal side of the sliding windows that have low activity. To mitigate this bias, as a final step, the 
initial estimate was expanded/shrunk to include all adjacent minutes that show less than 25% activity so long as 
they were after (when available) the evening button press (indicating the subject’s intended start of attempting to 
sleep) and before their waking button press. A button press was considered available if the device successfully 
recorded a button press within sixty minutes of the estimate. The duration of the major Sleep Episode after these 
corrections is recorded in the data output files as the automatically generated SleepDuration with its beginning 
(SleepOnset) and end (SleepOffset) times. 

Figure 3 displays examples of the initial automatic estimate of the Sleep Episode (yellow bottom bar) and the 
final corrected Sleep Episode (middle green bar) in the third row of Panel A, B, and C. A third estimate, shown 
as a blue bar, expands from the final Sleep Episode to include adjacent minutes when the activity is below the 
50% threshold, such as occurs when individuals are resting in bed but not yet asleep. We store the beginning of 
the expanded epoch as the BedrestOnset, the end as the BedrestOffset, and the duration as the BedrestDuration. 
For some purposes, the time from the beginning of the BedrestOnset to the SleepOnset can be used as a distinct 
measure (e.g., SleepOnsetLatency). These variables are summarized in Table 1. 

------------------------------------------------------------ 
Insert Figure 3 and Table 1 About Here 

------------------------------------------------------------ 
The estimated light exposure level from the watch is also shown in Figure 3, as well as the timestamps of the 

recorded button presses. The light level is not used by the algorithm to estimate the Sleep Episode but is visualized 
since it can aid manual adjustments that are applied during Quality Control. An assumption of the present 
approach is that a single Sleep Episode will occur that is usually 100 minutes or more; the limitations of this 
simplifying assumption will be discussed. 
Smartphone Data 

In addition to wearing the actigraphy watch, most of the individuals in Studies 1 and 2 installed the Beiwe 
application on their smartphones. The Beiwe application was configured to passively collect phone on/off times 
and the GPS location of the phone. An independent pipeline was used to securely analyze the GPS data and extract 
the most visited places by the individual during the study and estimate their major locations every 12 min. Then 
a daily map was color-coded based on the presence of the individual at those points of interest. The GPS map 
provides the time zone of the locations where the subject has visited and evidence of location stability or 
movement around the time of the major Sleep Episode. 

When participants traveled across time zones, a challenge arose as a matter of practice: when the new time 
zone is behind the old time zone, the data shifts back and overwrites the previously recorded data, and when the 
new time zone is ahead of the old one, the data shifts forward, and there will be a missing data gap. The same 
issue occurs for Standard/ Daylight Saving Time transitions. The time shifts occurring during the actual days of 
travel, especially when travel occurs by plane, are challenging to incorporate, and we considered these days as 
missing data with the days before and after being retained with data shifted to reflect the Time Zone experienced 
by the participant. Alternate goals, such as estimating circadian rhythms, may be better served by analyzing the 
data in a continuous fashion and will be different from the present focus where the discrete daily patterns require 
these practical adjustments.   

The smartphone data from Beiwe also provided relevant data for validation, including accelerometer and 
phone use data (via the recorded lock-unlock events). The DPSleep pipeline allows the integration and 
visualization of smartphone data when available. To integrate accelerometer data for the present paper’s 
validation purposes, a simple standard deviation analysis was applied to the phone acceleration along the x-axis 
as a representative of the acceleration score to recognize minutes of high movement. The distribution of 
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acceleration score in all minutes during the study for each individual was used to find minutes with greater than 
75 and 90 percentile movement (normalized to the individual). These minutes were color-coded in yellow and 
red, respectively, contrasting the lower acceleration minutes in gray, and plotted in relation to the daily Sleep 
Episode estimates (Figure 4). Additionally, the locked-unlocked events of the phone document when the phone 
is in use. Phone in-use time was defined as the time between every consecutive unlocked- locked events, lasting 
no more than 15 minutes. This is to soften the strong assumption of the phone being in-use all the time after the 
unlocked event and before it is locked again. The daily map is then color-coded to show the locked-unlocked 
minutes, in red and blue, respectively, in addition to in-use minutes in green (Figure 4). These data are used in 
the present paper to build confidence in the DPSleep estimates of the major Sleep Episode. They may also have 
utility for understanding the relation of digital technology use to sleep patterns, for example, as might occur if 
individuals use their phone sporadically at night. 

------------------------------------------------------------ 
Insert Figure 4 About Here 

------------------------------------------------------------ 
Sleep Estimation Quality Control 

DPSleep should not be expected to deliver perfectly accurate output when operating in the automatic mode. 
Several assumptions are made, and the structure of an individual sleep night can be complex. Instead, DPSleep 
provides an elaborative day-by-day report, examples of which appear in Figure 3. The user can decide about the 
confidence of the estimated Sleep Episode and revise the results manually if necessary. DPSleep includes editing 
tools. Every page of the report presents the data about one day from 6PM of the previous day to 6PM of the 
original day. The report can also include, when available, smartphone data, as illustrated (Figure 4). The daily 
report is a significant help to the investigators to decide about, and increase the precision of the sleep estimation 
results based on the availability and richness of the data. 

All results in this paper have been quality-controlled by two individuals independently relying on only the 
watch actigraphy data and not any ancillary data from the smartphone to make modifications. Thus, the data are 
analyzed here as would be from any typical study that only obtained watch actigraphy data. The guidelines we 
used for our quality control are described in Appendix II. Figure 5 illustrates plots of the sleep duration across 
nights before and after manual adjustments for each of six individuals in Study 1. As shown, most nights show 
identical values before and after QC, meaning no adjustment was required, while many others show slight 
adjustments. For several nights, a large adjustment was required (e.g., in Figure 5 S6, there is an outlier value; in 
Figure 5 S5, there are several values that were substantially corrected). The automated values showed a correlation 
with the final corrected values that ranged between r = 0.92 to r = 0.98. Figure 6 illustrates examples of errors 
encountered that required manual adjustments. Manual adjustments were made for 18% of the nights. As is 
illustrated in Figure 5, while approximately one in five nights were adjusted, most were small adjustments that 
would not impact most analyses. About 9% of the nights were adjusted to change the major Sleep Episode 
estimate by greater than 1 hour.  

