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We address the challenge of inferring a consensus 3D model of genome architecture from
Hi-C data. Existing approaches most often rely on a two step algorithm: first convert the
contact counts into distances, then optimize an objective function akin to multidimensional
scaling (MDS) to infer a 3D model. Other approaches use a maximum likelihood approach,
modeling the contact counts between two loci as a Poisson random variable whose intensity
is a decreasing function of the distance between them. However, a Poisson model of contact
counts implies that the variance of the data is equal to the mean, a relationship that is often
too restrictive to properly model count data.
We first confirm the presence of overdispersion in several real Hi-C data sets, and we show
that the overdispersion arises even in simulated data sets. We then propose a new model,
called Pastis-NB, where we replace the Poisson model of contact counts by a negative bi-
nomial one, which is parametrized by a mean and a separate dispersion parameter. The
dispersion parameter allows the variance to be adjusted independently from the mean, thus
better modeling overdispersed data. We compare the results of Pastis-NB to those of sev-
eral previously published algorithms: three MDS-based methods (ShRec3D, ChromSDE, and
Pastis-MDS) and a statistical methods based on a Poisson model of the data (Pastis-PM).
We show that the negative binomial inference yields more accurate structures on simulated
data, and more robust structures than other models across real Hi-C replicates and across
different resolutions.
A Python implementation of Pastis-NB is available at https://github.com/hiclib/pastis
under the BSD license
Supplementary information is available at https://nellev.github.io/pastisnb/
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I. INTRODUCTION

DNA in vivo is folded in three dimensions, and this 3D
structure plays an important role in many biological func-
tions, including gene regulation, DNA replication, and
DNA repair8,9,30,33. Chromosome conformation capture
methods, coupled with next-generation sequencing, al-
low researchers to probe the three-dimensional structure
of chromosomes within the nucleus21. These techniques,
which we broadly refer to as “Hi-C,” rely on crosslinking,
digesting, ligating, and paired-end sequencing of DNA
to identify physical interactions between pairs of loci.
Hi-C techniques provide a genome-wide contact map, a
matrix indicating the contact frequency between pairs
of loci. This matrix can be used to analyze the three-
dimensional structure of the genome. However, despite
extensive research, inferring a three-dimensional model
from this contact map remains a fundamental problem.

Methods to infer the 3D structure of the genome
broadly fall into two categories: ensemble approaches

which infer a population of structures15,18,29, and con-
sensus approaches which yield a single model that sum-
marizes the contact count data2,4,34,36,39. The former
approach is more biologically accurate because the popu-
lation of models better reflects the diversity of structures
present in a population of cells. However, interpretation
of the resulting models is challenging, and one often has
to fall back to a single structure or a few structures that
best represent the population of structures. Validation
of ensemble models, even on simulated data, can also
be challenging. On the other hand, a consensus model
summarizes the hallmarks of genome architecture, can
easily be visually inspected and analysed, and can be
integrated in a straightforward manner with other data
sources, such as gene expression, methylation, and his-
tone modifications, which are also ensemble based. In
this work, therefore, we focus on inferring a consensus
model of the 3D genome architecture.

Consensus approaches model chromosomes as chains
of beads, minimizing a cost function that aims to pro-
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duce a model as consistent with the data as possible.
In addition, the optimization is sometimes constrained
to include prior knowledge about the 3D structure: the
size and shape of the nucleus, distance constraints be-
tween between pairs of adjacent loci, etc. Some methods
first convert contact counts into wish distances, either
through a biophysically motivated counts-to-distances
mapping or through ad hoc conversions. They then use
multidimensional scaling (MDS) methods such as metric
MDS10,34, weighted metric MDS2, non-metric MDS4, or
classical MDS (most commonly known as PCA)19. These
methods rely on arbitrary loss functions.

In previous work, we introduced a consensus method
called “Pastis,” based on a statistical model of contact
count data, where the 3D structure is the latent variable
and the inference of the consensus 3D model is formu-
lated as a maximum likelihood problem36. A natural sta-
tistical model for count data is the Poisson distribution,
which has a single parameter, the mean µ, from which all
its other properties (including the variance) are derived.
Pastis relies on such a Poisson model of the interaction
frequencies, the intensity of which decreases with the in-
creasing spatial distance between the pair of loci. We fur-
ther extended this Poisson modeling to allow for inference
of diploid structures7. We refer to this method below as
“Pastis-PM” (“PM” standing for “Poisson model”).

However, a Poisson model of contact counts implies
that the variance of the data is equal to the mean, an
assumption that is sometimes too restrictive to prop-
erly model the data. For instance, Nagalakshmi et al.23

and Robinson and Smyth26 show that for RNA-seq, this
assumption is not justified, because the variance in the
data is larger than the mean, leading to to an overdisper-
sion problem. To alleviate the overdispersion, Robinson
et al.28 suggest modeling RNA-seq data with a nega-
tive binomial distribution, which is parameterized with
two parameters: the mean µ and the variance σ. Mod-
eling Hi-C contact count data with a negative binomial
model is not new. Jin et al.17 and Carty et al.6 used
this approach to assign statistical confidence estimates
to observed contacts, Hu et al.14 to normalize the data,
and Lévy-Leduc et al.20 to find topologically associated
domains.

