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One Sentence Summary: Signatures of in vitro potency and drug interaction measurements 

predict combination therapy outcomes in mouse models of tuberculosis. 
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Abstract: A lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. 

Variation in Mycobacterium tuberculosis drug response is created by the differing 

microenvironments in lesions, which create different bacterial drug susceptibilities. To better 

realize the potential of combination therapy to shorten treatment duration, multidrug therapy 

design should deliberately explore the vast combination space. We face a significant scaling 

challenge in making systematic drug combination measurements because it is not practical to use 

animal models for comprehensive drug combination studies, nor are there well validated high-

throughput in vitro models that predict animal outcomes. We hypothesized that we could both 

prioritize combination therapies and quantify the predictive power of various in vitro models for 

drug development using a dataset of drug combination dose responses measured in multiple in 

vitro models. We systematically measured M. tuberculosis response to all 2- and 3-drug 

combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments. 

Applying machine learning to this comprehensive dataset, we developed classifiers predictive of 

multidrug treatment outcome in a mouse model of disease relapse. We trained classifiers on 

multiple mouse models and identified ensembles of in vitro models that best describe in vivo 

treatment outcomes. Furthermore, we found that combination synergies are less important for 

predicting outcome than metrics of potency. Here, we map a path forward to rationally prioritize 

combinations for animal and clinical studies using systematic drug combination measurements 

with validated in vitro models. Our pipeline is generalizable to other difficult-to-treat diseases 

requiring combination therapies. 

 

Introduction 
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Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), remains a major 

global health issue. In 2019, an estimated ten million people fell ill with TB and about 1.4 million 

people died (1). Development of shorter treatment regimens is a key part of the third pillar of the 

WHO End TB Strategy (2). Multidrug treatment regimens were developed to treat active TB 

infections by shortening treatment duration, reducing disease relapse, and decreasing the 

development of antibiotic resistance (3). The standard TB treatment is six to nine months of 

multidrug treatment with an estimated 85% cure rate (1, 4, 5). The first two months of treatment 

(intensive, bactericidal phase) consist of four drugs (isoniazid, rifampicin, pyrazinamide, and 

ethambutol) that reduce sputum Mtb levels but are less effective against non-replicative bacilli (3, 

4, 6). The following four to seven months of treatment (continuation phase) consist of two drugs 

(isoniazid and rifampicin) aimed at reducing disease relapse by treating persisting bacteria that 

survived the intensive phase (3, 4, 6). New regimens that can more efficiently treat Mtb are needed 

to shorten the intensive phase of treatment and reduce or eliminate the bacteria that persist and 

require continuation phase treatment (4).  

Due, in large part, to the heterogeneity of TB lesions and treatment response among the Mtb 

population, combination therapy is required to treat active TB. Therapies should therefore be 

designed as combinations of antibiotics rather than single antibiotics alone. There are many drug 

options for new treatment regimens using existing drugs and drugs in development @(7), which 

creates an enormous number of possible drug combinations (5). Preliminary results from a Phase 

3 clinical trial (“Study 31”) demonstrated that treatment could be shortened using a novel 

combination of existing TB antibiotics (8, 9). Relatively new drugs that can target non-replicative 

bacteria (bedaquiline, pretomanid, delamanid, SQ019) (10-12) in combination with established 

drugs are in new, treatment-shorting regimens for multidrug resistant TB (MDR-TB) (5, 13, 14). 
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Treatment shortening potential in Phase 2b trials  (15, 16)) led to the Phase 3 STAND clinical trial 

testing the use of pretomanid with pyrazinamide and moxifloxacin, PaMZ (Table 1) (17). Adding 

bedaquiline to PaMZ (BPaMZ, Table 1) in a Phase 2b trial (18) shortened culture conversion time 

of MDR-TB so dramatically that the STAND trial was put on permanent hold to start the Phase 3 

SimpliciTB trial evaluating BPaMZ for treating both drug-sensitive TB and MDR-TB (9, 19). 

Together, these studies and the history of TB drug regimen design has demonstrated that there is 

treatment-shortening potential in the drug combination space. A critical step for developing new 

treatment regimens is to prioritize the thousands of drug combinations prior to clinical testing. 

However, it is not practical to evaluate thousands of combinations using the current preclinical 

regimen design pipeline, which combines in vitro and small animal studies. An efficient 

methodology is needed to systematically evaluate drug combinations and prioritize the thousands 

of multidrug combinations for their treatment-shorting potential.  

Animal models are critical to regimen development, and mouse models are a primary tool in 

multidrug therapy design (20-24). Mouse strains where Mtb is primarily intracellular (e.g. BALB/c 

and C57BL/6) are the most widely used (24). Mouse strains that form mixed lesion types (e.g., 

C3HeB/FeJ) are used to study drug response because the disease pathology is more human-like, 

include granulomas with caseous necrotic cores (21, 25, 26). Mtb drug response differs between 

these two types of mouse models and both are important preclinical tools because the model-

specific drug response is thought to result from the different lesion microenvironments present in 

each animal model (24, 27-29). Despite their utility for regimen development, comprehensive drug 

measurements in mice are not feasible. It is only practical to perform systematic drug combination 

studies in vitro, but in vitro studies do not clearly map to in vivo outcomes (24, 30). There are 

many in vitro models that mimic aspects of the host microenvironment encountered in the different 
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TB lesion types(24, 30). Many of these in vitro models are well suited for systematic drug 

combination studies, but none have been validated to prioritize drug combinations against 

preclinical animal models (24, 30). 

We propose to realize the potential of drug combinations to improve treatment by developing a 

pipeline to map in vitro measurement of drug response to outcomes in mouse models. Here, we 

utilized the efficiency of an experimental design and analysis method called DiaMOND (diagonal 

measurement of n-way drug interactions) (31) to create a compendium of drug combination 

responses in Mtb using multiple in vitro models that were designed to reproduce aspects of the 

environments encountered in different lesion types. Applying machine learning to this 

comprehensive in vitro dataset, we identified signatures of drug potency and interaction that could 

predict whether combinations would outperform the standard of care. Classifiers based on these 

signatures also enabled us to establish a mapping between in vitro models and the different mouse 

models, which differ in lesion type (microenvironment) and outcome. Overall, our study 

establishes a logistical path to optimize combination therapies for TB using systematic 

measurement in validated in vitro growth models and computational modeling. 

 

Results  

Drug combination compendium construction 

We developed a pipeline to efficiently prioritize drug combinations early in regimen development 

based on drug combination measurements from in vitro models. Using the DiaMOND 

methodology (31), we designed a compendium of drug combination measurements to survey 

informative drug-dose combinations (DiaMOND compendium). To compare in vitro data to 
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treatment responses in animal models, our DiaMOND compendium focused on (A) first- and 

second-line agents, for which there are abundant animal data and (B) measurements in in vitro 

growth conditions that model environments encountered during infection.  

Mtb encounters a diversity of environmental niches during infection that influence response to 

drug treatment. We aimed to model drug response by aggregating measurements from a suite of 

in vitro models. We focused on modeling factors previously shown to influence Mtb growth and/or 

drug response, such as different carbon sources and abundance, low pH, low oxygen tension, and 

the intracellular environment (21, 30, 32-40). For this study, we developed or adapted eight in vitro 

models that were reproducible and scalable for systematic, high-throughput drug combination 

studies. We varied carbon source, with an emphasis on cholesterol and fatty acids, to model the 

lipid-rich environment in TB granulomas, using butyrate, valerate, cholesterol, and higher levels 

of cholesterol (cholesterol-high) as sole carbon sources. We used 7H9-based medium in order to 

compare against the most commonly utilized in vitro growth model with glycerol as a carbon 

source (standard). We also included in vitro models that mimic important factors encountered 

during infection: low pH (acidic), infection of J774 macrophages (intracellular), and developed a 

low-oxygen multi-stress model that induces dormancy using butyrate as a carbon source, sodium 

nitrate to respire (41-43), and plate seals to limit oxygen (dormancy). The doubling times varied 

considerably among the models, ranging from 16h to one week (Fig. 1A). We scaled the timing of 

the experiments relative to the doubling time of each model so that drug response measurements 

would not be biased by changes in growth rate (Table S1). 