------------------------------------------------------------ 
Insert Figures 5 and 6 About Here 

------------------------------------------------------------ 
Data Security 

Throughout the entire analysis, the pipeline is designed to securely handle the data without exposing any 
identifiable information. Days are reported as the days of the study relative to the consent day of the individual. 
We consider the GPS data identifiable not only when the actual coordinates are presented but also patterns of the 
daily maps as presented with significant (for the individual) locations. Therefore, the pipeline was designed to 
work with the encrypted data and avoid saving any of the coordinates or maps as unencrypted scratch files. Final 
results are saved directly to an encrypted format. 
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Within-Individual Statistical Modeling 
To analyze the longitudinal association between the actigraphy-based sleep estimation and the self-report 

data, a simple individual-level linear model was used with the self-report sleep quality as a predictor and 
actigraphy-based sleep duration as the outcome. This simple linear model was selected after using mixed linear 
model analysis to account for the time and auto-correlation of the observations. Categorical day of the week was 
included as a covariate to account for weekly structure related to course schedules and weekday-weekend 
differences. Only data collected during the academic year were included (i.e, fall and spring semesters, including 
exams periods and Thanksgiving and spring breaks, but excluding winter and summer breaks) to account for 
differences between the school year and extended school breaks. All the analyses were conducted in R using the 
‘stats’ package lm() function (R Core Team, 2019; version 3.6.1). 

 
Results 

Longitudinal Activity-based Sleep Estimates Within Individuals 
The longitudinal sleep patterns and daily sleep maps are the key outcomes of the DPSleep pipeline. To show 

the performance of the pipeline, four examples of processed data are shown for individuals from Study 1 (Figures 
7, 9, 11, 13). The data are from the full academic year with travel to and from campus and across Daylight Saving 
Time. Each figure contains three plots. The first is the color-coded daily map of activity scores that show the 
minutes with high (>50% orange, >75% red), low (<25% cyan; <10% blue), and medium (25-50% green) activity. 
The second plot is the raw estimated Sleep Episodes for each day. The final plot is the Time Zone adjusted and 
quality-control adjusted longitudinal plot of sleep behavior. This final plot represents the data used for all 
quantitative analyses and validation. 

------------------------------------------------------------ 
Insert Figures 7 to 14 About Here 

------------------------------------------------------------ 
Figure 7 shows the sleep data for S1 with a highly regular sleep pattern where the subject goes to bed sometime 

between 1AM and 2AM and wakes up consistently near 8AM. Every 6-7 days, the subject wakes up about an 
hour later than usual, which could be the indicator of the weekends. Figure 9 shows the sleep data for S2 with a 
less regular sleep pattern where, during the semester, the subject goes to bed between midnight to 4AM and wakes 
up between 9AM and noon. The effect of beginning the academic year is notable with a gradual transition to a 
later sleep time (first 25 days). The break and travel also affect the sleep schedule significantly during days 125-
150. The subject does not wear the wristband during the day for the travel days of 190-200, which are coded as 
missing data. Figure 11 shows the sleep data for S3, whose sleep schedule is comparably influenced by the 
academic calendar. Figure 13 shows the sleep data for S4, who displays the most irregular sleep pattern. There 
are some nights when this subject goes to bed at around midnight and does not wake up before 9AM, and other 
nights when the individual does not go to sleep before 6AM and sleeps only a few hours. The irregular sleep 
pattern does not appear to be related to the academic calendar since the subject displays a similar sleep pattern 
during breaks. 
Smartphone Use Tracks Sleep Episodes 

One way of validating the estimated Sleep Episode arises from the independent phone data collected 
simultaneously through the Beiwe application on each individual’s cell phone. Even though these data do not 
continuously measure activity, since the phone can be put down, they do indicate the minutes during which the 
individual is clearly not sleeping. Figures 8, 10, 12, and 14 plot the smartphone data for the four subjects analyzed 
above. In each plot, the upper panel shows the Phone Status via the locked-unlocked events. When the phone is 
not used, there should be no changes in the Phone Status. The lower panel displays Phone Acceleration that, like 
the wristwatch, provides a measure of dynamic movement when the phone is picked up, used, or is moving with 
the subject’s body. The missing signal instead of the low signal on the acceleration maps could be due to the 
subjects turning off their phones, or because when the phone is not in use or does not move for a certain time 
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period, the operating system can enter a power-saving mode that temporarily disables data collection from 
sensors. 

In all subjects, the phone activity measures were generally outside the time of the estimated Sleep Episodes 
and tracked the variations in sleep period from night to night. S2 and S3 (Figures 10 and 12) show this quite 
clearly since their sleep patterns change gradually during the first 25 nights of measurement. The phone activity 
measures track these transitions. S4, who showed the most erratic sleep patterns, also demonstrated quite clear 
evidence that phone use was frequent and intensive only outside the time of the major Sleep Episodes (Figure 
14). Beyond the general correspondence between phone and sleep, there were also interesting features in the 
details of the phone use that are relevant for comparing the activity- and phone-based data types. 

One detected feature is that the subjects occasionally used their phones for brief periods during the major 
Sleep Episode. A good example of this is S3 who showed short periods of phone use on occasion during the 
middle of her or his Sleep Episode (Figure 12; Days 19, 26, and 40). Another detected feature is that phone use 
does not precisely align with the beginning and end of the Sleep Episode. We suspect that this is a genuine 
difference in phone use patterns between subjects rather than a technical error. For S2, phone use tracked the 
major Sleep Episode remarkably well with phone use events occurring until the Sleep Episode began and 
beginning shortly after the Sleep Episode ended (i.e., awakening) (Figure 10). This particular individual also 
showed virtually no phone use during the Sleep Episode, yielding an extremely tight coupling of the two 
independent streams of data. However, other individuals showed systematic differences. For example, S1 (Figure 
8) showed a gap between the estimated wake time and the first evidence of phone use. Moreover, phone use 
across days showed a patterned start at 9AM for most days, even when the Sleep Episode ended earlier. This 
individual likely does not start using their phone immediately upon waking; there may be a phone alarm set at 
9AM leading to a consistent first use at the same time across days. These systematic differences show that 
combining the data can reveal the interaction between device use and sleep pattern (e.g., by detecting the tendency 
to briefly use the phone during nighttime wakening). 

As an additional visualization, Figure 15 shows data from S1 with the horizontal axis representing clock time 
(48 consecutive hours, with the 2nd 24 hours on each horizontal line repeated in the 1st 24 hours of the next 
horizontal line) and day number down the y-axis; this is the plotting convention often used by investigators 
interested in circadian rhythms (Dagan and Borodkin, 2005). DPSleep allows plotting using either lateral (as in 
most figures in this paper) or horizontal (e.g., Figure 15) conventions. 