In this work, we explore methods that apply a simi-
lar generalization—from Poisson to negative binomial—
in the context of a model for inferring genome 3D struc-
ture from a Hi-C contact map. We first confirm the
overdispersion on a wide variety of Hi-C datasets, from
very small (S. cerevisiae) to large genomes (human). We
then compare our method based on a negative bino-
mial model for Hi-C count data, which we call Pastis-
NB, to MDS-based methods (chromSDE, ShRec3D, and
Pastis-MDS) and to the Poisson model-based Pastis-PM.
We first demonstrate that Pastis-NB recovers the most
accurate results, in particular in low coverage settings.
We then study how well the different methods perform
when provided with an incorrect mapping between con-
tact counts and Euclidean distances, a setting where

Pastis-NB also outperforms other methods. Finally, we
show that Pastis-NB model yields more stable structures
across Hi-C replicates and across resolutions.

II. APPROACH

We model each chromosome as a series of n beads,
where each bead corresponds to a specific genomic win-
dow, which we refer to as a locus. We aim to infer the
coordinate matrix X = (x1, x2, . . . , xn) ∈ R3×n, where xi
corresponds to the 3D coordinates of bead i. We denote
by dij = ‖xi−xj‖ the Euclidean distance between beads
i and j. Hi-C contact counts can be summarized as an
n-by-n matrix c in which rows and columns correspond
to loci, and each entry cij is an integer, called a contact
count, corresponding to the number of times loci i and
j are observed in contact. This matrix is by construc-
tion square and symmetric. Since raw contact counts are
known to be biased by loci-specific multiplicative factors,
we apply ICE normalization16 to estimate a bias vector
b = (b1, . . . , bn) ∈ Rn, where bi is the bias factor for locus
i. The normalized contact count matrix cN is then de-
fined as the matrix of normalized counts cNij = cij/(bibj).
See Supplementary Materials ?? for more details.

II.A. Statistical model

We model the raw contact counts cij as realizations of
independent negative binomial random variables

Cij ∼ NB(rij , µij) ,

where rij is the dispersion parameter and µij is the mean
of the negative binomial distribution between loci i and j.
Like in the Pastis model we parameterize the mean count
value µij as a decreasing function of the distance between
beads i and j: µij = βbibjd

α
ij , with parameters β > 0

and α < 0. β can be thought of as a scaling factor—the
higher the coverage of the dataset, the higher it is—while
α characterizes how the frequency of contacts decreases
with the distance. Note that this relationship is ill-posed,
in the sense that the relationship between the mean of
the distribution µ, the scaling factor β, and the Euclidean
distances d is not unique. In particular, one can choose to
set β to 1 in order to infer the 3D coordinates, and then
rescale the inferred structure to reflect prior knowledge
about the size of the nucleus. We thus drop the scaling
parameter β in the rest of the derivations. In addition, we
parameterize the dispersion as rij = bibjr, where r ≥ 0
accounts for overdispersion.

The probability mass function can thus be written as:

Pr(Cij = cij) =

Γ(cij + rij)

Γ(cij + 1)Γ(rij)

(
µij

rij + µij

)cij ( rij
rij + µij

)rij
.

It is well-known that the variance of Cij satisfies

σ2
ij = µij +

µ2
ij

rij
= bibj

(
dαij +

d2α
ij

r

)
,
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and that when rij → ∞ the negative binomial distribu-
tion tends to a Poisson distribution with intensity pa-
rameter µij . The negative binomial is thus a generaliza-
tion of the Poisson distribution where the variance of the
data can exceed the mean, as controlled by the dispersion
parameter24.

II.B. Estimating the dispersion parameters rij

To estimate the dispersion parameters rij , we leverage
the property that the variance of an NB(ρ, µ) random
variable is σ2 = µ + µ2/ρ; therefore, if we know µ and
σ2, we deduce the dispersion as ρ = µ2/

(
σ2 − µ

)
. This

implies that if a relationship σ2(µ) between the mean
and variance of the NB distribution is known or assumed,
then the dispersion parameter ρ is also known as a func-
tion of µ as ρ(µ) = µ2/

(
σ2(µ)− µ

)
. We thus focus on

estimating the variance as a function of the mean of the
contact counts in order to infer the dispersion parameter
r.

In the case of RNA-seq, the function σ2(µ) is usu-
ally estimated by fitting a weighted least squares3, fit-
ting a loess1, or by maximizing a likelihood on empiri-
cal means and variances estimated for each gene using
replicates27. In the case of Hi-C, relying on biological
replicates is not a viable option because most studies
perform at most two biological replicates, rendering the
estimation of the mean and variance impossible. Instead,
we estimate σ2(µ) by introducing additional modeling as-
sumptions that capture properties intrinsic to Hi-C data
and genome architecture. We propose a two-step method
to estimate this function. First, we compute for each ge-
nomic distance l the empirical mean and variance of the
normalized contact counts:

µ̃l =
1

Nl

∑
(i,j):|i−j|=l

cij
bibj

,

ω̃l =
1

Nl − 1

∑
(i,j):|i−j|=l

( cij
bibj
− µ̃l

)2

,

where Nl is the number of (i, j) pairs with |i − j| = l.
As shown by Yu et al.37, ω̃l is a biased estimator of the
variance and can be corrected to be unbiased as follows:

σ̃2
l =

ω̃l
1
Nl

∑
(i,j):|i−j|=l

1
bibj

.