Drug combination dose response measurements 

For the DiaMOND compendium, we selected ten antibiotics that are in first- and second-line TB 

treatment regimens and for which there are abundant in vivo (mouse) data (Table 1, Table S2). 
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These drugs include: cell wall synthesis inhibitors (ethambutol, isoniazid, and pretomanid), 

rifamycin transcriptional inhibitors (rifampicin, and rifapentine), protein synthesis inhibitor 

(linezolid), inhibitors of energy metabolism (bedaquiline, and clofazimine), DNA synthesis 

inhibitor (moxifloxacin), and the antimycobacterial agent pyrazinamide (Fig. 1A, Table S2). We 

treated the Mtb Erdman strain carrying an autoluminescent reporter and measured both optical 

density (OD600) and luminescence at multiple time points after drug treatment. We observed a 

strong dependency in drug potency on in vitro model (Fig. 1A, inhibitory concentration to achieve 

90% inhibition, IC90. Table S3) consistent with the idea that drug efficacy is influenced by bacterial 

stress (44). We did not observe remarkable correlations in potency profiles by in vitro model. 

However, hierarchical clustering of drug potencies showed some groupings of drugs consistent 

with their target cell process (e.g., rifamycin transcriptional inhibitors group together, isoniazid 

and pretomanid - inhibitors of cell wall synthesis - group together). We also observed clustering 

of similar in vitro models. For example, growth media with short-chain fatty acids butyrate and 

valerate as the carbon source group together (Fig. 1A).  

We observed condition-specific drug potencies consistent with previous reports, suggesting the 

models we adapted for high-throughput drug response measurements may be predictive of 

outcomes in animals. For example, activity of pyrazinamide in acidic and intracellular models and 

inactivity in the standard model was consistent with in vitro (45, 46) and animal studies (47-49). 

We also observed pyrazinamide activity with lipid carbon sources, which has not been previously 

reported. The rifamycins shared similar potency profiles with higher potency of rifapentine (Table 

S3), as previously described (50). Bedaquiline was more potent in medium with lipids as the 

carbon source compared to standard medium with sugars as previously described (51). Isoniazid 

potency was lower in the dormancy model, consistent with its inactivity towards non-replicating 
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bacilli (52-54) and previous studies showing decreased efficacy in the presence of nitrite (41). The 

wide range of single-drug responses and consistency with previous studies suggest that the in vitro 

models in this study produce non-redundant drug response data and form a validated set of 

conditions to model the lesion-specific variation in drug response.  

Using these eight in vitro models, we constructed a compendium of systematic drug combination 

measurements by utilizing the efficiency of the DiaMOND method (Box). DiaMOND is a 

geometric optimization of the traditional checkerboard assay of drug-dose combinations. 

DiaMOND estimates the effect of combining drugs using a fraction of possible drug-dose 

combinations and focuses on the single drug and equipotent drug combination dose responses (31). 

We measured all 1-, 2-, and 3-drug combination dose responses (totaling 175 combinations) in at 

least biological duplicate (Fig. 1B), resulting in a compendium of over 51,000 individual dose 

response curves. To navigate this complex dataset, we focused our analysis on up to two time 

points per in vitro model. We chose the last time point (terminal, T) that is relative to the doubling 

rate (4 to 5 doublings for most models) and at a consistent treatment timepoint (constant, C) across 

in vitro models, ~7 days post treatment; Fig. 1A, Table S1. We also selected the measurement type 

that best benchmarks against colony forming units (OD600 for all models except intracellular and 

dormancy models, for which we used luminescence, Fig. S1). This selected dataset represents 

approximately one quarter of the total number of compendium dose responses. 

We analyzed the single- and combination-drug treatments to derive potency and drug interaction 

information (see Box). With DiaMOND, we can quantify the degree and directionality of 

interactions at different levels of growth inhibition using common null models (e.g., Loewe 

additivity and Bliss independence). Drug combinations that are more, or less effective than 

expected based on single-drug behaviors are considered synergistic and antagonistic, respectively. 
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Drug interactions are quantified with fractional inhibitory concentrations (FICs) at different levels 

of growth inhibition (e.g., FIC50 and FIC90 are measured at the IC50 and IC90, respectively). FIC 

measurements were log-transformed to represent synergistic and antagonistic combinations with 

negative and positive log2(FIC) values, respectively. Drug interaction metrics based on Loewe 

additivity and Bliss independence were correlated (FIC50 and FIC90 for the constant and terminal 

time points, r=0.81, p < 2.2x10-308, Pearson’s correlation, Fig. S2); we therefore selected Loewe 

additivity as the null model for systematic analysis in the compendium (FIC50 and FIC90). Dose 

response curves provide metrics of treatment potency at low dose (AUC25; a normalized area under 

the curve to IC25, see Box) or high dose (Einf; the maximum achievable effect). To compare potency 

across models where Mtb have different growth properties, we calculated the maximum achievable 

inhibition of normalized growth rate (GRinf; see Box) which allows direct comparison of treatment 

effects on cells with very different growth rates (55). Though many other metrics of drug response 

may be calculated from DiaMOND data, our analysis focused on these five metrics -- FIC50, FIC90, 

AUC25, Einf, GRinf -- because they represent well-characterized and biologically interpretable 

aspects of drug interactions and potencies across low- and high-dose ranges. 

Drug synergy is uncommon and does not distinguish effective combinations   

To identify patterns in drug interactions, we clustered the compendium drug interactions at the 

terminal time point in all eight growth environments, using 90% growth inhibition (log2(FIC90), 

Fig. 2A) and 50% growth inhibition (log2(FIC50), Fig. S3). Clustering did not reveal obvious 

model-wide synergy for any combination. Instead, we observed that most drug interactions were 

antagonistic (70% of FIC90s>0), consistent with a general trend towards antagonism in drug 

interactions observed in other organisms (31, 56-60) and cancer (61). The tendency towards 

antagonism was dependent on the growth model, with some conditions showing balance between 
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synergy and antagonism (intracellular and acidic), and others almost entirely antagonistic 

(cholesterol). Together these data suggest that synergy is a property of both drug and growth 

environment rather than an intrinsic property of drug.  

To understand whether combinations that tend toward in vitro synergy are more effective in vivo, 

we compared selected combinations with differences in disease relapse from the most commonly 

used mouse strains (e.g., BALB/c, C56BL/6, Swiss). The relapsing mouse models (RMM) 

evaluate drug efficacy months after cessation of drug treatment, somewhat analogous to the 

clinical measurement of relapse (62, 63). We did not observe a rank-ordering by synergy in any 

growth condition that matched efficacy in the RMM; e.g., BPaL>MRZ>HRZ>RZ (Fig. 2B) (22, 

64-71). Instead, we observed the 3-drug standard of care (HRZ) was the most synergistic drug 

combination, and BPaL was the most antagonistic among this subset (Fig. 2B). These examples 

suggest that drug interaction scores alone in the measured in vitro models were poor indicators of 

in vivo combination efficacy.  

