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Figure 4: Separate visualizations for each of the identified functional networks, showing the optimal 
number of states for each of the searchlights within the functional network. SMN=somato-motor 
network, DMN=default mode network, FPCN=fronto-parietal control network, DAN=dorsal 
attention network. The figure shows the median state duration estimates across all 15 groups of 
participants. 

 

If state boundaries form a nested cortical hierarchy, we expect that they are shared not only within 
brain regions involved in similar functions but also across different functional networks. To investigate 
this, we computed partial correlations between the average boundary vectors in each network, 
controlling for the boundary vectors in all other networks. Using partial, rather than regular Pearson 
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correlations allowed us to focus on direct connections between networks (Smith et al., 2011). We 
found evidence that neural state boundaries are indeed shared across different networks, in a way 
that closely aligns with the hierarchical organization of these different networks (see figure 3C). For 
example, the different visual networks and the dorsal attention network tended to share boundaries, 
as well as the higher order networks (anterior and posterior DMN, FPCN) and the sensorimotor 
networks. There were also many significant partial correlations between each of these networks. The 
lower-level visual networks shared boundaries with the higher-level visual networks, which in turn 
connected to the FPCN and the DAN, as well as the posterior DMN. The FPCN and posterior DMN also 
received input from the auditory network and were connected to each other, as well as to the anterior 
DMN.  
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Discussion 

While event segmentation is a critical aspect of our ongoing experience, the neural mechanisms that 
underlie this ability are not yet clear. The aim of this paper was to investigate the cortical organization 
of neural states that may underlie our experience of distinct events. By combining an innovative data-
driven state segmentation method, with a movie dataset of many participants, we were able to identify 
neural states across the entire cortical hierarchy for the first time. We observed particularly fast states 
in primary sensory regions and long periods of information integration in the left middle frontal gyrus 
and medial prefrontal cortex. Across the entire cortical hierarchy, we observed associations between 
neural state and event boundaries and our findings demonstrate that neural state boundaries are 
shared within long-range functional networks as well as across the temporal hierarchy between 
distinct functional networks.  

 

A nested cortical hierarchy of neural states 

Previous findings have suggested that neural states may be organized in a nested cortical hierarchy 
(Baldassano et al., 2017). In line with this hypothesis, we observed that neural state boundaries 
throughout the entire hierarchy overlap with experienced event boundaries, but this overlap is greater 
for transmodal regions such as the medial prefrontal cortex and angular gyrus that may be involved in 
constructing ‘situation models’ of an ongoing narrative (Ranganath and Ritchey, 2012; Zwaan and 
Radvansky, 1998). This finding suggests that some of the neural state boundaries that can be identified 
in early sensory regions are represented throughout the cortical hierarchy until they are eventually 
reflected in conscious experience. It also suggests that event segmentation may not be underpinned 
by a central mechanism that registers the prediction error of the current input in relation to a single 
event model (Zacks et al., 2007; Zacks et al., 2011), but rather by a local segmentation mechanism that 
occurs at all levels of the cortical hierarchy.  

So what do these neural states represent?  Recent work by Chien and Honey (2020) has shown that 
neural activity around an artificially introduced event boundary can be effectively modeled by ongoing 
information integration, which is reset by a gating mechanism, very much in line with mechanism that 
have been proposed to underlie event segmentation (Kurby and Zacks, 2008). Similarly, neural states 
may represent information integration about a particular stable feature of the environment, which is 
reset when that feature undergoes a substantial change. This suggests that neural states in early visual 
cortex may represent short-lived visual features of the external environment, while states in anterior 
temporal cortex may contain high-level semantic representations related to the ongoing narrative 
(Clarke and Tyler, 2015). For transmodal regions such as the medial prefrontal cortex, or middle frontal 
gyrus, that have been associated with many different high level cognitive processes (e.g. Duncan, 2010; 
van Kesteren et al., 2012; Simony et al., 2016), it is not yet clear what a distinct neural state might 
represent. Just as event boundaries can be related to changes in one or multiple situational 
dimensions, such as changes in goals or locations (Clewett et al., 2019; Zacks et al., 2009), neural state 
boundaries in transmodal cortical areas may not necessarily reflect one particular type of change. State 
boundaries in these regions are likely also dependent on the goals of the viewer (Wen et al., 2020).   