Note that in our model, estimating the mean and vari-
ance from empirical normalized counts at a given genomic
distance amounts to assuming that the mean normalized
count, i.e., dαij , is constant for beads (i, j) at a given ge-
nomic distance from each other. This is obviously an
assumption that we only use to get an estimate of the
overdispersion parameter, but that we relax later when
we optimize the 3D coordinates of each bead without
constraint on their pairwise distances.

Because the empirical mean and variance may not be
reliable for very long genomic distances, where the num-
ber of contact counts is small, we only compute µ̃l and
σ̃2
l for l < 2

3 lmax, where lmax is the maximum distance
between loci. We also discard genomic distances with an
empirical mean or variance equal to 0.

We then proceed to estimate the dispersion parameter
r in two steps. First, from the set of

(
µ̃l, σ̃

2
l

)
pairs, we

then estimate the dispersion r̃l for all genomic distance
as follows:

r̃l =
µ̃2
l

(σ̃2
l − µ̃l)

. (1)

Second, from the estimates r̃l for each genomic distance,
we proceed to estimating the final dispersion parameter
r by taking the weighted average:

r = max

(
0,

∑
l wlr̃l∑
l wl

)
,

where wl the number of data points used in the estima-
tion of µ̃l and σ̃2

l . Thus, more weight is given to short
genomic distances than long genomic distances.

II.C. Estimating the 3D structure

In summary, our proposed model has three main com-
ponents: (1) we model contact counts using negative
binomial distributions parameterized by the mean and
the dispersion parameter Cij ∼ NB(rij , µij); (2) we
parameterize the mean as a function of the structure
µij = bibjd

α
ij ; and (3) we model the dispersion param-

eter as rij = bibjr and provide a method to estimate r.
By combining these three components, we can write the
probability of each observation:

P (Cij = cij) =
Γ(cij + bibjr)

Γ(cij + 1)Γ(bibjr)

×
( dαij
r + dαij

)cij( r

r + dαij

)bibjr
,

which depends on the 3D structure X through the pair-
wise distances dij , and which also depends on the count-
to-distance mapping parameter α. We then propose to
jointly infer both the 3D structure X and the α param-
eter by maximizing the likelihood:

max
α,X

L(X, α) =
∑
(i,j)

log(P (Cij = cij)) . (2)

Given an observed Hi-C contact map, we solve the op-
timization problem of Equation 2 using the L-BFGS
algorithm5,22 from the scipy toolbox. The optimization
being non-convex, we solve it five times with random ini-
tialization to find local optima, and return the solution
with the highest log-likelihood. Note that the problem in
X is ill-posed, in the sense that the solution is defined rel-
ative to a rotation factor and a translation factor. Note
also that Equation 2 is a sum over all pairs of loci (i, j),
and may include zero counts cij = 0 which contribute to
the likelihood. We illustrate in Section IV.C.1 below the
benefits of keeping zero counts in the objective functions,
and not filtering them.
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III. METHODS

III.A. Simulated datasets

Because little experimental data is available to char-
acterize the true population of 3D DNA structure, we
first compare the different structural inference methods
by using simulated data. We construct three ensembles
of datasets with varying coverage, dispersion, and counts-
to-distance mapping. All simulations use a consensus ar-
chitecture obtained by running Pastis-MDS, applied to
the first chromosome of the 75th replicate of the KBM7
nearly haploid human cell line data from Rao et al.25 at
100 kb.

We generate simulated datasets using the model Cij ∼
NB(βdαij , βr) . Note that we do not simulated biased data
requiring ICE normalization, to focus on the architec-
ture inference part. Since dij is given by the consensus
architecture used to simulated the counts, for all pairs
of beads (i, j), the total number of counts in the count
matrix (a.k.a. coverage) is on average K = β

∑
i,j d

α
ij ;

hence we control the coverage in a simulation with the β
parameter by setting β = K/

∑
i,j d

α
ij .

We generate the first ensemble of 100 datasets to study
the influence of coverage. We use α = −3, which yields
a count-to-distance mapping consistent with the one ob-
tained from polymer physics theory12,13,21. We vary the
parameter β such that the expected number of reads
ranges between 10% and 100% of the original dataset
(10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 100%),
and we set the dispersion parameter r to be the one fitted
as described in Section II.B to the KBM7 Hi-C dataset
(r = 49.9), obtaining 100 datasets by repeating each con-
figuration 10 times with 10 random seeds.

The second collection of 100 simulated datasets is to
study the influence of overdispersion. We keep α = −3
and set the parameter β such that the expected num-
ber of reads is 100% of the original dataset. We set
the dispersion parameter r to be the one estimated on
the original KBM7 contact maps multiplied by γ, where
γ ∈ {0.1, 0.2, . . . , 1}. Varying γ thus varies the disper-
sion, and the smaller the dispersion parameter is, the
more overdispersed the datasets are, and thus the harder
the inference is likely to be. For each set of parameters,
we generate 10 datasets using 10 different random seeds,
thus yielding 100 datasets.