Synergistic drug combinations are not necessarily more effective than antagonistic combinations 

as maximum effect (or potency) of a combination can change independently of the drug interaction 

(72) (see Box). A tradeoff between synergy and potency appears to be important to consider when 

selecting effective drug combinations for treating other diseases (e.g., hepatitis C, HIV, and 

cancer), with potency often being more important than synergy (73, 74). To determine if maximum 

effect could be used to prioritize combinations from the DiaMOND compendium, we clustered the 

Einf (a measure of maximum dose response effect, see Box) for all compendium drug combinations 

in all eight in vitro models at the terminal time point (Fig. 2C). We observed a high maximum 

effect (Einf>0.9, Fig. 2C) in most combinations, consistent with the known anti-Mtb effects of the 

drugs. Dormancy and cholesterol-high models exhibited little variation in Einf, suggesting that 
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neither condition had the dynamic range of maximum effect needed to discriminate among 

combinations or that all drug combinations are effective in these growth conditions for extended 

drug exposures. We compared Einf profiles for the selected combinations we examined before, and 

we found that BPaL was more potent than HRZ or MRZ (Fig. 2D), consistent with animal 

outcomes of these regimens (22, 64-71). These examples suggest that maximum achievable effect 

in vitro may be a stronger predictor of outcomes in mouse models than synergy. As with Einf, we 

observed correct rank ordering in some in vitro models by other potency metrics (AUC25 and GRinf) 

(Fig. S4), though we identified no drug combinations in the DiaMOND compendium that were 

maximally potent across all eight models (Fig. S5). The correct ordering of selected drug 

combinations by mouse outcome suggests that the DiaMOND compendium contains information 

useful for identifying efficacious drug combinations. 

DiaMOND metric signatures are predictive of treatment outcomes in the relapsing mouse model 

We hypothesized that combinations of in vitro measurements could be compiled to model the in 

vivo microenvironments experienced by Mtb during drug treatment. We asked whether signatures 

of DiaMOND compendium measurements could distinguish drug combinations that were better 

than the standard of care in animal studies, HRZE or HRZ (Table 1). We classified 27 drug 

combinations that we measured in the compendium based on whether the treatment outcome in 

published RMM studies was better than standard of care (C1) or not (C0) (Table S4). Principal 

component analysis (PCA) demonstrated that linear combinations of in vitro features can separate 

C0 and C1 drug combinations (Fig. 3A, Wilcoxon rank-sum, p<0.005, Table S5). Inspection of 

feature contributions to the principal component (PC) that best separates C0 and C1 drug 

combinations revealed many features related to cholesterol, standard, and valerate growth models 

(Fig. 3B). We also observed that potency metrics (AUC25, Einf, GRinf) are almost exclusively 
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represented in the top 20 contributing features (Fig. 3B). Together these results suggest that 

effective separation of C1 and C0 drug combinations requires measurement of drug combination 

potency in multiple growth environments.  

To develop signatures of DiaMOND metrics that characterize C0 from C1 combinations, we 

trained binary classifiers with eight different machine learning (ML) methods to distinguish C0 

and C1 drug combinations and compared their performance in 5-fold cross-validation (Table S6). 

We observed that nonlinear ensemble methods (Bayesian additive regression trees, random forest 

(RF), and gradient boosted trees) outperformed other ML algorithms, as measured by the area 

under the receiver operator characteristic (ROC) curve (AUC) and the F1 statistic, which is the 

harmonic mean of precision and recall (Table S6). We performed additional validation of the RF 

model by applying it to higher order (4- and 5-way) drug combinations commonly used in 

preclinical and clinical tests that were not considered during model training (Table S7). The RF  

model accurately predicted outcomes (Fig. 3C, AUC=1, F1=0.86) and exhibited performance 

similar to what was estimated in cross-validation. Overall, the performance of ML models 

demonstrates that there is a strong signal in the DiaMOND compendium that is predictive of RMM 

drug combination efficacy.  

We observed that some of the in vitro models in the DiaMOND compendium are well-represented 

among the top ranked features in the classifying PCs (Fig. 3B), while other in vitro models are not 

present, suggesting that a subset of in vitro models may be sufficient to predict treatment outcome 

in the RMM. We asked whether classifiers using the DiaMOND compendium data from one in 

vitro model at a time were predictive of RMM outcome class. We observed that the data signal 

separating C0 and C1 drug combinations appeared in at least one PC for all eight in vitro models 

(Fig. 4A, Wilcoxon rank-sum test, p<0.05, Fig. S6). Furthermore, the five technically simpler 
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models to work with exhibited clear C0 and C1 separation (Fig. 4A, in vitro models cholesterol, 

butyrate, standard, valerate, Fig. S6 in vitro model acidic).  

Though the single in vitro model classifiers were moderately predictive, they did not perform as 

well as the classifier trained using data from all eight in vitro models (Table S8). We asked whether 

another high-performing classifier could be derived using a subset of in vitro models. We 

systematically trained RF classifiers by considering all possible model combinations and observed 

that among the 255 possible combinations of in vitro models, 67 (26.3%) performed better than 

the classifier trained on all eight models. Furthermore, predictors including only the simpler in 

vitro models performed as well or better than those including the “complex” (intracellular, 

dormancy, cholesterol high) models (Fig. 4B, student’s t-test, p>0.05). We further validated the 

highest performing classifiers trained on the simple in vitro models by applying them to the higher-

order (4- and 5-way) drug combinations as well as drug combinations involving antibiotics 

(delamanid, sutezolid, and SQ109, Table S1) that were not included in the compendium’s 10-drug 

set (Table S7). The high performance of classifiers on this validation set suggests that combining 

simple in vitro models computationally can produce classifiers that inform possible RMM 

outcomes (Fig. 4C). Additionally, the large number of classifiers that exhibit high accuracy and 

the shared DiaMOND compendium metrics among several in vitro models suggests that there may 

be multiple combinations of in vitro models that are predictive of outcomes in the RMM. 

With many high performing RMM classifiers trained using subsets of the five simple in vitro 

models (Fig. 4C), we assessed whether the predicted RMM outcome for specific drug 

combinations would be consistent between these classifiers. The classifiers produce a probability 

that a drug combination belongs to each class (e.g., drug combination X belongs to C1 with 60% 

probability and C0 with 40% probability). The threshold probability is usually at 50% to assign 
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the classification but the probability can also be used to rank combination classification likelihood. 

We tabulated the predicted probabilities of outcome for all combinations in the compendium, as 

well as the higher-order and new drug combination validation set, using the top performing simple 

in vitro model classifiers shown in Fig. 4C. As we had previously observed, rank ordering the 

percent probabilities within each classifier shows high predictive performance when evaluating 

the validation set. Among all predictions made for the compendium and validation combinations, 

we noted that 36% of drug combinations had discordant predictions among the three classifiers. 

We did not observe a consistent pattern in which a classifier was discordant. We next tested 

whether a consensus prediction could be generated by simply averaging the probabilities of the 

top three classifiers. We observed that the discordant combinations were clustered in the second 

quartile (probability of C1 around 25-50%), suggesting that classifiers are most prone to error for 

combinations that are C0. This may be due to the mild class imbalance in the training set (11 C0 

and 16 C1 combinations). The consensus prediction was highly accurate (84% of validation set 

and 93% overall). Incorrect consensus predictions were at the border between C0 and C1 at 42-

47% C1, indicating that the misclassification was due to ambiguity near the 50% decision 

boundary, as opposed to strong classifier discordance. We conclude that a simple averaging of the 

probabilities generated by top classifiers is a practical means to construct an accurate consensus 

rank ordering for predicting drug combination response outcomes.  

DiaMOND metrics describe efficacy of drug combination treatments in the C3HeB/FeJ mouse 

model 

Given the success of ML classifiers to predict RMM outcomes, we next asked whether the 

DiaMOND compendium can be used to predict outcomes in other mouse models. Bactericidal 

activity in the most commonly used mouse strains (e.g., BALB/c, C56BL/6, Swiss) has been used 
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extensively to evaluate drug combination effectiveness. Bactericidal activity in these models 

(bactericidal mouse model, BMM, Table 1) measures the reduction in bacterial burden by drug 

treatment immediately following drug treatment and can be assessed more quickly than relapse. 