We also investigated the factors that distinguish neural state boundaries that traverse the hierarchy 
from those that do not. It has previously been shown that changes across multiple aspects of the 
narrative are more likely to result in an experienced event boundary (Zacks et al., 2010). In line with 
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this, we observed that boundaries that were represented in more brain regions at the same time were 
also more likely to be associated with the experience of an event boundary. The strength of the neural 
state boundary, as measured by the amount of change in neural activity patterns, was also identified 
as a factor that can to some degree distinguish neural states that travel up the hierarchy and appear 
in subjective experience from the neural states that do not, particularly in temporal cortex and inferior 
frontal gyrus. This suggest that a neural state boundary is not an all or none occurrence. Instead,  the 
reset of representations at neural state boundaries (Chien and Honey, 2020) may differ based on what 
is happening in  other brain regions or based on the degree of change in the representations of the 
environment in that particular brain region.  

More evidence for the idea of a nested cortical hierarchy of neural state boundaries comes from our 
connectivity analyses, which show that neural state boundaries are shared both within and across 
groups of regions that partly resemble well known functional brain networks. The way neural state 
boundaries are shared between networks closely aligns with the interconnected functions between 
those particular networks. For example, different low-level visual networks shared state boundaries 
with each other but also with higher level networks, such as the DAN and FPCN. This sharing of 
boundaries across different cortical areas may suggest that neural states in higher level cortical regions 
represent an overarching representation that corresponds to many distinct states in lower level 
cortical areas, which all represent different features of that overarching representation (e.g. words 
spoken, characters on screen or locations within a particular situation). This is in line with previous 
conceptualizations of events as partonomic hierarchies (Zacks et al., 2001a) and with other models of 
hierarchical neural representations, such as the hub-and-spokes model for semantic representations, 
which proposes that semantic knowledge is represented by the interaction between modality-specific 
brain regions and a transmodal semantic representational hub in the anterior temporal lobe (Lambon 
Ralph et al., 2010; Rogers et al., 2004). It is also in line with a recently proposed hierarchical 
representation of episodic memories, in which items that are linked within small-scale events are in 
turn linked within large-scale episodic narratives (Andermane et al., 2021).  

 

Timescales of information processing across the cortex 

While previous studies have been able to show regional differences in the time scale of information 
processing across part of the cortex (Baldassano et al., 2017; Hasson et al., 2008; Honey et al., 2012; 
Lerner et al., 2011; Stephens et al., 2013), here we were able to reveal neural state timescales across 
the entire cortex for the first time. The validity of our results is supported by extensive validations using 
simulations (Geerligs et al., 2020) and the reliability of our observations across independent groups of 
participants. It is also supported by the striking similarity between our results and previous findings 
based on very different approaches, such as experiments with movies and auditory narratives that 
have been scrambled at different timescales (Hasson et al., 2008; Honey et al., 2012; Lerner et al., 
2011), or resting-state fluctuations in electrocorticography (Honey et al., 2012) and functional MRI 
data (Stephens et al., 2013).  

Although we characterized brain areas based on their median state length, we observed that neural 
states within a region were not of equal duration, suggesting that regional timescales may change 
dynamically based on the features of the stimulus. This is also in line with the observed 
correspondence between neural state and event boundaries. Event boundaries have previously been 
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shown to align with changes in features of the narrative input stimulus, such as characters, causes, 
goals and spatial locations (Zacks et al., 2009). Therefore, the overlap between state boundaries and 
event boundaries across the cortex also suggest that characteristics of the sensory input are driving 
the occurrence of neural state boundaries. Together, these findings show that the timescale of 
information processing in particular brain regions are not only driven by stable differences in the rate 
of temporal integration of information, that may be associated with interregional interactions in the 
neural circuitry (Honey et al., 2012), but also by the properties of the input that is received from the 
environment. Our results show that some of the areas that were not covered in previous investigations 
(Baldassano et al., 2017; Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; Stephens et al., 
2013), such as the medial prefrontal cortex, anterior temporal pole and middle frontal gyrus have the 
longest timescales of information processing. This suggests these regions at the top of the cortical 
hierarchy (Clarke and Tyler, 2015; Fuster, 2001) also have the slowest timescales of information 
processing, in line with expectations based on the hierarchical process memory framework (Hasson et 
al., 2015).  