Finally, we generate an ensemble of 70 datasets to mea-
sure how well methods perform when provided with an
incorrect counts-to-distances mapping. To do so, we vary
α ∈ {−1.5,−.2, · · ·−4.,−4.5}, fix β for each simulation so
that the number of reads is as the original dataset, keep
the dispersion parameter r as fitted on the KBM7 Hi-
C dataset, and repeat each simulation 10 times with 10
random seeds. This third ensemble of datasets enables
us to compare metric methods, for which the counts-
to-distance mapping is fixed or provided by the user a
priori, versus non-metric methods, for which the counts-
to-distance mapping is inferred jointly with the structure

from the data.

III.B. Real datasets

III.B.0.a. High-coverage in situ Hi-C from a Chronic
myelogenous leukemia cell-line. We also apply our
method to publicly available Hi-C data from the chronic
myelogenous leukemia cell-line KBM725. This cell line
has the nice property of being nearly haploid: apart from
chr 8 and a small part of chr 15, all chromosomes are hap-
loid. We downloaded the first two replicates (experiment
75 and 76) and processed the data with HiC-Pro31 to ob-
tain intra-chromosomal maps at 1 Mb, 500 kb, 250 kb,
100 kb, and 50 kb. We then filtered out rows and columns
of the data that interact the least (See Supplementary
Table S1).

III.B.0.b. S. cerevisiae, D. melanogaster, A. thaliana
Hi-C contact counts. We downloaded publicly available
whole-genome Hi-C datasets from S. cerevisiae10, D.
melanogaster32, and A. thaliana11. We normalize these
datasets by eliminating the 4% lowest interacting loci and
then applying ICE.

IV. RESULTS

We perform a series of experiments to assess the ac-
curacy of the different methods on simulated data and
the robustness of the methods on real data. Specifically,
we perform experiments on simulated data to assess the
accuracy of the inferred 3D models when varying (1) the
coverage of the datasets; (2) the overdispersion of the
counts; (3) the counts-to-distance mapping parameter.
We then assess the stability of the methods on real data
(1) on two different biological replicates; (2) across dif-
ferent resolution; (3) when subsampling the data; (4) on
a multi-chromosome dataset, by varying the number of
chromosomes included in inference. We present a sum-
mary of all results in Table I.

IV.A. Real and simulated Hi-C data are highly

overdispersed

Before diving into the comparison of the different mod-
els and algorithms, we first investigate the extent to
which existing Hi-C data sets show evidence of overdis-
persion. Because it is rare to have several samples of
the same cell line, we use the method described in Sec-
tion II.B to check for the presence or absence of overdis-
persion in the normalized Hi-C data. We plot in Figure 1,
for different species (chr10 of the KBM7 human cell line
at 100 kb, D. melanogaster at 10 kb, A. thaliana at 40 kb
and S. cerevisiae at 10 kb), the mean vs variance rela-
tionship of normalized contact counts. Each dot in the
plot corresponds to a particular genomic distance. In
each case, we observe strong overdispersion (i.e., points
are above the diagonal), supporting the idea to model
Hi-C count data with overdispersed models.
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Simulated data Real data
Coverage
(small β)

Dispersion
(small γ)

Counts-
to-maps
(small α)

Replicates
(LR)

Replicates
(HR)

Resolution Downsampling Multi-
chrom.

Section 4.2.1 4.2.1 4.2.2 4.3.2 4.3.2 4.3.3 4.3.4 4.3.5
Pastis-MDS . XX . . . . . .
ShRec3D XX . XX X XX XX XX X
ChromSDE . . X XXX X X X NA
Pastis-PM X X . . . . . XX
Pastis-NB XXX XXX XXX XX XXX XXX XXX XXX

Table I Summary of the results We summarize here all the experiments performed, including the sections in the text where they
can be found and a synopsis of the main results. The table displays the top three methods for each experiment (XXX for the best method,
XX for the second best, X for the third best). Pastis-NB performs better than all methods in most experiments.

100 102 104 106
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10−1

100

101

102

103

104

105

106

107

V
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D. melanogaster

A. thaliana

H. sapiens

S. cerevisiae

Volume exclusion

Fig. 1 Mean and variance of contact counts in different Hi-
C datasets. Each point represents a given genomic distance in
one dataset, where we estimate the mean and variance of contact
counts. The dashed line corresponds to the relationship assumed
by the Poisson model: σ2 = µ. The “Volume exclusion” dataset is
simulated following a previously described model35.

We then repeat this experiment on simulated data by
generating 50,000 structures using a previously described
volume exclusion model of the budding yeast35. From
this population of structures we create a contact count
matrix at 3 kb resolution, assuming that loci closer than
40 nm come into contact. This simulated contact count
map has been shown to be highly correlated with experi-
mental Hi-C data35. The resulting dataset (purple series
in Figure 1) displays the same overdispersion as the data.
We thus conclude that the overdispersion is an inherent
property of Hi-C data and not an experimental artifact.
We hypothesize that the overdispersion arises due to the
large variety of different structures present in a single
Hi-C experiment.