Using the same analysis pipeline, we trained ML classifiers to recognize C0 or C1 drug 

combinations for the BMM outcome (Table S9) but observed that the classifier performance was 

only mildly predictive (AUC = 0.67, F1 = 0.40) (Fig. S7). Additional analysis of in vitro model 

subsets identified many predictors with improved performance, but this improvement did not 

generalize to test data. Moderate model training performance and poor generalizability to new data 

suggest that the drug combination information needed for BMM outcome predictions may be 

difficult to capture with the in vitro models developed and used in this study. 

The C3HeB/FeJ (HeB) mouse strain has become important for TB regimen development because 

the disease pathology is more similar to humans than other mouse strains (26, 27, 75). This 

includes the formation of caseous, necrotic granulomas that are characterized by low oxygen 

content (hypoxia) (27, 75, 76) and differential drug penetrance (77, 78). These lesions also contain 

large numbers of extracellular, non-replicating bacteria (24, 76). Like other mouse studies, those 

with HeB mice use bactericidal (BHeB) as well as relapse outcomes to determine drug 

effectiveness. Fewer drug combinations have been tested and published using HeB mice than other 

mouse strains. The DiaMOND compendium contained too few measured combinations to train 

ML classifiers. When we integrated the compendium combinations with higher-order drug 

combinations, we obtained a total of 16 combinations (Table S10) for the BHeB outcome, which 

was sufficient to train ML classifiers. However, we were not able to do the same for the relapse 

outcome, where we had four total combinations, even after augmenting with higher-order 

information. 
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To understand if DiaMOND metrics distinguish C0 and C1 BHeB combinations using this 

expanded training dataset, we evaluated class separation with PCA. We observed significant 

separation of BHeB outcome classes along the third PC (PC3) (Fig. 5A, p<0.005, Table S11). We 

then examined the top 10 features in PC3 by contribution (Fig. 5B) and found that the in vitro 

models and metrics were distinct from those we observed in the RMM analysis (Fig. 3B). Notably, 

the metrics for the BHeB were entirely drug interactions (Fig. 5B), and the presence of the 

dormancy model in the top ten features was of particular interest because we expected hypoxia-

induced dormancy to be a microenvironment specific to the C3HeB/FeJ mice (27, 75, 76). Using 

the same approach described for RMM, we developed accurate RF models to classify BHeB C1 

and C0 combinations (Fig 5C, all in vitro models, AUC=0.9, F1=0.80). Systematic evaluation of 

RF classifiers using all possible combinations of in vitro model subsets revealed that complex 

models did not improve performance (Fig. S8). Specifically, we found that models without 

dormancy perform as well as those with it (Fig. S9). As with the RMM classifiers, we identified 

in vitro model subsets that performed better than all models together trained for the BHeB outcome 

(37 (12.9%)). Lipid and acidic in vitro models featured prominently among the most accurate 

classifiers. Together, these analyses demonstrate that the DiaMOND compendium data predicts 

outcomes in two pathologically distinct mouse models, suggesting that enough key information 

can be captured by simple in vitro models to help prioritize combination therapies for animal model 

tests. 

Potency and antagonism are correlated with improved outcomes in mouse models 

The signatures of DiaMOND data describing outcomes in RMM and BHeB highlighted that 

potency metrics were key predictors for RMM, while drug interactions were key for BHeB 

outcome classification. To understand whether C0 and C1 drug combinations showed significant 
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differences in these metrics, we examined the top five features from the most discriminatory PCs 

for both mouse models. Univariate analysis revealed significant differences between three of the 

top five features for the RMM outcome (Fig. 6A. Wilcoxon rank-sum, p<0.05). In each of these 

five features, potency was higher in C1 combinations compared to C0 combinations, which is 

consistent with expectations of increased potency for the most effective drug combinations. The 

top features describing BHeB outcomes are drug interactions (Fig. 6B), and three of the top five 

exhibited significant differences between C0 and C1 combinations (Wilcoxon rank-sum, p<0.05). 

For all five drug interaction features, C1 was the more antagonistic class. That antagonistic drug 

combinations may be more favorable is consistent with the results of our comparison of BPaL to 

the standard of care (HRZ, Fig. 2B). We found that different metric types (potency or interactions) 

may provide information that maps to different outcome types (bactericidal or relapse) in animal 

studies. Furthermore, our analysis suggests that high potency and antagonism in in vitro assays 

may be characteristics of favorable drug combinations.  

 

Discussion  

Our goal in this study was to develop a pipeline to efficiently prioritize drug combinations early 

in the TB regimen design process. Enthusiasm for use of in vitro models to design treatment 

regimens has been dampened because it has not been clear which in vitro conditions model the 

complex in vivo environment (24, 30). We hypothesized that treatment efficacy in vivo could be 

modeled as a “sum-of-parts” of the complex microenvironments. We, therefore, generated a 

dataset that profiles drug combination effects against Mtb in eight different in vitro growth 

environments. With this comprehensive drug combination data compendium, we identified 

signatures of potencies and drug interactions in specific in vitro models that distinguish whether 
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drug combinations are better than the standard of care in two important preclinical mouse models. 

We found that ML classifiers were accurate predictors of mouse disease relapse using data from 

only a few simple in vitro models. These classifiers were validated with higher order (4- and 5-

drugs) combinations and had predictive power for combinations with drugs not included in the 

model training. Together, our study establishes a practical approach to prioritize combination 

therapies using economical, scalable, and expandable in vitro measurements.  

Synergy is often assumed to be a property of optimized combination therapies because synergistic 

drugs are more effective together than expected based on single-drug efficacies alone. Our 

mapping of the DiaMOND compendium onto outcomes in two different mouse models challenges 

this notion. In the relapsing mouse model, drug interactions were not key features for 

classification; instead, the potency measures from the drug dose response curves were the most 

important predictors of outcome (Fig. 3B). Our findings are consistent with reports of treatment in 

hepatitis C, cancer, and HIV (73, 74, 79) that show a tradeoff between maximizing synergy and 

potency of a drug combination. Maximizing potency was often more important than synergy in 

treating these diseases with multidrug therapies (73, 74, 79). Antagonism was prevalent in our 

compendium (Fig. 2A), and we found that antagonism was characteristic of more efficacious drug 

combinations for the C3HeB/FeJ bactericidal model (Fig. 6B, C1 more antagonistic than C0). 

Partnering the most potent drugs together during regimen design may be generating highly potent 

combinations but biasing these combinations towards antagonistic drug interactions. Bedaquiline, 

pretomanid, and linezolid were recently found to be more potent in treating mice infected with the 

Mtb HN878 strain than the H37Rv strain (80). When combined, the drugs antagonized each other 

for treating Mtb strain HN878-infected mice. Despite this antagonism, the BPaL combination was 

highly effective at curing mice infected with either Mtb strain. These in vivo results are consistent 
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with our findings that BPaL is a highly potent but antagonistic drug combination for in vitro 

treatment of Mtb Erdman. One view of how drugs in combination exert their effect on cell 

populations is that each drug targets a different subpopulation rather than multiple drugs targeting 

the same cells (73, 79). Drug interactions would then explain how well a drug acts on the cellular 

population that was not susceptible to the other drugs in the multidrug treatment. This leads to the 

hypothesis that very potent drugs that alone can kill most of the cells in a population would achieve 

high maximum effect when combined but show no synergy or even antagonism. Study of the 

multidrug anticancer therapy R-CHOP (Table 1) supports this hypothesis (73) and an expanded 

study using more antibiotics could be used to test this hypothesis in tuberculosis. Our study 

suggests that for TB, potent drug combinations should be prioritized for further study and should 

not necessarily be deprioritized if they are antagonistic in in vitro assays.  

Our approach enabled us to determine the relative importance of specific in vitro models to predict 

outcomes in mice, thereby serving to validate which growth conditions map to in vivo responses. 