------------------------------------------------------------ 
Insert Figure 15 About Here 

------------------------------------------------------------ 
Actigraphy Measures of Sleep Duration Track Self-Report Sleep Quality 

In each individual, the DPSleep pipeline yielded an estimate of the Sleep Duration (SleepDuration in Table 
1), the time difference between the SleepOnset and the SleepOffset. Each day, the individuals also reported the 
quality of the previous night’s sleep on a Likert Scale (Appendix I). Figure 16 shows the variation in Sleep 
Duration across days in each of the six individuals from Study 1 as well as their self-report Sleep Rating. Missing 
data excluded from the analysis include the data from winter break (the gaps near Day 120) and non-compliant 
data (e.g., the wristband was removed or the survey was submitted the following day). 

------------------------------------------------------------ 
Insert Figure 16 About Here 

------------------------------------------------------------ 

Individual-level linear model analysis is used to evaluate the longitudinal association between the self-report 
sleep quality (for both concurrent night and nights preceding) as the predictor and the actigraphy-based Sleep 
Duration as the outcome. There is a significant correlation between the concurrent night’s self-report Sleep Rating 
and the actigraphy-measured Sleep Duration in each of the six subjects (Figure 17): short Sleep Durations predict 
self-report ratings of poor sleep. The observation that the Sleep Rating and Sleep Duration measures track one 
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another in healthy young individuals provides evidence of validity. No correlation or a weakly positive correlation 
is observed for the preceding night. 

------------------------------------------------------------ 
Insert Figure 17 About Here 

------------------------------------------------------------ 
Sleep Duration and Sleep Ratings Show Structured Weekly Variation 

One of the outcomes of accurate estimation of the major Sleep Episode in individuals is the ability to 
investigate non-stationary effects that fluctuate with the weekly schedule, holidays, and academic calendar 
(especially since subjects in Study 1 are undergraduate students). To evaluate weekly variation that might be 
relevant to data modeling as well as discovery insight, an autocorrelation analysis was performed. Actigraphy-
based Sleep Duration shows almost no lag effect such that one night’s duration shows little association with the 
next (Figure 18). Interestingly, there is a notable lag effect at day 7 and day 14, suggesting a strong autocorrelation 
between the same days of the week. Self-report Sleep Rating shows similar lag day 7 and lag day 14 effects and 
also a temporal autocorrelation at lag days 1 and 2 suggesting a poor or good Sleep Rating predicted a similar 
rating on subsequent nights despite no evidence of autocorrelation in the actigraphy-based Sleep Duration. 

------------------------------------------------------------ 
Insert Figure 18 About Here 

------------------------------------------------------------ 
When data are analyzed by day of the week (Figure 19), most subjects show relative stability in their Sleep 

Duration, albeit with some inter-individual variation: S6 has the longest sleep with a low variability on 
Wednesdays, while S4 has the longest sleep on Saturdays with gradually decreasing sleep until Tuesdays. 
Similarly, some individuals (S2 and S6) report stable sleep quality ratings during the week, while the others rate 
their weekend sleep better. 

------------------------------------------------------------ 
Insert Figure 19 About Here 

------------------------------------------------------------ 
We use a circle plot to show the sleep onset and offset distributions for each subject separately by weekday 

(Figure 20); this type of plot allows the sleep patterns to be visualized comprehensively on an intuitive mapping. 
Each point indicates the beginning or end of the major Sleep Episode and their medians. While there are subjects 
with stable average sleep onset (S1) and offset (S6), the plots confirm different effects of weekdays for different 
subjects, such as the effect of weekend from Friday to Monday on late sleep of S5, the effect of Monday, Tuesday, 
and Thursday on very late sleep of S4, and the effect of Monday, Tuesday, and Thursday on earlier wake up of 
S2. That is, specific structured sleep patterns are highly idiosyncratic to the individual. 

------------------------------------------------------------ 
Insert Figure 20 About Here 

------------------------------------------------------------ 
Sleep Duration and Sleep Ratings Track Caffeine Intake in Some Individuals 

Daily caffeine consumption is also assessed. Figure 21 shows the variation in caffeine consumption ranging 
from 0 (none) to 4 (5+ drinks) for each of the six subjects in Study 1; Figure 22 shows the weekly variation; 
Figure 23 shows the individual-level linear model for each subject modeling the relationship between caffeine 
consumption and Sleep Duration. While the effect is quantitatively small, four of the six subjects show a 
statistically significant relationship such that more caffeine consumption predicts a shorter Sleep Duration for the 
upcoming night. 
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------------------------------------------------------------ 
Insert Figures 21-23 About Here 

------------------------------------------------------------ 
Example Use Case: Sleep Patterns Show State Variation in Severe Mental Illness 

To explore the feasibility and utility of sleep measures from extensive longitudinal assessments in patients, 
data from two individuals managing severe mental illness from Study 2 are analyzed using the DPSleep pipeline. 
Individuals participated for 543 and 309 days, with 89% and 59% of completed days of data obtained after data 
loss due to missingness and quality control. 

Figure 24 illustrates data from S11 who is managing major depression. Of interest is the slowly changing 
sleep patterns that can be immediately visualized in the activity score plots (Figure 24A). Two separate features 
of the data are interesting and require distinct measures to quantify. The first is that the shifts to low-level activity, 
indicative of sleep, begin earlier and end considerably later across two long episodes that begin near Day 110 and 
Day 300. The reduced activity scores extend until noon on many days. The change in sleep onset and sleep offset 
and increase in the Sleep Duration is quantified with a 14-previous-days sliding window with less than three 
missing values tolerance in the DPSleep output shown in Figure 24C. The Sleep Timing Regularity Index (STRI) 
is also calculated as a 0-1 similarity index for 24-hours sleep and wake minutes of every day compared to an 
assumed day with the averaged sleep onset and offset. The STRI represents a modified version of the Sleep 
Regularity Index (SRI) introduced by Phillips and colleagues (2017). The SRI "calculates the percentage 
probability of an individual being in the same state (asleep vs. awake) at any two minutes 24 hours apart", thus 
focusing on day-to-day, circadian fluctuations in sleep. The STRI, our modified version of the SRI, compares 
each study day to each participant's "average sleep day". 