IV.B. Pastis-NB is accurate and robust on simulated data

Next, we use simulated data to compare our approach,
which we refer to as Pastis-NB, with four different algo-
rithms. Pastis-MDS is a weighted metric MDS method
that attempts to place the beads such that the distance
between each pair matches as closely as possible the wish
distances derived from contact counts36. ChromSDE is
a variant of metric MDS that penalizes non-interacting
pairs of beads to keep them far away from one another
and optimizes the counts-to-distances mapping coeffi-
cient with a golden search39. ShRec3D is a two-step
method that first derives distances from contact counts
using a shortest path algorithm and then applies classi-
cal MDS19. Pastis-PM models contact counts as Pois-
son random variables with the 3D structure as a latent
variable and casts the inference problem as a likelihood
maximization, optimizing the jointly the structure and
the parameters of the counts-to-distance function. The
five methods fall into two categories: chromSDE, Pastis-
PM, and Pastis-NB are non-metric because they fit a
parametric curve to estimate a count-to-distance map-
ping from the data; while Pastis-MDS, and ShRec2D are
metric because they do not do this fitting. In our experi-
ments, each software package is used with default param-
eters.

IV.B.1. Robustness to coverage and dispersion

We first run all algorithms on the datasets with varying
dispersion and coverage. Our goal here is to assess how
well the different methods reconstruct a known 3D struc-
ture from simulated data at different coverage and disper-
sion levels. High coverage typically corresponds to a high
signal-to-noise ratio, whereas low coverage yields sparse,
low signal-to-noise ratio matrices. Similarly, when the
dispersion parameter tends to infinity, the negative bino-
mial distribution (by definition overdispersed) tends to
a Poisson with lower variance. Thus, the lower the dis-
persion parameter, the noiser the dataset. All methods
should therefore perform better as the dispersion param-
eter (γ in our setting) and the coverage increase.

In this first series of experiments, we provide the cor-
rect count-to-distance or distance-to-count transfer func-
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tions to the metric methods, who need it. In this setting,
for infinite coverage and infinite dispersion parameter, all
methods should consistently estimate the correct struc-
ture, at least if they manage to converge to the global
optimum of their objective function.

We first plot the average root mean squared deviation
(RMSD) error between the true and predicted structures,
as a function of coverage (Figure 2A) for the datasets
with varying coverage. Strikingly, ShRec3D’s and Pastis-
NB’s results are extremely stable to coverage, while the
three other methods see their performance decrease with
coverage. ShRec3D performs relatively well when the
coverage is low but poorly in the high coverage setting.
All the other methods perform similarly well for high
coverage, with Pastis-PM and Poisson-NB achieving the
lowest RMSD at high coverage, but exhibit strong dif-
ferences in the low coverage setting. In the low coverage
setting, Pastis-NB remains extremely good, with barely
any decrease in performance even at the lowest coverage,
while Pastis-MDS’ performance degrades quickly with
less than 70% of the coverage, and similarly Pastis-PM
and chromSDE see their performance deteriorate with
less than 40% of the coverage. With the best RMSD er-
ror among all methods for all coverage, Pastis-NB is the
clear winner in this experiment.

We then plot the average RMSD as a function of the
dispersion tuning parameter γ (Figure 2B) for the sec-
ond set of simulated contact maps with varying disper-
sion. As expected, we observe that all methods tend
to perform better when γ increases (corresponding to
less overdispersion), and have poorer performance when
the data are too overdispersed. ShRec3D’s results tend
to be stable to changes in dispersion, but worse than
other methods for large γ’s. All methods perform poorly
in the highest dispersion setting. ChromSDE performs
relatively poorly in the medium to high dispersion set-
ting. Pastis-NB has again the best performance across
all dispersion values, although the difference relative to
other methods, particularly Pastis-PM and Pastis-MDS,
is small.

IV.B.2. Robustness to incorrect parameter estimation

We then compare the algorithms on datasets with
varying counts-to-distances mappings. Metric methods
(Pastis-MDS and ShRec3D) require as input a count-
to-distance transfer function. While Pastis-MDS relies
on ideal physical laws to define this mapping, ShRec3D
uses ad hoc conversion of counts into physical distances.
However, DNA may not follow the ideal properties of
polymers underlying the default transfer function; thus,
structures inferred from these methods may diverge from
the correct ones. Our goal here is to assess how well the
different methods perform when the transfer function is
mis-specified. We expect non-metric methods to perform
better on these datasets, because they should be able to
adapt the transfer function to best fit the data.

Figure 2C shows the average RMSD error of each algo-

rithm as a function of the α parameter used to simulate
the data. It is worth noting that the lower the α param-
eter is, the noisier the simulated contact map is: a low
α parameter indeed results in a contact count map with
very few long range interaction counts.

Pastis-NB works well across all values of α, exhibit-
ing a striking difference from the rest of the methods for
α ≤ −3. Notably, all methods perform much better for
high α than for low α. This phenomenon can be ex-
plained by the properties of the contact count maps in
this setting: low α values in the count-to-distance func-
tion lead to abrupt changes in the probability of see-
ing contact counts between small and large distances,
whereas high α values yield a much more uniform ex-
pected contact counts map. Thus, for identical coverage,
low α datasets are much sparser than high α datasets.
In short, despite identical coverage in all datasets, the
signal-to-noise ratio varies strongly with α, thereby lead-
ing to much better overall performance for low α both for
metric and non-metric methods, even when the transfer
function is mis-specified.