We note that signatures including several in vitro models perform better than signatures using data 

from only one in vitro model; perhaps because the lesion microenvironment is complex and 

constitutes multiple stressors that affect Mtb drug response. It may also indicate that none of the 

physiological states imposed by the in vitro models we used in this study was so dominant that it 

drives Mtb in vivo drug treatment response. We chose several lipids to serve as carbon sources in 

our in vitro models because of the important role of lipids and cholesterol specifically for Mtb 

growth, survival, and infectivity (81-90). The cholesterol in vitro model was the top performing 

single in vitro model classifier for the RMM outcome and performed almost as well as the classifier 

with all in vitro models. This is consistent with the importance of cholesterol metabolism for Mtb 

survival and infectivity (24, 85-87). We also observed that other lipid-rich environments (modeled 
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by using short-chain fatty acids butyrate or valerate as carbon sources) induced distinct drug 

response patterns and that the best classifiers for both RMM and BHeB outcomes utilized metrics 

from multiple lipid-rich growth conditions. These findings suggest that it may be sufficient to 

measure drug combination responses with a suite of different simple growth environments to 

model the complex lipid environment encountered in TB lesions.  

Mtb in the RMM mouse strains are thought to be primarily intracellular (24) and that intracellular 

residency has been shown to expose Mtb to the acidification of the phagolysosome (36, 37). We, 

therefore, expected the acidic growth environment to be a driver in classifiers for the RMM. We 

found that measurements from the acidic growth environment alone were not strongly predictive 

of outcomes in the RMM, but that these metrics were prominent in the best mixed-condition 

classifiers. These results indicate that response to acidic stress is important for Mtb survival to 

drug treatment in vivo, but that adaptation to other environments (such as lipid carbon sources) are 

important drivers of treatment response. We also observed that the acidic model was prominent 

among the best classifiers for the bactericidal outcome in the C3HeB/FeJ mouse strain (BHeB 

outcome). The C3HeB/FeJ mice are noted for the formation of the caseous necrotic granulomas 

(type II lesions, (76)) that have been shown to have a neutral pH (pH>7) (91) and with primarily 

extracellular Mtb (76). However, these animals have abundant intracellular bacteria in other lesion 

types and within macrophages that acidify the intracellular Mtb compartments (77) which may 

explain why acidic growth environments are important predictors of drug response in this mouse 

model.  

The microenvironments in TB granulomas are complex, yet we were able to combine measurement 

in a “sum-of-parts” approach from relatively simple growth environments to model treatment 

outcomes (Fig. 4B, Figure S8). These results indicate that there is predictive drug combination 
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response information obtained from simple in vitro models that only needs to be combined 

correctly to predict drug treatment outcome in mice. The practical implication is that researchers 

can choose a subset of the most amenable in vitro models for performing drug combination 

experiments and still retain predictive capacity. We were able to successfully model RMM and 

BHeB outcomes using this compendium but not the BMM outcome, suggesting that there may be 

other important factors or emergent properties of complex environments encountered during 

infection that were not included in our measurement set. These factors may include other carbon 

sources, nutrient availability, iron limitation, oxygen tension, human serum, or other entry 

mechanisms into dormancy (e.g., via different lipids or other combinations of stressors)  (91-93). 

Macrophage activation status has also been linked to Mtb drug susceptibility (94) and therefore 

models of cytokine-induced activation of macrophages may be more relevant to specific in vivo 

outcomes. Future studies measuring drug combination response in other and more complex in vitro 

models may permit accurate modeling of the BMM outcome and improve the accuracy of 

predictions of outcomes in RMM, BHeB.  

We anticipate that our in vitro-to-in vivo pipeline for drug combination predictions may be applied 

to study treatment outcomes in other animals and clinical studies. Predictions using our RMM 

classifiers suggest the potential for using DiaMOND data to model responses in the clinic. The 

moxifloxacin containing regimens, HRZM and MRZE, were expected to shorten treatment time 

in humans by two months based on preclinical mouse studies but did not show non-inferiority to 

HRZE in the ReMOX clinical trial (95). A meta-analysis of mouse relapse outcome studies after 

the trial completion revealed that the treatment shortening of these combinations was expected to 

be smaller than initially thought and that perhaps could explain the ReMOX trial results (62). The 

consensus RMM classifier predictions from our study predicted that the MRZE and HRZM 
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combinations were not likely to show treatment improvement (47% and 53% chance of being C1, 

respectively), consistent with the meta-analysis and ReMOX trial outcome. Based on our 

prediction probabilities, MRZE and HRZM would not have been prioritized for further study 

compared to other combinations, like BPaMZ (83% chance of being C1), that are being evaluated 

in ongoing clinical trials (96). Another example of the potential utility of the DiaMOND 

compendium for clinical predictions comes from the “Study 31” clinical trial. The preliminary 

results from “Study 31” show treatment shortening of the continuation phase using PHZM 

compared with the standard treatment of HRZE (intensive) followed by HR (continuation) (9). A 

third treatment arm (PHZE) did not show improvement compared with the standard treatment. 

Similar to our ReMOX predictions, our consensus prediction indicated PHZE to have a low 

probability for treatment improvement over standard of care (42% chance of being C1) despite the 

mouse outcome indicating C1 classification. The ReMOX and “Study 31” examples suggest that 

the DiaMOND compendium contains information that, while contradictory to the mouse 

outcomes, is relevant to understanding clinical outcomes. Together these results suggest the 

DiaMOND compendium could be used in future modeling and predictions of clinical outcomes 

(97, 98). 

Several changes to the experimental design may improve this pipeline. The importance of potency 

metrics in signatures of combination efficacy is perhaps surprising given that we design 

combination dose responses to have equipotent combinations of each drug. There is growing 

evidence that there is differential drug penetration into the lesions where Mtb is found (78) which 

would lead to non-equipotent levels of drug reaching Mtb cells. Utilizing pharmacokinetic data to 

design drug combinations may increase the utility and power of this approach and lead to a more 

predictive DiaMOND compendium dataset. The current standard of care and other new regimens 
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(e.g., “Study 31” and SimpliciTB) involve intensive and continuation phases of treatment. 

Including sequential treatments in an experimental approach could be used to understand how prior 

treatment sensitizes the bacterial population to future treatment regimens. One reason to use 

combination therapy for TB is to slow the acquisition of drug resistance. Systematic study of the 

drug combination space in different growth environments can also be used to investigate the 

evolution of drug resistance. For example, antagonistic drug interactions have been shown to 

suppress the evolution of drug resistance (56, 73, 99, 100) and the evolution of drug resistance can 

be tied to the growth rate and duration of drug exposure (56, 80, 101, 102). Finally, the depth of 

the DiaMOND compendium may be well-complemented with transcriptomic data of drug response 

to prioritize drug combinations based on predicted mechanisms of drug interaction (103).  

TB is not the only disease that benefits from combination therapy. We expect that our pipeline 

may be adapted and applied to optimize multidrug regimens for other diseases including cancers, 

HIV/AIDs, and multi-drug resistant bacterial pathogens. Beyond our use of the TB DiaMOND 

compendium to describe combination efficacies in mouse models, we anticipate that this dataset 

may be used for other systematic studies of drug combination response.   

 

Materials and Methods 

Strains and media 

M. tuberculosis Erdman strain was transformed with pMV306hsp+LuxG13 to generate an 

autoluminescent strain that was used for all experiments in this study (Addgene plasmid # 26161; 

http://n2t.net/addgene:26161; RRID:Addgene_26161) (104), see Supplemental Materials). We 

used the mouse cell line, J774 as a model of intracellular residency because J774 cells have been 
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used as a macrophage-like cell line to study early infection processes and Mtb drug response to 

complex host-like intracellular environment (48, 105). 

Standard 7H9 Middlebrook medium supplemented with 0.2% glycerol, 10% OADC (0.5g/L oleic 

acid, 50g/L albumin, 20g/L dextrose and 0.04g/L catalase) and 0.05% Tween-80 with 25 μg/mL 

kanamycin was used for Mtb strain maintenance. Growth and culturing were performed at 37℃ 

with aeration unless noted. All in vitro model media were buffered with 100 mM 3-(N-

morpholino)propanesulfonic acid  (MOPS, pH 7), unless noted, and filter-sterilized prior to use. 