 

Functional networks of neural state boundaries  

Our results show for the first time that neural state boundaries are shared across brain regions in 
distinct functional networks. Interestingly, the networks we identify partially resemble the functional 
networks that are typically found using regular functional connectivity analyses (c.f. Power et al., 2011; 
Yeo et al., 2011), though there are some differences. For instance, the visual network was segregated 
into six smaller subnetworks and for other networks, the topographies sometimes deviated somewhat 
from those observed in prior work.  

Our results show that functional networks defined by state boundaries differ in their timescales of 
information processing. While some networks have a particular temporal mode of information 
processing, other networks show a broader range of neural state timescales (as indicated by the spread 
of searchlight timescales in Figure 3B). For the DMN we observed a split into anterior and posterior 
subnetworks with markedly different timescales, which is similar to previously observed posterior and 
anterior DMN subnetworks (Andrews-Hanna et al., 2010; Campbell et al., 2013; Lei et al., 2014). The 
posterior/fast DMN is particularly prominent in the precuneus and angular gyri, which are thought to 
engage in episodic memory retrieval through connectivity with the hippocampal formation (Andrews-
Hanna et al., 2010). The posterior DMN has also been proposed to be involved in forming mental 
scenes or situation models (Ranganath and Ritchey, 2012). Thus, neural states in this subnetwork may 
reflect the construction of mental scenes of the movie and/or retrieval of related episodic memories. 
The anterior/slow DMN is particularly prominent in the medial prefrontal cortex which has been 
related to self-referential thought, affective processing, and integrating current information with prior 
knowledge (Benoit et al., 2014; Gilboa and Marlatte, 2017; Van Kesteren et al., 2012; Northoff et al., 
2006). The current results suggest that these processes require integration of information over longer 
timescales.  
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Real life experience 

Although event segmentation is thought to be a pivotal aspect of how information is processed in real 
life  (Zacks et al., 2007), it is often not considered in experimental settings, where events are 
predetermined by the trial or block structure. This study and previous work (Baldassano et al., 2017) 
shows that we are now able to investigate brain activity as it unfolds over time without asking 
participants to perform a task. This allows us to study brain function in a way that is much more similar 
to our daily life experience than typical cognitive neuroscience experiments (Hamilton and Huth, 2020; 
Lee et al., 2020; Willems et al., 2020). This opens the door for investigations of neural differences 
during narrative comprehension between groups of participants, such as participants with autism who 
may have trouble distinguishing events that require them to infer the state of mind of others (Baron-
Cohen, 2000; Hasson et al., 2009a), or participants with Alzheimer’s disease, who may have trouble 
encoding events in memory (Zacks et al., 2006).    

 

Conclusion 

Here, we demonstrate that event segmentation is underpinned by neural state boundaries that occur 
in a nested cortical hierarchy. This work also provides the first cortex-wide mapping of timescales of 
information processing and shows that the DMN fractionates into fast and slow subnetworks. 
Together, these findings provide new insights into the neural mechanisms that underlie event 
segmentation, which in turn is a critical component of real-world perception, working memory and 
episodic memory formation. What remains to be addressed is how timescales of different brain regions 
relate to the types of neural representations that are contained within these regions. For example, 
does the dissociation between the posterior and anterior default mode network reflect relatively fast 
construction of mental scenes and slow integration with existing knowledge, respectively? Studying 
brain function from this perspective provides us with a new view on the organizational principles of 
the human brain. 