IV.C. Pastis-NB yields stable and consistent structures on

real Hi-C data

We now test the different methods on real Hi-C data.
Since in this case the true consensus structure is un-
known, we investigate instead the behaviors of the differ-
ent methods in terms of their ability to infer consistent
structures from replicate datasets and across resolutions.

IV.C.1. Pastis-NB shows increased stability when

performing the inference without filtering zero counts

Before delving into a detailed comparison of Pastis-NB
with other methods on various tasks, we first illustrate in
this section the benefits brought by including zero-valued
counts in the model inferred by Pastis-NB. This is to be
contrasted with many previously published methods that
perform 3D structure inference using only a subset of the
data, and in particular disregard zero counts. For exam-
ple, Tanizawa et al.34 and Duan et al.10 consider only the
top 2% significant contact counts, whereas Varoquaux
et al.36 exclude zero contact counts from the inference.
Many MDS-based methods require a transformation of
contact counts into distances: this is often based on a
power-law relationship with a negative coefficient and is
thus undefined for zero contact counts. As a result, meth-
ods include zero contact counts either through an ad hoc
penalization term on non-interacting beads or by con-
verting zero counts to an ad hoc distance (for example,
the largest distance obtained on non-zero counts or using
prior knowledge of the structure). In contrast, Pastis-NB
formulates the inference in a way that naturally includes
zero contact counts.

To assess the impact of zero counts information, we
compare the default Pastis-NB model, which takes into
account zero counts in the likelihood objective function
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Fig. 2 Performance evaluation on simulated data. Each plot shows the mean RMSD error (over 10 random simulations with different
random seed) between the predicted structure and the true structure, for five different methods, when one parameter of the simulation
is varied. A. The parameter β is varied such that the coverage is 10–100% of the original dataset. B. The parameter γ, which controls
over-dispersion, is varied between 0.1 and 1. Smaller values correspond to more over-dispersion. C. The paramater α, which controls the
count-to-distance mapping coefficient, is varied between -4.5 and -1.5.

(2), with a variant where we only retain non-zero counts.
We assess the stability of the inferred structures across
biological replicates when using all counts versus only
non-zero counts. To do so, we run the inference on the
whole sets of contact counts versus the filtered one, on
both replicates 75 and 76 of KBM7, for contact count
matrices at five different resolutions. We thus infer two
structures for each autosomal chromosome, one for each
replicate. We then rescale them such that the structures
fit in a sphere of a predefined diameter, and we com-
pute the RMSD between the two rescaled structures as
described in Varoquaux et al.36, to estimate the stabil-
ity of the inference. Recall that the different methods
cannot optimize the coordinates of beads that have zero
contact counts. Thus, before computing the RMSD, we
filter out from both structures any beads that have zero
contact counts in either dataset.

We then compare the stability of the inference be-
tween the two approaches (filtered versus unfiltered zero
counts). Figure 3A shows, for each approach, the dis-
tribution of RMSD values across the 22 chromosomes
and five resolutions. We clearly see that keeping all zero
counts leads to significantly smaller RMSD, hence more
stable structures across biological replicates.

IV.C.2. Stability to replicates

Replicates, which involve multiple runs of the same
experiment performed on similar samples with the same
experimental settings, are typically carried out to assess
variability of the results. Because the underlying 3D
model should not change in this case, we compare the
results of the inference of the different algorithms on two
replicates of the nearly haploid human KBM7 cell line.
Similar to what we did in Section IV.C.1, we infer two
structures on the two replicates of interest for each au-

tosomal chromosomes. We compute the RMSD between
each pairs of structures as described above, as well as the
Spearman correlation of the distances.

Pastis-MDS ShRec3D chromSDE Pastis-PM Pastis-NB
1mb 0.95 0.97 0.99 0.96 0.96

500kb 0.97 0.96 0.98 0.95 0.97
250kb 0.92 0.93 0.97 0.89 0.98
100kb 0.59 0.89 0.87 0.73 0.97
50kb 0.33 0.87 0.62 0.56 0.96

Table II Stability across replicates. The table shows the aver-
age Spearman correlation between structures inferred on biological
replicates on 22 autosomes of the KBM7 cell line at varying reso-
lutions. In bold is the best correlation per row.

Not surprisingly, the stability of the inference across
replicates decreases as the resolution grows in all meth-
ods. Table II shows the average correlation reached by
each method at each resolution, and Supplementary Ta-
ble S2 shows the corresponding average RMSD. At low
resolution (1 Mb, 500 kb), chromSDE performs the best
both in terms of correlation and in terms of RMSD be-
tween replicates, although all methods perform well in
that setting with correlations ranging between 0.95 and
0.99. At high resolution (250 kb, 100 kb, 50 kb), Pastis-
NB performs the best, both in correlation and in RMSD,
despite the non-convex nature of the optimization prob-
lem solved. It is remarkable that even at 50 kb, Pastis-
NB reaches a correlation of 0.96 between replicates, while
the second best method (ShRec3D) see its correlation de-
crease to 0.87, and chromSDE, which is the most stable
at low resolution, only obtains a correlation of 0.62.