The acidic model was based on the standard 7H9 Middlebrook media above and buffered with 100 

mM 2-(N-morpholino)ethanesulfonic acid (MES) to pH 5.7. For acclimation to lipid carbon 

sources, a base medium consisting of 7H9 powder (4.7g/L), fatty acid-free BSA (0.5g/L), NaCl 

(100mM) and tyloxapol (0.05%) with 25 μg/mL kanamycin was used and the lipids sodium 

butyrate (5mM, final concentration), valeric acid (0.1% final concentration) or cholesterol 

(0.05mM or 0.2mM final concentration) were added to the base medium. For the cholesterol 

media, a cholesterol stock solution (100mM) was first prepared by dissolving cholesterol in a 1:1 

(v/v) mixture of ethanol and tyloxapol and heated to 80°C for 30 minutes and added to pre-warmed 

(37℃) base medium (32). The dormancy media was based on the butyrate media with the addition 

of sodium nitrate (5mM) as a terminal electron acceptor (38, 41-43). J774 cells were cultured as 

previously described (105). Briefly, J774 cells were cultured in high glucose DMEM 

supplemented with 2mM L-glutamine, 1mM sodium pyruvate, and 10% heat-inactivated fetal 

bovine serum (FBS) at 37°C in 5% CO2. Media was changed every one-three days and cells 

passaged at ~80% confluence. Standard 7H10 Middlebrook agar plates supplemented with 0.5% 

glycerol, 10% OADC, 0.05% Tween-80 and 25 μg/mL kanamycin were used for enumerating 

colonies. 
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Mtb in vitro model acclimation 

Mtb were inoculated into standard 7H9 Middlebrook medium, grown to mid-log phase (optical 

density, OD600 ~0.5-0.7) and were subcultured for less than two weeks prior to acclimation to assay 

medium. For acclimation to standard and acidic media, Mtb cells were diluted into assay media at 

a starting density of OD600 = 0.05, acclimated for 3-5 doubling times or until they reached mid-log 

phase (OD600 ~0.5-0.7), diluted to OD600 = 0.05 and grown back to mid-log phase before use in 

DiaMOND assays.  

Similar to standard, and acidic conditions, Mtb were acclimated to butyrate, and valerate media 

and acclimated cells were frozen for use in assays. Frozen acclimated Mtb in butyrate and valerate 

media were inoculated into assay media, grown to mid-log phase (OD600 ~0.5-0.7), diluted into 

fresh lipid media at a starting concentration of OD600 = 0.05 and grown back to mid-log phase 

(OD600 ~0.5-0.7) and used for DiaMOND assays. The dormancy model used Mtb acclimated to 

butyrate medium grown to mid-log phase (OD600 ~0.5-0.7) and then diluted to a starting OD600 

0.05 in dormancy media. For the dormancy model (d), cells were incubated at 37°C without 

aeration for 28 days, which reduced autoluminescence close to media-only background levels, 

which we interpret as being dormant with very low metabolic activity.  

Mtb growth on cholesterol media slowed without exchange of fresh medium. Cholesterol and 

cholesterol-high acclimation was similar to standard, and acidic conditions with fresh media 

exchanges every seven days to ensure continued growth. Mtb acclimated between 14 and 28 days 

were used for assays. Mtb growth rate on cholesterol-high was faster (four day doubling time) than 

cholesterol (seven day doubling time).  

For the intracellular model, J774 cells were plated at 375,000 cells/mL in 384-well plates and 

cultured overnight, expecting ~one doubling prior to infection. Mtb grown to mid-log phase in 
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standard media was syringe-passed 8 times with a 25-gauge needle to reach a single-cell 

suspension, and J774s were infected with Mtb at MOI 2 for 24 hours followed by drug treatment 

for 5 days.  

Drugs, dose responses, and dispensing 

The drugs used in this study are listed in Table 1. All drugs were reconstituted and diluted in 

DMSO with the exception of PZA for the intracellular model; to avoid exceeding the DMSO limit 

(0.5%) in the intracellular condition, PZA was diluted in 1x phosphate-buffered saline with 0.01% 

Triton-X. Drugs were dispensed with an HP D300e digital dispenser and locations were 

randomized to reduce plate effects. For each in vitro model, the concentration to achieve 90% 

inhibition (IC90) was determined. IC90 were used to design combination dose responses with 

equipotent mixtures of drugs (31). A ten-dose resolution with 1.5- or 2-fold dose spacing was used 

for all experiments.  

Treatment and DiaMOND assays  

Mtb were acclimated to in vitro model media prior to drug treatment as described above. For acidic, 

butyrate, cholesterol, cholesterol-high, standard and valerate models: 50μL of acclimated Mtb at 

the indicated density was added to each well in 384-well plates containing freshly dispensed drugs 

and incubated at 37℃ in humidified bags to prevent evaporation. Edge wells contained media but 

were not used for assays. For the dormancy model: Mtb were acclimated as described above, gently 

resuspended and 20μL of dormant Mtb culture was transferred to each well on the assay plates. 

Plates were sealed with PCR seals to reduce oxygen exposure during drug treatment and incubated 

for seven days. We measured regrowth after drug treatment as a readout of drug effect during 

dormancy. Therefore, after drug treatment, plate seals were removed, 80μL of standard media was 

added to each well, and plates were incubated at 37℃ in humidified bags to prevent evaporation. 
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For the intracellular model: drugs were printed into media-only plates and transferred onto infected 

J774 cells 24 hours after Mtb infection. To accommodate quality control assessment, we included 

multiple untreated and positive drug treatment controls in each plate as well as uninfected J774 

cells for the intracellular model. (See Supplementary Materials).  

Plate measurements 

Luminescence and OD600 measurements were made at 3-5 time points per sample on a Synergy 

Neo2 Hybrid Multi-Mode Reader. Time points were based on the approximate doubling time of 

each model. To simplify the analysis, we generally compare time points at either a relatively 

similar time point (constant) or time ~4-5x doubling times after drug exposure (terminal time 

point). Constant and terminal time points correspond to the same set of measurements for the 

standard and intracellular in vitro models (constant/terminal, CT). For the dormancy model, plate 

readings were made during recovery in standard media and time points were selected based on 

doubling time in standard media. For the dormancy and intracellular models, OD600 measurements 

could not reflect Mtb biomass alone, so only luminescence measurements are used. 

Autoluminescence has been demonstrated as a proxy for Mtb cell growth (104) and viability in 

response to drug treatment (106, 107). In order to benchmark changes in luminescence to changes 

in growth in our conditions, we performed a series of drug treatment experiments in the dormancy 

and intracellular models (see Supplementary Materials and Fig. S1). Briefly, cells were treated as 

described above followed by plating treated cells on 7H10 plates with  and incubating to enumerate 

colony forming units (CFU). Portions of the luminescence dose response curve that correlated with 

CFU changes were considered indicative of growth inhibition and metrics derived from these 

portions of the curve were used for analysis.  

Data processing and metric calculation  
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Data processing and dose response metric calculation were performed using custom MATLAB 

scripts. In brief, raw data were background-subtracted using the median of media-only wells and 

normalized to the mean of untreated wells within each plate. For the intracellular model, uninfected 

macrophages provided the background (rather than media only) for subtraction from raw data and 

subsequently data was normalized to (infected) untreated within each plate. A 3-parameter Hill 

function was fit to each dose response (single drug or combination). Inhibitory concentrations 

(ICs) were calculated based on the Hill curve parameters. The area under the curve at 25% 

inhibition (AUC25) was calculated using the integral of the fit curves from 0 to the 25% inhibitory 

concentration (IC25) and normalized to the IC25, allowing comparisons between drug 

combinations. Drug interactions scores were quantified by the fractional inhibitory concentration 

(FIC) using Loewe additivity and Bliss independence (See Box). FICs calculated by Loewe 

additivity and Bliss independence were well correlated, and neither model was observed to suffer 

from significant bias relative to the order of the drug combination (108) (Supplementary Material); 

therefore, we proceeded to analyze drug interactions based on Loewe additivity. The growth rate 

inhibition (GR) metrics were calculated as previously described (55). See Supplementary 

Materials for details on data processing and analysis. 