 

 

Acknowledgements 

LG was supported by a Veni grant [451-16-013] from the Netherlands Organization for Scientific 
Research. MVG was supported by a Vidi grant [639.072.513] from the Netherlands Organization for 
Scientific Research. KC was supported by the Natural Sciences and Engineering Research Council of 
Canada (Grant RGPIN-2017-03804 to KC) and the Canada Research Chairs program. We thank Aya Ben-
Yakov for providing data on the subjective event boundaries in the Cam-CAN movie dataset. We thank 
Shiori Amemiya for provided the HRF time delay maps. Data collection and sharing for this project was 
provided by the Cambridge Centre for Ageing and Neuroscience (CamCAN). CamCAN funding was 
provided by the UK Biotechnology and Biological Sciences Research Council (grant number 
BB/H008217/1), together with support from the UK Medical Research Council and University of 
Cambridge, UK. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.05.429165doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429165
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Materials and Methods  

Participants 

This study included data from 265 adults (131 female) who were aged 18–50 (mean age 36.3, SD = 8.6) 
from the healthy, population-derived cohort tested in Stage II of the Cam-CAN project (Shafto et al., 
2014; Taylor et al., 2017). Participants were native English-speakers, had normal or corrected-to-
normal vision and hearing, and had no neurological disorders (Shafto et al., 2014). Ethical approval for 
the study was obtained from the Cambridgeshire 2 (now East of England - Cambridge Central) Research 
Ethics Committee. Participants gave written informed consent. 

 

Movie 

Participants watched a black and white television drama by Alfred Hitchcock called ‘Bang! You’re Dead’ 
while they were scanned with fMRI.  The full 25-minute episode was shortened to 8 minutes, 
preserving the narrative of the episode (Shafto et al., 2014). A longer version of this movie has been 
shown to elicit robust brain activity, synchronized across younger participants (Hasson et al., 2009b).  
Participants were instructed to watch, listen, and pay attention to the movie. 

 

fMRI data acquisition  

The details of the fMRI data acquisition are described in (Geerligs et al., 2018). In short, 193 volumes 
of movie data were acquired with a 32-channel head-coil, using a multi-echo, T2*-weighted EPI 
sequence. Each volume contained 32 axial slices (acquired in descending order), with slice thickness of 
3.7 mm and interslice gap of 20% (TR = 2470 ms; five echoes [TE = 9.4 ms, 21.2 ms, 33 ms, 45 ms, 57 
ms]; flip angle = 78 degrees; FOV = 192mm x 192 mm; voxel-size = 3 mm x 3 mm x 4.44 mm), the 
acquisition time was 8 minutes and 13 seconds. High-resolution (1 mm x 1mm x 1 mm) T1 and T2-
wieghted images were also acquired.   
 

Data pre-processing and hyperalignment 
The initial steps of data preprocessing for the movie data were the same as in Geerligs et al. (2018) 
and are described there in detail. Briefly, the preprocessing steps included deobliquing of each TE, slice 
time correction and realignment of each TE to the first TE in the run, using AFNI  (version AFNI_17.1.01; 
https://afni.nimh.nih.gov; Cox, 1996). To denoise the data for each participant, we used multi-echo 
independent component analysis (ME-ICA), which is a very promising method for removal of non-BOLD 
like components from the fMRI data, including effects of head motion (Kundu et al., 2012; Kundu et 
al., 2013). Co-registration followed by DARTEL intersubject alignment was used to align participants to 
MNI space using SPM12 software (http://www.fil.ion.ucl.ac.uk/spm).  
To optimally align voxels across participants in the movie dataset, we subsequently used whole-brain 
searchlight hyperalignment as implemented in the PyMVPA toolbox (Guntupalli et al., 2016; Hanke et 
al., 2009). Hyperalignment is an important step in the pipeline because the neural state segmentation 
method relies on group-averaged voxel-level data. Hyperalignment uses Procrustes transformations 
to derive the optimal rotation parameters that minimize intersubject distances between responses to 
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the same timepoints in the movie. The details of the procedure are identical to those in Geerligs et al. 
(2020). After hyperalignment, the data were highpass-filtered with a cut-off of 0.008 Hz.  
 