Computing a participant's average sleep day involves several steps to select the minutes from each day during 
which a participant is most frequently asleep such that the total duration is equal to the participant’s average daily 
Sleep Duration. The daily STRI is then computed by comparing each daily Sleep Episode to the average Sleep 
Episode, at the minute-level, and computing the proportion of minutes for which these two Sleep Episodes 
matched in sleep. This value, demonstrated in Figure 24C with a backward 14-day sliding window, shows 
noticeable drops that roughly occur at the beginning of the period of longer sleep intervals. Data with more than 
3 missing values during the sliding window are considered missing. 

What is further notable is that the major Sleep Episodes include higher activity score periods than during 
typical sleep, suggesting an interrupted and inconsistent sleep. This feature is picked up in the derived measures 
of SleepImmobility percentage, defined in Table 1 as the percentage of ImmobileMinutes in the major Sleep 
Episode illustrated as similar sliding window values in Figure 24C. Adopting a previously described quantitative 
framing of Immobility (version 7.2, CamNtech, Cambridge, UK, 2008; Meltzer et al., 2015), the ImmobileMinutes 
were defined in Table 1 as minutes with lower than a cut-off threshold (40th percentile activity here) that is the 
threshold to show the Activity Level in Figure 4. To further illustrate the utility of these data, the clinical severity 
of illness, measured via the Positive and Negative Syndrome Scale (PANSS) Total Score, is shown overlaid on 
top of the major Sleep Episode in Figure 24B. The periods of sleep disruption and extended sleep offsets 
correspond to the periods of high illness severity. 

Figure 25 illustrates data from S12 who lives with psychosis associated with schizophrenia. The activity scores 
display an irregular and slowly drifting pattern, including a shift to low activity episodes that occur later in the 
day around Day 55 and then an earlier shift beginning near Day 70 (Figure 25A). The period of most severe illness 
symptoms occurs near to the most irregular sleep periods after Day 75. Note also this individual has generally 
poorer clinical scores (Figure 25B) as compared to S11 and a generally lower STRI (Figure 25C). These data 
illustrate the complexity and richness of information that can be obtained through extensive longitudinal analysis 
of the actigraphy data, and also how different each individual can be from one another. 
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------------------------------------------------------------ 
Insert Figures 24-25 About Here 

------------------------------------------------------------ 
Example Use Case: Sleep Patterns in Relation to Deep Dynamic Phenotyping 

To demonstrate how sleep measures can be combined with additional forms of digital phenotyping 
information, two individuals from Study 1 are displayed in Figures 26 and 27. In each plot, the sleep patterns for 
each individual are illustrated through the course of an academic year, along with the quantified measures of 
Sleep Duration and STRI. In addition, self-report measures of social and academic behaviors (time on Homework 
and time Interacting) and mood (Happy and Stress) are displayed aligned to the estimates of the longitudinal Sleep 
Episodes. The examples illustrate clear dynamics of sleep, including weekend (empty circles) / weekday (filled 
circles) effects, changes between the active semester and breaks, as well as intermittent deviations for regular 
patterns. These data illustrate the potential of using low-burden wearables in combination with smartphone-based 
digital phenotyping to capture a great deal of information about life rhythms and changes due to environmental 
demands. 

------------------------------------------------------------ 
Insert Figures 26-27 About Here 

------------------------------------------------------------ 
An Example of Limitations 

In showing examples of the utility of the DPSleep processing pipeline and example applications, we wanted 
to also show, as a last point, a clear example of a limitation. The present pipeline and quality control adjustments 
make assumptions that have been selected because they work most of the time in the range of contexts for which 
they were tested. But real-life happenings are complex. Figure 28 plots an interesting example. In this example, 
the daily data from Figure 3B is replotted along with phone use and GPS location data from the same participant. 
What is notable is that our original estimate, based only on watch actigraphy data and the button press, combined 
with the rule employed to join together episodes of low activity as a continuous major Sleep Episode, likely 
mischaracterizes this night’s true continuous Sleep Episode. What the phone data reveal is that the nighttime 
period of activity is followed by missing GPS data, intermittent phone use, and then eventual arrival at a new 
location. This individual most likely woke up early and got on a bus or a train. Our automated estimation 
procedures as well as our quality control, using only the watch actigraphy, mischaracterizes this Sleep Episode. 

------------------------------------------------------------ 
Insert Figures 28 About Here 

------------------------------------------------------------ 
 

Discussion 
The present work describes and demonstrates the utility of an open-source, longitudinal sleep-analysis 

platform called DPSleep. The platform was applied to two cohorts of participants that possessed extended data 
over months to years and included clinically healthy undergraduates as well as outpatients living with severe 
mental illness. The goal of these diverse explorations was to validate the approach and demonstrate its utility 
across multiple real-world participant cohorts. The results revealed that the approach could capture the major 
Sleep Episode and detect dynamic patterns of sleep behavior including in individuals presenting with episodic 
clinical illness (e.g., Figures 24-25).  

Several prior studies have investigated the validity and accuracy of wrist-worn actigraphy devices to estimate 
sleep parameters and compare them against gold-standard PSG-derived measures and self-report sleep quality 
(Khademi et al., 2019). DPSleep uses frequency-based analysis and begins with the high-frequency raw data from 
the wrist-worn accelerometer. The high precision of the sampling frequency and the continuity of the collected 
data in our samples provided ideal datasets to apply frequency-based analysis, a robust and efficient tool to 
analyze the activity of the individual, that complements alternative procedures such as zero crossing mode (ZCM), 
time above threshold (TAT), or digital integration mode (DIM) (Stone and Ancoli-Israel, 2017).  
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Frequency-based analysis inherently and automatically discounts the alternating gravity effect on different 
axes, without the need to eliminate the amplitude of the signal (van Hees et al., 2015), and at the same time 
disentangles the natural high frequency shakes of the body from the actual repositioning dynamic, which is the 
main focus in sleep research. As explained earlier, the raw accelerometer data contains the gravity component 
offset, that can be removed automatically in frequency analysis when focusing on higher (>0) frequencies. A 
challenge with our approach was related to participant burden as the participants had to visit the lab every 4-5 
weeks to get a refreshed memory and battery to prevent data missingness. An alternative solution to attenuate the 
burden on subjects is to use wireless data transfer and cloud storage; however, this approach has its own 
limitations, based on the wireless storage size and battery usage in addition to the data security concerns. We 
expect advances in widely available commercial technologies to gradually alleviate these current existing 
challenges.  