Data quality 

Experiments were performed in a minimum of biological triplicate. Comparisons of data between 

plates and between experimental days required data quality control assessment. Each dose 

response was assigned a quality score that takes into account the overall quality of the data from a 

plate, the quality of fit of the Hill function, the single drug dose responsiveness from an experiment 

and in the case of drug combinations, the equipotency in the drug combination dose responses 

(Supplementary Materials). In brief, plate data quality was assessed with a Z’-score using multiple 
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untreated (negative) and complete inhibition treatment (positive) wells in each plate. The fitting of 

the Hill function was assessed by coefficient of determination (R2) of the fit as well as the closeness 

of the Einf for each fit to the maximum observed effect for each dose response curve. Drug 

combination equipotency was assessed by comparing the proportional combinations normalized 

to their respective MICs and the idealized combination of drugs if they were perfectly equipotent. 

Dose responses with poor quality scores were excluded from analysis. 

Computational Analyses 

Biological replicate dose response and drug interaction data passing quality control were averaged. 

Means of replicate data were used for all downstream analyses unless noted. Hierarchical 

clustering was performed using cosine distance, and heatmaps with complete linkage dendrograms 

were generated using MATLAB. Other data preparation and visualizations were performed in R 

studio (version 3.5.3) using the tidyverse environment packages and ggplot2 and ggpubr packages 

for visualization.  Data table import and export were performed in R using the openxl and readxls 

packages 

PCA was performed in R using the prcomp function from the stats package with each feature 

scaled to have unit variance before PCA. Some features were missing data; e.g., FIC90 metrics 

were missing because single drugs didn’t achieve IC90. Features with more than 35% missing data 

points were excluded from PCA. The remaining missing values were imputed using the mean of 

the corresponding input features (mean imputation) (109).  

Machine learning 
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The machine learning in R (mlr v2.17.0) package was used for all machine learning tasks involving  

projections of the original features onto the principal component (PC) space as the input features 

and classified drug combination outcome (C0 or C1) as labels.  

Feature selection, feature number optimization, and model validation 

The Kruskal-Wallis test was used to rank order the PC input features for ML based on the ability 

to discriminate outcome classes C0 and C1. As there were a limited number of drug combinations, 

we aimed to reduce the number of features used in the model.  A Monte-Carlo resampling strategy 

was used to split the training data into 70/30% training/test partitions, to which we applied grid 

search to find the number of features that produced the largest test AUC. This feature number 

optimization was repeated five times for each training set and the smallest feature set from the five 

iterations was chosen as the final training feature set. Models were trained on the full set of training 

data and performance on new data was estimated using standard 5-fold cross validation. Validation 

was performed by projecting new data onto the PC space used for the model training and testing 

model classification performance. 

Machine learner packages 

Upon feature selection, machine learning algorithms were compared using standard 5-fold cross 

validation. The performance was evaluated using the AUC and the F-score (F1). The mlr package 

made possible on-demand loading of learners from other R packages, including Bayesian additive 

regression tree (bartMachine, v1.2.5.1), random forest (randomForestSRC, v2.9.3), extreme 

gradient boosting (xgboost, v1.1.1.1), logistic regression (stats), naive bayes (e1071, v1.7-3), 

support vector machine (e1071, v1.7-3), and weighted k-nearest neighbors (kknn, v1.3.1). 

Statistical Analysis 
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Differences between outcome class groups for DiaMOND features or PCs were assessed by means 

(IC90 averages), medians (class comparisons), and standard deviation of drug combinations from 

each outcome group in each in vitro model. Because data normality could not easily be assessed 

with small numbers of drug combinations in each group, the Wilcoxon rank-sum test was used to 

compare outcome group means for statistical significance. Student’s t-test were used for testing 

hypotheses of differences between model performance distributions. The hypothesis that Loewe 

and Bliss interaction (FIC) scores were correlated was tested using Pearson correlations. Statistical 

analyses were performed using the stats, ggpubr, or the rstatrix packages in R version 3.5.3.  

 

Supplementary Materials 

Materials and Methods 

Fig. S1. Benchmarking cell viability with luminescence measurements. 

Fig. S2. Comparing null reference models for drug interaction scoring. 

Fig. S3. Intermediate potency drug interaction profiles. 

Fig. S4. Alternative potency metric profiles for selected drug combinations. 

Fig. S5. Alternative potency metric profiles for DiaMOND compendium. 

Fig. S6. Outcome class separation in single in vitro model Principal components analyses 

(PCAs). 

Fig. S7. BMM classifier performance on training and test data. 

Fig. S8. BHeB in vitro model subset model performance distributions. 

Fig. S9. BHeB in vitro model with and without dormancy model performance distributions. 
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Table S1. Experiment time points and estimated growth amounts for in vitro models. 

Table S2. Drug information table. 

Table S3. Drug IC90 for in vitro models. 

Table S4. Drug combinations with RMM outcomes for 2- and 3-way drug combinations. 

Table S5. RMM PC class separation.  

Table S6. Machine learning algorithm benchmarking performance metrics. 

Table S7. RMM model validation set. 

Table S8. RMM single in vitro model classifier performance. 

Table S9. Drug combinations with BMM outcomes for 1-, 2- and 3-way drug combinations. 

Table S10. Drug combinations with BHeB outcomes for 1-, 2- and 3-way drug combinations. 

Table S11. BHeB PC class separation. 
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Figures:  

Fig. 1. 

 

Fig. 1. 10-drug DiaMOND compendium of Mtb response to drug combination treatment. (A) 

Relative potencies of the ten compendium drugs in eight in vitro conditions (IC90, 

terminal time point; left) with doubling times for each condition in untreated Mtb (right). 

Hierarchical clustering of potencies as calculated with cosine distances and average 

linkage. IC90 is color scaled (log10 transformation) within each drug (Table S3). ND = 

Not determined. NA = not applicable. (B) Metrics from DiaMOND dose response curves. 

IC50 and IC90 are used to calculate drug interactions at the 50% and 90% levels of growth 

inhibition (FIC50 and FIC90, respectively). Three potency metrics are derived: AUC25 = 

normalized area under the curve until 25% inhibition, Einf = theoretical maximum 

inhibition, and GRinf = theoretical maximum normalized growth rate inhibition (Box and 

Materials and Methods). (C) Schematic data cube of the DiaMOND compendium. Mtb 

were treated with all 1-, 2-, and 3-way drug combinations (175 combinations) among 10-
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drugs in dose responses measured in 10-dose resolution in at least biological duplicate. 

Dose response measurements were made in eight in vitro models and at 3-4 time points, 

but we focus on 1-2 time points for analysis; therefore, this data cube represents ~25% of 

the total measurements made. 
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Fig. 2. 

 

Fig. 2. Drug interaction and potency patterns in the DiaMOND compendium. (A) Drug 

interaction profiles of all 2- and 3-drug combinations among the ten compendium drugs 

across the in vitro models (log2(FIC90) at the terminal time point, clustered based on 

cosine distance). (B) Drug interaction profiles of selected drug combinations ordered by 

mouse relapse outcome efficacy (22, 64-71). See Table 1 for drug combination 

abbreviations.  (C) Drug combination potency profiles of all 2- and 3-drug combinations 

among the ten compendium drugs across the in vitro models (Einf at the terminal time 

point, clustered based on cosine distance). (D) Drug interaction profiles of selected drug 

combinations ordered by mouse relapse outcome efficacy (22, 64-71). See Table 1 for 

drug combination abbreviations.  gray = ND. 
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Fig. 3. 