IV.C.3. Stability to resolution

Zhang et al.38 show that the mapping from contact
counts to physical distance differs from one resolution to
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Fig. 3 Stability results on Rao et al.25 and Duan et al.10A. The RMSD between pairs of structures inferred by Pastis-NB using
all contact counts (“all”) or excluding zero contact counts (“filtered”). B. Inference is performed on a downsampled contact map and the
resulting structure is compared to the structure obtained using the whole dataset. ChromSDE fails to infer a structure with the correct
number of bins on the datasets downsampled to 10% of the original coverage: results for chromSDE at 10% are thus not displayed. C.
The RMSD between pairs of chromosomes inferred by subsampling chromosomes from10’s S. cerevisiae dataset.

another, underscoring the importance of good parameter
estimation. To study the stability of the structure infer-
ence methods to changes in resolution, we compute the
RMSD between pairs of structures inferred at different
resolutions (1 Mb, 500 kb, 250 kb, 100 kb, and 50 kb).
Each inferred structure is rescaled such that all beads fit
in a nucleus of size 100. To compare two structures at
different resolutions, we downsample the structure of the
highest resolution by averaging its coordinates until it is
of the same resolution as the other one. We then compute
the RMSD and correlation between the two structures of
the same size.

Pastis-MDS ShRec3D chromSDE Pastis-PM Pastis-NB
RMSD 26.57 18.27 21.08 22.25 14.50

Correlation 0.48 0.79 0.65 0.66 0.86

Table III Stability across resolution The table lists the aver-
age RMSD and Spearman correlation between pairs of structures
for replicate 75 at different resolutions. In bold are the lowest aver-
age RMSD and highest average Spearman correlation. These values
were computed on the KBM7 nearly haploid human cell line25.

Results of this experiment (Table III) show that Pastis-
NB is more

stable to resolution changes than other methods, both
in terms of RMSD and in terms of correlation, with for
example a decrease of ∼20% in average RMSD compared
to ShRec3D, the second best (14.50 vs 18.27).

IV.C.4. Stability to coverage

We then study the stability of the structure inference
methods to coverage. To do so, we downsample the
100 kb contact count matrices between 10% and 90% of
the original coverage. We perform inference from these
downsampled contact maps and compute the Spearman

correlation between Euclidean distances of the obtained
structures and the structures inferred on the full ma-
trix. Results of this experiment (Figure 3B) show that
all methods tend to see the correlation decrease with
the downsampling, as expected. While ShRec3D and
chromSDE yield high correlations at high coverage, the
correlation decreases sharply for chromSDE, reaching
∼ 0.3 at 10% downsampling, and a bit less sharply for
ShRec3D, which reaches ∼ 0.8 at 10% downsampling.
Pastis-PM and Pastis-MDS have the worst correlation at
high coverage, and see their correlation decrease sharply
with coverage. Pastis-NB stands out as the method
with largest correlation at high coverage, but also as the
method that witnesses barely any decrease in correlation
when coverage decreases.

IV.C.5. Whole genome inference

Finally, we consider the harder task of whole genome
inference, rather than inferring structures separately per
chromosome. When tackling whole genome inference, a
new problem arises for non-metric methods: the inter -
chromosomal contact counts dominate the estimation of
the counts-to-distance parameter α. Indeed, while the es-
timation of the α parameter is very stable on single chro-
mosomes, we observe that this parameter α increases to
−1 when the number of chromosomes increases for some
non-metric methods. This has the effect of collapsing
beads belonging to a chromosome together, while push-
ing beads belonging to other chromosomes away from one
another.

To assess how well whole genome inference performs,
we perform yet another stability experiment. We ran-
domly subsample the number of chromosomes of a S.
cerevisiae dataset and perform the 3D structure infer-
ence. We then assess the stability of the structure in-
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ference by computing the RMSD and Spearman correla-
tion for each chromosome independently and taking the
average to obtain a single RMSD and Spearman correla-
tion score. Note that chromSDE does not support multi-
chromosome inference: we have thus excluded chromSDE
from these results. Results once again show that Pastis-
NB is the most stable method both in RMSD (Fig 3C)
and in correlation (Supp. Fig. S1).

V. DISCUSSION AND CONCLUSION

We present in this work a new model, Pastis-NB, to
infer a consensus 3D structure of the genome from Hi-C
contact count data. We model interaction counts as nega-
tive binomial random variables, and we cast the inference
as a likelihood maximization problem. Modeling counts
as negative binomial random variables allows us to better
model the presence of overdispersion in Hi-C data, which
we observed experimentally in Hi-C data from different
organisms. Through extensive experiments on simulated
and real Hi-C data, we showed that Pastis-NB consis-
tently outperforms a representative set of four compet-
itive methods across a range of metrics. In particular,
Pastis-NB yields remarkably stable and accurate results
in the case of highly dispersed contact count data. This
improvement is particularly striking at high resolution
and at low coverage, with 3D models inferred much more
robustly with Pastis-NB than with other methods.