In our study, reported sleep quality shows a strong correlation with the activity-based Sleep Duration measure; 
therefore, the focus of our sleep algorithm development was mainly to optimize this parameter, meanwhile 
building a platform to explore other relevant sleep-related parameters in future work. Despite existing sleep 
detection algorithms that look for 5-15 low activity minutes (van Hees et al., 2015; Hees et al., 2018), DPSleep 
starts with structural analysis of the daily activity to first detect the large episode of the day with lowest average 
activity; and then the edges of the episode are adjusted using smaller moving windows and heuristic rules. This 
approach is an efficient solution to eliminate the need for any kind of sleep diary or ambient light assumptions 
due to the fact that the former is not usually available and accurate, and the later could be misleading, since the 
wristband can be blocked at any time of the day by a long sleeve. Moreover, this approach distinguishes the short 
naps or inactive periods during the day from the long, continuous, though disrupted, Sleep Episodes without any 
assumptions about the sleep time. Structural analysis of the activity scores during the whole study, using the 
individual’s statistics and moving average windows with different sizes, suggests the most likely episode for the 
individual’s sleep during the day. Beside the moving average windows to automatically detect the major Sleep 
Episode, DPSleep provides a helpful tool to the investigators to decide, with reasonable confidence, about 
idiosyncratic sleep behaviors such as no sleep or very short Sleep Episodes. Additional button presses, if available, 
and adjacent activities are used to tune this episode and/or connect smaller pieces to shape the entire Sleep 
Episode. 
Caveats and Limitations 