 

Fig. 3. Prediction of combination treatment outcomes in the RMM with DiaMOND data. (A) 

PCA of DiaMOND data labeled by outcome in the RMM (C1 is better than the standard 

of care, blue; C0 is standard of care or worse, red) with the most discriminating two PCs 

shown. Outside the scatter plot are box and whisker plots of the distributions of C1 and 

C0 combinations along PC1 and PC27 (Wilcoxon rank-sum test: *** p<0.005. ** 

p<0.01). (B) Highest weighted features in PC1 with in vitro model (abbreviations in Fig. 

1A) and metric type indicated. Metrics are classified and shaded according to whether 

they are related to drug combination potency (purple: AUC25, Einf and GRinf) or drug 

interaction (orange: FIC50 and FIC90). (C) ROC curves (top panel, Table 1) and PR 

curves (bottom panel, Table 1) of a random forest-based classifier trained on all eight 

conditions in the DiaMOND compendium. The model is tested with high-order 

combinations (4- and 5-drug combinations) that were excluded from training.  Training 

(gray lines each show one of five cross validations; lines are slightly offset to aid 
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visualization) and test (black) performances are shown with lines. Test combinations are 

colored by outcome class as in (A). Performance metrics are shown on plots for test data 

(Area Under the ROC curve (AUC) and F1, harmonic mean of precision and recall, Table 

1). Dashed lines indicate theoretical “no-skill” model performance. 
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Fig. 4. 

 

Fig. 4. Prediction of combination therapy outcomes in the RMM using fewer in vitro models. (A) 

PCA plot of DiaMOND data labeled by outcome in the RMM (plots are labeled as in Fig. 

3A). Each subplot is DiaMOND data from one in vitro condition plotted in the PC space 

with the most discriminating two PCs shown for each model. Outside the scatter plot are 

box and whisker plots of the distributions of C1 and C0 combinations along PC1 and PC2 

(Wilcoxon rank test: *** p<0.005. ** p<0.01. * p<0.05. ns p>0.05). (B) Density 

distribution plots of estimated classifier performances from systematic survey of all 

possible in vitro model subsets. Distributions of ROC AUC (top) and F1 (bottom) are 

separated based on whether technically complex models (intracellular, cholesterol-high, 

dormancy) are included (yellow) or whether only simple conditions (acidic, butyrate, 

cholesterol, standard, valerate) are considered. Colored dashed lines indicate mean value 

for distribution. The estimated performances when using all in vitro models (as in Fig. 3) 

is shown with black dashed lines. Distributions are compared with a Wilcoxon rank sum 

test (ns = not significant). (C) Comparison of classification performances of three high-

performance random forest classifiers using subsets of simple in vitro models. Training 
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(gray lines each show one of five cross validations; lines are slightly offset when they are 

on top of each other) and test (black) performance is demonstrated with ROC (top) and 

PR (bottom) curves. Test combinations are colored by outcome class as in panel (A). Plot 

shapes indicate whether a test combination contained higher-order 4- and 5- drug 

combinations (triangle) or a combination containing a new drug (diamond) not included 

in the compendium described in Fig. 1. Dashed lines indicate theoretical “no-skill” model 

performance. 
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Fig. 5. 

 

Fig. 5. Signatures of DiaMOND data to describe outcome in the C3HeB/FeJ (BHeB) mouse 

model. (A) PCA plot of DiaMOND data labeled by outcome in the BHeB (plot labels are 

as in Fig. 3A). (B) Highest weighted features in PC3 with in vitro model and metric type 

indicated (features are as described in Fig. 3B). (C) Machine learning performance plots 

for training with 5-fold cross validation (each in a gray line) with ROC (top) and PR 

(bottom) curves for models trained using all 8 conditions (left) and three high-performing 

subsets of conditions (right: acidic + butyrate + valerate, cholesterol + valerate, and 

standard + valerate). Subsets had perfect training performance (AUC = 1.0, Table S7). 

Dashed lines indicate theoretical “no-skill” model performance. 
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Fig. 6. 

 

Fig. 6. Properties of signature potency and drug interaction characteristics that describe RMM 

and BHeB combination treatment outcomes. Values of the five highest weighted features 

in the most discriminatory PC are compared for C1 and C0 combinations in the RMM 

(A) and BHeB models (B) using dot and box plots. The top features in RMM are potency 

metrics whereas the top features are drug interaction metrics in BHeB. High vs. low 

potency (pot) and synergy (syn) vs antagonism (ant) is indicated with arrows on each 

subplot. (Wilcoxon rank test: *** p<0.005. ** p<0.01. * p<0.05. ns p>0.05). 
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Box 
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Table 1. 

 

  drug and drug combinations: 

B bedaquiline 

C clofazimine 

E ethambutol 

H isoniazid 

L linezolid 

M moxifloxacin 

Pa pretomanid 

Z pyrazinamide 

R rifampicin 

P rifapentine 

D delamanid 

Su sutezolid 

Sq SQ109 

PaMZ bedaquiline + pretomanid + moxifloxacin 

BPaMZ bedaquiline + pretomanid + moxifloxacin + pyrazinamide 

HRZE 

isoniazid + rifampicin + pyrazinamide + ethambutol - four drug standard of 

care 

HRZ isoniazid + rifampicin + pyrazinamide - three drug standard of care 

BPaL bedaquiline + pretomanid + linezolid 
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MRZ moxifloxacin + rifampicin + pyrazinamide 

RZ rifampicin + pyrazinamide 

HRZM 

isoniazid + rifampicin + pyrazinamide + moxifloxacin – ReMOX trial 

combination 

MRZE 

moxifloxacin + rifampicin + pyrazinamide + ethambutol – ReMOX trial 

combination 

PHZM 

rifapentine + isoniazid + pyrazinamide + moxifloxacin – Study 31 trial 

combination 

PHZE 

rifapentine + isoniazid + pyrazinamide + ethambutol – Study 31 trial 

combination 

R-CHOP 

rituximab + cyclophosphamide + doxorubicin hydrochloride + vincristine 

sulfate + prednisone – anti-cancer drug combination 

    

  treatment outcome classification: 

C0 as good or worse than standard of care (HRZE or HRZ) 

C1 better than standard of care 

    

  mouse models: 

RMM relapsing mouse model1 

BMM bactericidal mouse model2 

BHeB bactericidal outcome in C3HeB/FeJ mouse strain3 

    

  in vitro models: 
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a acidic 

b butyrate 

c cholesterol (0.05mM) 

d dormancy 

h cholesterol-high (0.2mM) 

i intracellular 

s standard 

v valerate 

    

  data and model metrics: 

C constant time point 

T terminal time point 

CT constant and terminal time point are the same 

ICn inhibitory concentration at n % growth inhibition 

FICn fractional inhibitory concentration at n % growth inhibition 

AUC25 normalized area under the curve to the 25% inhibition point 

Einf effect at infinite drug concentration (maximum achievable effect) 

GRinf 

normalized growth inhibition effect at infinite drug concentration (maximum 

achievable effect) 

ROC receiver operator characteristic 

AUC area under the ROC curve 

PR precision-recall 

F1 harmonic mean of the precision and recall 
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Table 1: Abbreviations used in this study. Abbreviations along with brief descriptions are listed.  

1The RMM outcome assesses lasting cure months after cessation of drug treatment in the most 

commonly used mouse strains (e.g., BALB/c, C56BL/6, Swiss). 2The BMM outcome assesses 

reduction of bacterial burden immediately following drug treatment in the most commonly used 

mouse strains. 3The BHeB assesses reduction of bacterial burden immediately following drug 

treatment but in the pathologically distinct C3HeB/FeJ mouse strain.  
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