A limitation of Pastis-NB resides in the inference con-
sensus 3D models of chromosome architecture. Con-
sensus models are not necessarily representative of the
true folding of DNA in the cell. For example, a con-
sensus model of S. cerevisiae’s genome will sometimes
cluster telomeres together, while it is known that telom-
eres tether at the nuclear membrane. One should thus
interpret these models with care. Yet consensus meth-
ods are powerful dimensionality reduction tools that can
serve as an entry point for many analyses, such as data
integration and visualization.

VI. ACKNOWLEDGEMENTS

This work was supported by NIH awards
U54 DK107979 and UM1 HG011531.

REFERENCES

a)Electronic mail: nelle.varoquaux@univ-grenoble-alpes.fr
1Anders, S. and Huber, W. (2010). Differential expression analysis for

sequence count data. Genome Biol., 11(10), R106.
2Ay, F., Bunnik, E. M., Varoquaux, N., Bol, S. M., Prudhomme,

J., Vert, J.-P., Noble, W. S., and Le Roch, K. G. (2014). Three-

dimensional modeling of the P. falciparum genome during the ery-

throcytic cycle reveals a strong connection between genome architec-

ture and gene expression. Genome Research, 24, 974–988.
3Behr, J., Kahles, A., Zhong, Y., Sreedharan, V. T., Drewe, P., and

Ratsch, G. (2013). MITIE: Simultaneous RNA-Seq-based transcript

identification and quantification in multiple samples. Bioinformat-

ics, 29(20), 2529–2538.

4Ben-Elazar, S., Yakhini, Z., and Yanai, I. (2013). Spatial localization

of co-regulated genes exceeds genomic gene clustering in the saccha-

romyces cerevisiae genome. Nucleic Acids Res, 41(4), 2191–2201.
5Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited

memory algorithm for bound constrained optimization. SIAM J.

Sci. Comput., 16(5), 1190–1208.
6Carty, M., Zamparo, L., Sahin, M., Gonz?lez, A., Pelossof, R., El-

emento, O., and Leslie, C. S. (2017). An integrated model for de-

tecting significant chromatin interactions from high-resolution Hi-C

data. Nat Commun, 8, 15454.
7Cauer, A. G., Yardimci, G., Vert, J.-P., Varoquaux, N., and No-

ble, W. S. (2019). Inferring Diploid 3D Chromatin Structures from

Hi-C Data. In K. T. Huber and D. Gusfield, editors, 19th Interna-

tional Workshop on Algorithms in Bioinformatics (WABI 2019),

volume 143 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 11:1–11:13, Dagstuhl, Germany. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik.
8De, S. and Michor, F. (2011). DNA replication timing and long-range

DNA interactions predict mutational landscapes of cancer genomes.

Nat Biotechnol, 29(12), 1103–1108.
9Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M.,

Liu, J. S., and Ren, B. (2012). Topological domains in mammalian

genomes identified by analysis of chromatin interactions. Nature,

485(7398), 376–380.
10Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee,

C., Shendure, J., Fields, S., Blau, C. A., and Noble, W. S. (2010). A

three-dimensional model of the yeast genome. Nature, 465, 363–367.
11Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M., and

Jacobsen, S. E. (2014). Genome-wide Hi-C analyses in wild-type and

mutants reveal high-resolution chromatin interactions in Arabidop-

sis. Mol. Cell, 55(5), 694–707.
12Fudenberg, G. and Mirny, L. A. (2012). Higher-order chromatin

structure: bridging physics and biology. Curr Opin Genet Dev.,

22(2), 115–124.
13Grosberg, A. Y., Nechaev, S. K., and Shakhnovich, E. I. (1988). The

role of topological constraints in the kinetics of collapse of macro-

molecules. Journal de Physique, 49(12), 2095–2100.
14Hu, M., Deng, K., Selvaraj, S., Qin, Z., Ren, B., and Liu, J. S.

(2012). HiCNorm: removing biases in Hi-C data via Poisson regres-

sion. Bioinformatics, 28(23), 3131–3133.
15Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B.,

and Liu, J. S. (2013). Bayesian inference of spatial organizations of

chromosomes. PLoS Comput Biol, 9(1), e1002893.
16Imakaev, M., Fudenberg, G., McCord, R. P., Naumova, N.,

Goloborodko, A., Lajoie, B. R., Dekker, J., and Mirny, L. A. (2012).

Iterative correction of Hi-C data reveals hallmarks of chromosome

organization. Nature Methods, 9, 999–1003.
17Jin, F., Li, Y., Dixon, J. R., Selvaraj, S., Ye, Z., Lee, A. Y., Yen,

C. A., S., A. D., Espinoza, C. A., and Ren, B. (2013). A high-

resolution map of the three-dimensional chromatin interactome in

human cells. Nature, 503(7475), 290–294.
18Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F., and Chen, L.

(2011). Genome architectures revealed by tethered chromosome con-

formation capture and population-based modeling. Nat Biotechnol.
19Lesne, A., Riposo, J., Roger, P., Cournac, A., and Mozziconacci,

J. (2014). 3D genome reconstruction from chromosomal contacts.

Nature Methods, 11(11), 1141–1143.
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