As we illustrate in Figure 28, our approach can make mistakes. In this sense, we illustrate how inexpensive 
and easy-to-obtain actigraphy data can be analyzed to estimate the major Sleep Episode and dynamic patterns 
over many days. However, the real world is messy. Atypical behavioral patterns (e.g., many short naps without a 
clear extended primary Sleep Episode) and behaviors that yield extreme accelerometer readings are challenging 
for our approach. Specifically, using our methods, actigraphy-based sleep detection is not appropriate for 
measuring sleep when the individual is on a shaking platform such as a plane, train, or bus. This is an unavoidable 
situation in longitudinal studies; however, since the on-plane sleep effect was not the focus of our study, and those 
days were very few compared to the days of the entire study, we were able to detect those days using GPS data 
and eliminate them from the results. To solve the continuous shaking challenge in similar situations or in studies 
on individuals with Parkinson’s disorder, sleep detection devices based on ambulatory circadian monitoring 
(ACM) are recommended (Madrid-Navarro et al., 2019). Most broadly, as experience with actigraphy grows and 
repositories of annotated data become available from common and less common activities, the present approach 
(and others) can be refined to handle a wider variety of situations. The validation and exploration of DPSleep, as 
illustrated in these initial explorations, provides a tool that can be used today as well as refined and expanded 
through its open-source release. 
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Figure Legends 
Figure 1. Three-axis accelerometer data for a day of data. The raw acceleration signal along three axes 
sampled here at 30Hz and scaled to 9.8 m/s2 gravity intuitively shows the change in the dynamics of the signal, 
including the Sleep Episode from approximately 12AM to 7AM. 
Figure 2. The DPSleep processing pipeline. The sequential steps in the processing pipeline are illustrated with 
example data for key steps. The pipeline begins with raw accelerometer data and derives estimates of 
individualized sleep scores (A) as well as raw (B) and corrected Sleep Episodes (C). Output variables in Table 1 
are calculated based on the corrected Sleep Episodes as estimated in C. Specifically, as the first step, the standard 
deviation of the acceleration along three axes is averaged over 150-minute windows forward and backward to 
find the wrist-off minutes. The Welch equation is then used to calculate the power density spectrum of the 
acceleration signal at different frequencies, and the area under the curve estimates power as the root mean squared 
integrated over the three axes. Minutes are classified based on 10, 25, 50, and 75 percentile thresholds and can be 
visualized (A; blue, cyan, green, orange, and red display the minutes based on increasing power scores). A series 
of forward and backward moving average windows are used to flag the candidate Sleep Episodes that are then 
further filtered to derive the raw sleep estimate (B). Quality control and adjustment for the local time zone then 
yield to the final corrected sleep estimate (C). 
Figure 3. Examples of daily sleep reports. Each panel A-C displays a sleep report for a single 24-hour day of a 
participant. All data are from the watch. For each panel, the top row displays the activity level over time as the 
power of one minute (Activity Level). The activity score is shown in color in the 2nd row, with the low activity 
periods quite apparent in blue (Activity Score). The third row (Sleep) displays the actual estimates of the Sleep 
Episode derived fully automatically from the activity scores and the button presses (when available). The initial 
provisional estimate of the Sleep Episode (called Algorithm) is displayed in yellow, with the automatically 
expanded Sleep Episode above it. The Sleep Episode is the main estimate used for the calculation of SleepOnset, 
SleepOffset, and SleepDuration. The Bedrest Episode is also shown, which extends beyond the Sleep Episode to 
include adjacent medium activity periods. The final row (Light) shows the light levels. 
Figure 4. Example of a daily sleep report that includes phone use and GPS data. Data for a single 24-hour 
are displayed similar to Figure 3 with additional data obtained from the smartphone of the individual. The first 
four rows are identical to Figure 3. The fifth row (Phone) displays lock-unlock phone events. The sixth row 
(Acceleration) displays data derived from the accelerometers within the phone. The final row (GPS) shows the 
clustered frequently visited locations of the individual relative to their estimated home location (dark gray), with 
different colors showing different distances from home. Missing GPS data are shown in white and light gray 
indicates the available coordinates that are not among the frequently visited locations by the individual.    
Figure 5. Effects of manual quality control adjustment on Sleep Duration. The Raw Sleep Duration estimates 
for each of the six subjects of Study 1 are plotted against the Corrected Sleep Duration estimates after quality 
control adjustment.  
Figure 6. Examples of manual adjustment of the Sleep Episode. Two examples of adjustments to the Sleep 
Episode are illustrated. The adjusted episode is noted by the black line with marked ends plotted on top of the 
automatically generated Sleep Episode (green bar) and Bedrest Episode (blue bar). (A) A case where the 
automated process identified a short sleep adjacent to the main Sleep Episode. The two were concatenated into 
one extended Sleep Episode. (B) A case where the stillness during sleep appears to fall below the threshold and 
gets erroneously labeled as a wrist-off event (white, missing data). However, the intermittent movements suggest 
the watch is being worn. Manual adjustments only used the data from the watch actigraphy device. 
Figure 7. Longitudinal Sleep Episode estimates in S1. Three panels display longitudinal Activity Score and 
Sleep Episode estimates for 243 days. Day 1 is near to the 9th day after the beginning of the semester. Winter 
break falls near days 102 to 133. Each vertical line displays data for a 24-hour day. (A) The top panel displays 
the continuous Activity Scores colored by the threshold for each day. For each day, the plot begins at 6PM at the 
bottom and ends at 6PM, allowing the nighttime sleep period to plot in the center of the graph. Over days the low 
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activity band (in blue) is relatively consistent except for a dramatic shift at Day 118, which is attributed to travel 
outside of the Time Zone. (B) The middle panel displays the same data revealing the automated detection of Sleep 
Episodes and Nap Periods. (C) The bottom panel C displays the Time Zone adjusted and fully quality-controlled 
estimates of the final Sleep Episodes. 
Figure 8. Longitudinal Sleep Episode estimates in S1 in relation to phone use. The Sleep Episodes from 
Figure 7C are plotted (light blue) in relation to independently estimated phone events. (A) The Phone Status is 
shown with colored hashing for when the phone is Locked (red), Unlocked (blue), and In-Use (green). Note that 
there is virtually no phone use during the estimated Sleep Episodes. The phone use events, on many nights, occur 
up until and just before the beginning of the Sleep Episode. However, on most mornings, there is a gap between 
when the Sleep Episode ends, and phone use begins, which often begins abruptly near to 9AM, possibly reflecting 
phone use begins with an alarm-triggered event. (B) Phone Acceleration data are plotted and also reveal virtually 
no phone movement during the Sleep Episodes 
Figure 9. Longitudinal Sleep Episode estimates in S2. Longitudinal Activity Score and Sleep Episode estimates 
for 257 days are plotted in the same format as in Figure 7. Day 2 is near to the beginning of the semester. Winter 
break falls near days 112 to 143. An interesting feature in this individual is the extended wrist-off periods from 
Days 194 to 201. As can be seen in panel C, these days in their entirety are excluded from the final analysis. 
Another interesting feature in this individual is the gradual shift to a later Sleep Episode from Day 1 to about Day 
25, indicated with the red asterisk in B and C. The later Sleep Episode is then maintained for much of the semester. 
Figure 10. Longitudinal Sleep Episode estimates in S2 in relation to phone use. Phone use data are plotted in 
the same format as Figure 8. Again, there is minimal phone use during the Sleep Episodes, consistent with this 
individual not using their phone during the nighttime. In contrast to S1, Phone Status events begin almost 
immediately following waking, suggesting that the individual starts using her or his phone as soon as sleep ends. 
Figure 11. Longitudinal Sleep Episode estimates in S3. Longitudinal Activity Score and Sleep Episode 
estimates for 258 days are plotted in the same format as in Figure 7. Day 4 is near to the beginning of the semester. 
Winter break falls near days 114 to 146. Similar to S2, this individual shows a gradual shift to a later Sleep 
Episode from Day 1 to about Day 25, indicated with the red asterisk in B and C. 
Figure 12. Longitudinal Sleep Episode estimates in S3 in relation to phone use. Phone use data are plotted in 
the same format as Figure 8. In this individual, phone use often ends well before the estimated Sleep Episode 
begins. In addition, phone use shows a structured pattern on wakening with often-recorded acceleration events at 
9AM, then a gap, and then another bout of events at 10AM. 
Figure 13. Longitudinal Sleep Episode estimates in S4. Longitudinal Activity Score and Sleep Episode 
estimates for 257 days are plotted in the same format as in Figure 7. Day 2 is near to the beginning of the semester. 
Winter break falls near days 112 to 143. This individual shows highly irregular Sleep Episodes. 
Figure 14. Longitudinal Sleep Episode estimates in S4 in relation to phone use. Phone use data are plotted in 
the same format as Figure 8. Note that the Phone Status (A) and Phone Acceleration (B) events track the irregular 
Sleep Episodes. 
Figure 15. Two-Day column formatted Longitudinal Activity Score and Sleep Episodes. Color-coded 
Activity Score (A) and the estimated Sleep Episode (B) are presented in a format that is standard in the sleep 
medicine community. In this format, the days of the study are presented as the rows from top to bottom and every 
row contains the data of two consecutive days; the first column is the original day and the second column is the 
next day both presented from 12AM to 12AM. The format allows the investigators to focus on the study nights 
with the vertical blue band in the middle of the plot, without missing any information before and after the night. 
This individual (S1) Sleep Episodes are shifted to the right of the center because their sleep onset time is typically 
after 1AM. 
Figure 16. Longitudinal Behavior of Sleep Duration and Sleep Rating. The time course of each subject’s 
objective Sleep Duration (in minutes) as measured by actigraphy is plotted (left column) next to the same subject’s 
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self-report Sleep Rating (right column; 5-point Likert scale; 0=Exceptional, 4=Terribly). Data from winter break 
and non-compliant data (e.g., the watch was removed, or the survey was submitted the following day) are 
excluded; hence there are gaps in the data, including a large gap around day 120 (winter break). The gray circles 
to the left of each time course show the mean (± SD) Sleep Duration and most frequent (mode ± SD) Sleep Rating 
for each individual. 
Figure 17. Self-report Sleep Rating predicts Actigraphy-based Sleep Duration. Individual-level linear model 
applied to each subject shows the association between self-report Sleep Rating and actigraphy-based Sleep 
Duration. In each case, the self-report Sleep Rating negatively predicted Sleep Duration when the Sleep Rating 
targeted the night of sleep (red line and circles). When the Sleep Rating was shifted to the next day so that the 
rating no longer matched the night of Sleep Duration, the relationship between Sleep Rating and Sleep Duration 
in most subjects showed either no relation (S1, S3) or a small positive relation, perhaps a form of sleep rebound 
(S2, S4, S6) (blue triangles and lines). S5 showed negative association for both nights. The larger gray circles to 
the left of each plot show the average (mean ± SD) Sleep Duration across the study for each subject. The larger 
gray circles below each plot show the most frequent (mode ± SD) Sleep Rating across the study for each subject. 
The bottom left box in each panel indicates which associations are significant (p<0.05). 
Figure 18. Autocorrelation (lag) analysis of Sleep Duration and Sleep Rating reveal weekday patterns. The 
autocorrelation, or the correlation of each variable’s time course with itself at varying lags, is plotted for 
actigraphy-based Sleep Duration (blue) and self-report Sleep Rating (red) averaged across the six subjects of 
Study 1. Shading illustrates the standard error of the mean. Increased autocorrelation values at lags of 7 and 14 
days indicate that Sleep Duration and Sleep Rating for a given weekly night (e.g., Friday, Saturday) are more 
similar to the same weekly nights on different weeks than to the immediately adjacent nights falling on different 
weekdays. While autocorrelation is generally weak, there is a time-dependent structure within the data that should 
be considered when the data are modeled. 
Figure 19. Weekday patterns of Sleep Duration and Sleep Rating. Sleep Duration and Sleep Rating are plotted 
separately for each weekday in each of the six subjects of Study 1 that vary depending on the day of the week for 
some subjects. While some subjects show relative stability in Sleep Duration (S1, S3, S5), others show strong 
effects of weekday (S2, S4). The self-report Sleep Rating is also variable with a tendency for the nights before 
the weekend days to be rated better (Saturday, Sa; Sunday, Su). Circles representing data points for Sleep Rating 
are jittered for visualization. Means (for Sleep Duration) and medians (for Sleep Rating) are shown by enlarged 
symbols with the shaded surround representing the standard error of the estimate. 
Figure 20. Weekday patterns of sleep onset and sleep offset. Sleep onset and offset (wake) times show 
differences depending on the day of the week. Each subject’s sleep onset (circles) and offset (diamonds) times 
are displayed (large circles/diamonds = medians) on a 24-hour clock format. Between-subject sleep onset and 
offset times are variable, as well are weekday patterns within the same individuals. These structured patterns, 
which can vary from subject to subject, should be considered when the data are modeled. 
Figure 21. Longitudinal Behavior of Sleep Duration and caffeine consumption. The time course of each 
subject’s actigraphy-based Sleep Duration (in minutes) is plotted (left column) next to the same subject’s self-
report caffeine consumption (right column; 5-point Likert scale; 0=None, 4=Five+). The plot format is similar to 
Figure 16. Even in this small sample, the between-subject and within-subject variability in caffeine consumption 
is notable, with certain subjects drinking caffeinated beverages often and variably across days (S1) and others 
consuming minimal caffeine on average with exceptions (S6). 
Figure 22. Weekly structure of Sleep Duration and caffeine consumption. Sleep Duration and caffeine 
consumption plotted separately for each weekday in each of the six subjects of Study 1 show variation depending 
on the day of the week. Circles representing data points for # Caffeinated Beverages are jittered for visualization. 
Means (Sleep Rating) and medians (# Caffeinated Beverages) are shown by enlarged symbols with the shaded 
surround representing the standard error of the estimate. 
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Figure 23. Self-report caffeine consumption predicts Sleep Duration. The individual-level linear model 
framework shows individualized associations between Sleep Duration and self-report ratings of the number of 
Caffeinated Beverages consumed.  Data are plotted similar to Figure 17 and illustrate significant associations in 
certain subjects (S1, S2, S4, S5) but not others (S3, S6). 
Figure 24. Example longitudinal sleep pattern over 500 days in a patient with severe mental illness. Three 
panels display longitudinal Activity Score, Sleep Episode estimates and clinical severity score, and quantitative 
metrics derived from the actigraphy for S11 of Study 2. (A) The top panel displays the continuous Activity Scores 
colored by the threshold for each day, similar to Figure 7A. (B) The middle panel displays the time-zone adjusted 
and fully quality-controlled estimates of the Sleep Episodes (similar to Figure 7C) with the severity of the Clinical 
Score overlaid by a red line. The Clinical Score reflects the total score on the Positive and Negative Syndrome 
Scale (PANSS). (C) Temporally-smoothed (14-day backward moving average) estimates of three activity-based 
measures are plotted: the estimated Sleep Duration (labeled Duration), the Sleep Timing Regularity Index (labeled 
STRI), and the SleepImmobility percentage (labeled Immobility). Gaps in the plots reflect missing days; if more 
than two days were missing, the temporal average that would include those days are absent. Clear state changes 
in the sleep patterns can be observed (demarcated by dashed black lines in B) that are temporally coincident with 
negative changes in the Clinical Score. 
Figure 25. Example longitudinal sleep pattern over 200 days in a patient with severe mental illness. Using 
the same format as Figure 24, data from S12 of Study 2 are plotted. Note the consistently irregular and fragmented 
sleep patterns that are pervasive throughout the course of the measurements. These data illustrate the feasibility 
of collecting high-quality continuous data using passive actigraphy in individuals with severe mental illness. 
Figure 26. Example year in the life of college student S1. Four panels display multi-modality longitudinal data 
from the full academic year in a college undergraduate (S1 of Study 1). (A) Actigraphy-based estimates of the 
Sleep Episode are displayed, colored by academic period (black = academic school year; red = winter break). 
Missing data with gray backgrounds reflect missing (wrist-off) or quality removed data (e.g., on a travel day 
across time zones). The mean Sleep Episode is shown to the left in blue. (B) Temporally-smoothed (3-day 
backward moving average with no missing tolerance) estimated of the Sleep Duration (Duration) and Sleep 
Timing Regularity Index (STRI). (C) Temporally-smoothed estimates of time Interacting and time doing 
Homework from the self-report questionnaire (see Appendix I). (D) Self-report estimates of mood, including 
happiness (Happy) and stress (Stress) (also see Appendix I). This individual displays stable and regular sleep 
patterns with periodic deviations. Note the deviations in time Interacting and Homework during the break period. 
Figure 27. Example year in the life of college student S5. Using the same format as Figure 26, four panels 
display multi-modality longitudinal data from the full academic year in a college undergraduate (S5 of Study 1). 
This individual shows highly irregular sleep during the academic year and during the break. Note that in addition 
to the general variation in sleep patterns and mood, there are specific instances of extreme variations that are 
reflected in Sleep (e.g., Day 144 in B) and Stress (D). 
Figure 28. Example of an erroneous estimate of the Sleep Episode. Plots of a night from Study 1 illustrate that 
actigraphy-based sleep estimation is imperfect. The top four rows represent the watch-based actigraphy 
information as well as our present procedure’s estimates of the Sleep Episode (from Figure 3B). The bottom three 
rows show the phone use data for this night plotted in an aligned format. Note that the ‘active’ period near 5AM 
is followed by periods of phone use and acceleration, and then a GPS-estimated change in location (see pink 
location estimate starting at 11AM). This subject likely got out of bed and went into a car or bus, sitting relatively 
motionless for several hours, until she or he arrived at a new location. Our procedures, which only use the watch 
data, mischaracterized this Sleep Episode. This complex night is a reminder that real-world behavior is complex 
and that the assumptions of the approach are imperfect for all situations.
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Table 1. Sleep Variables Generated by the DPSleep Pipeline 
------------------------------------------------------------------------------------------------------------ 
Parameter Name Description 
OffWrist  Percentage of wrist-off time per 24 hours (%) 
SleepOnset  Beginning of the Sleep Episode (hh:mm) 
SleepOffset  End of Sleep Episode (hh:mm) 
SleepDuration Difference between SleepOnset and SleepOffset (min) 
BedrestOnset  Beginning of Bedrest Episode (hh:mm) 
BedrestOffset  End of Bedrest Episode (hh:mm) 
BedrestDuration  Difference between BedrestOnset and BedrestOffset (min) 
SleepOnsetLatency Difference between BedrestOnset and SleepOnset (min) 
SleepEfficiency Percentage of SleepDuration/BedrestDuration (%) 
ActiveMinutes Number of minutes during Sleep Episode with activity higher than the 40th percentile 
ImmobileMinutes Number of minutes during Sleep Episode with activity lower than the 40th percentile 
ActiveBouts Number of bouts (sequences) during Sleep Episode with continuous ActiveMinutes, with 

1-Minute Immobility tolerance. 
SleepImmobility Percentage of ImmobileMinutes/SleepDuration (%) 
LightMinutes Number of minutes during Sleep Episode with light greater than 1 lux. 
LightBouts Number of bouts during Sleep Episode with continuous LightMinutes, with 1-Minute 

Darkness tolerance. 
PhoneMinutes Number of minutes during Sleep Episode with any phone event, including locked, 

unlocked, or in-use. 
PhoneBouts Number of bouts during Sleep Episode with continuous PhoneMinutes, letting 1-Minute 

no-event tolerance. 
------------------------------------------------------------------------------------------------------------ 
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Appendix I: Self-Report Questionnaire 
Sleep 
How did you sleep last night? 

1) Terribly: little or no sleep 
2) Not so well: got some sleep but not enough  
3) Sufficient: got enough sleep to function  
4) Good: got a solid night’s sleep and felt well-rested 
5) Exceptional: one of my best nights of sleep  

Caffeine 
In the past 24 hours how much caffeine (e.g., 8oz of coffee, tea, or soft drink) did you consume? 

1) None  
2) One drink 
3) Two drinks 
4) Three or four drinks 
5) Five or more drinks 

Interacting 
How much of your waking time did you spend interacting with others over the past 24 hours? 

1) Very little of my time (0-20%) 
2) Some of my time (21-40%) 
3) About half of my time (41-60%) 
4) Most of my time (61-80%) 
5) Almost all of my time (81-100%) 

Homework 
How much of your waking time did you spend studying or doing homework over the past 24 hours? 

1) Very little of my time (0-20%) 
2) Some of my time (21-40%) 
3) About half of my time (41-60%) 
4) Most of my time (61-80%) 
5) Almost all of my time (81-100%) 

Happy 
How much did you feel happy over the past 24 hours? 

1) Very slightly or not at all 
2) A little  
3) Moderately  
4) Quite a bit 
5) Extremely 

Stress 
How much did you feel stressed over the past 24 hours? 

1) Very slightly or not at all 
2) A little  
3) Moderately  
4) Quite a bit 
5) Extremely 
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Appendix II: Quality Control Instruction 

On the Activity Score plot: The activity level in each minute is color-coded so that Cyan and Blue are the 
lowest activity minutes and Orange and Red are the minutes with the highest activity. Green is the medium 
activity. The Sleep Episode is almost continuous appearance of Blue and/or Cyan (lowest activity).  

On the Sleep plot: 

• Light yellow box is the initial provisional estimate of the Sleep Episode automatically detected by the 
algorithm (called Algorithm on the Sleep plot).  

• Green box is the Sleep Episode estimation when the sleep edges are adjusted to:  
1- Button Press Markers: if the marker(s) exist(s) and is(are) less than 60 minutes inside the sleep box 

detected by the algorithm; otherwise: 
2- When the edge of the Algorithm box is within the Cyan/ Blue block: Choose the first minute out of 

the Algorithm box that does not have the lowest activity. It can be Green, Orange or Red. In the 
other word, extend the Sleep Episode to the edge of the continuous Blue/Cyan block. 

3- When the edge of the Algorithm box is out of the Cyan/ Blue block: Choose the first minute inside 
the Algorithm box that has the lowest activity. In other words, shrink the Sleep Episode to the edge 
of the continuous Blue/Cyan block. 

• Blue box is the Bedrest Episode estimation which is set to: 
1- Button Press Markers: if the marker(s) exist(s) and is(are) less than 60 minutes outside the sleep box 

detected by the algorithm; otherwise: 
2- When the edge of the Algorithm box is within a Cyan/ Blue block: Choose the first minute out of the 

Algorithm box that has high activity. It can be Orange or Red, but not Green. In other words, extend 
the Bedrest Episode to the first high active minute. 

3- When the edge of the Algorithm box is out of the Cyan/ Blue block: Choose the first minute outside 
the Sleep Episode box that has high activity (Orange or Red).  

Notice: In case there are short intervals of detected watch-off minutes (White) during sleep, which are not 
larger than 150 minutes consider them as very low activity minutes (Blue). These are the very low activity 
minutes occasionally happening during the Sleep Episode that the sliding window erroneously tags as watch-
off, and the activity of the minutes around them shows that the watch is actually not off the wrist and they are 
part of the Sleep Episode. 
Notice: If there is no Sleep Episode that contains more than 45 continuous lowest activity minutes, report No 
Sleep. 
Notice: The general rule for the Sleep Episode is to choose the longest episode that contains one or more low 
activity epochs, and multiple epochs can be connected to each other with no more than 90-min active epochs 
(bouts) in between, and choose the rest as Nap Periods. If the longest epoch is after 12PM and there is a shorter 
epoch before, choose the shorter one as Sleep Episode. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2021. ; https://doi.org/10.1101/2021.02.02.429455doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.429455
http://creativecommons.org/licenses/by-nc-nd/4.0/

	RahimiEichi_etal_210202_rxiv
	RahimiEichi_etal_figures_210202_rxiv
	RahimiEichi_etal_Appendices_210202_rxiv