 
 
Neural state boundaries 

To identify neural state boundaries in the fMRI data, we used greedy state boundary search (GSBS) 
(Geerligs et al., 2020). GSBS performs an iterative search for state boundary locations that optimize 
the similarity between the average activity patterns in a neural state and the (original) brain activity at 
each corresponding time point. At each iteration of the algorithm, previous boundary locations are 
finetuned by shifting them by 1 TR (earlier or later) if this further improves the fit. To determine the 
optimal number of boundaries in each brain region, we used the t-distance metric. This metric 
identifies the optimal number of states, such that timepoints within a state have maximally similar 
brain activity patterns, while timepoints in consecutive states are maximally dissimilar. The validity of 
these methods has been tested extensively in previous work, with both simulated and empirical data 
(Geerligs et al., 2020). The input to the GSBS algorithm consists of a set of voxel time courses within a 
searchlight and a maximum value for the number of states, which we set to 100, roughly corresponding 
to half the number of TRs in our data (Geerligs et al., 2020).    

We applied GSBS in a searchlight to the hyperaligned movie data. Spherical searchlights were scanned 
within the Harvard-Oxford cortical mask with a step size of two voxels and a radius of three voxels 
(Desikan et al., 2006). This resulted in searchlights with an average size of 97 voxels (max: 123, IQR: 
82-115), this variation in searchlight size was due to the exclusion of out-of-brain voxels. Only 
searchlights with more than 15 voxels were included in the analysis. Previous analyses have shown 
that neural state boundaries cannot be identified reliably in single-subject data. Instead data should 
be averaged across at least ~17 participants, to eliminate sources of noise from the data (Geerligs et 
al., 2020). To obtain valid boundaries while still being able to determine the consistency of our findings 
across participants, we therefore fit the state boundaries and optimal number of states within 15 
independent datasets. Each dataset consisted of averaged data across 17 or 18 randomly selected 
participants.  

 

Fast and slow regions 

To investigate whether different brain regions showed reliable differences in median state length, we 
tested whether some regions had significantly shorter or longer neural state durations than the 
average duration across the brain. To this end, we computed the median state duration within each of 
the 15 independent datasets for each searchlight and tested whether these were significantly different 
from the averaged median duration across all of the searchlights using the Wilcoxon signed rank test 
(Wilcoxon, 1945). P-values were corrected for multiple comparisons using the false discovery (FDR) 
correction procedure that is accurate for any test dependency structure (Benjamini and Yekutieli, 
2001). 
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Comparison of neural state boundaries to event boundaries  

Event boundaries in the Cam-CAN movie dataset were identified by Ben-Yakov and Henson (2018) 
based on data from sixteen observers. These participants watched the movie outside the scanner and 
indicated with a keypress when they felt “one event (meaningful unit) ended and another began”. 
Participants were not able to rewind the movie. To make sure the identified boundaries were reliable, 
only boundaries identified by at least five observers were included. This resulted in a total of 19 
boundaries separated by 6.5–93.7 s.  

To compare the neural state boundaries across regions to the event boundaries, we computed Pearson 
correlations between boundary vectors. These boundary vectors contained zeros for within-
state/event time points and ones for time points where the current state/event did not match the 
previous state (i.e., state boundaries). Because it has been shown that the peak of the hemodynamic 
response can vary in latency (Handwerker et al., 2004), we used different delays to convert the event 
boundary onsets (in seconds) to boundary vectors (in TRs). In particular, we added a delay of four up 
to eight seconds, with steps of 0.5 seconds, to the event boundary onset before down sampling from 
seconds to TRs.  

For each delay, we computed the correlation between the event boundary vector and the state 
boundary vectors. Next, we identified the delay with the maximal correlation. To account for 
spuriously high correlations introduced by this approach, we used a randomization procedure. In 
particular, for each delay the event boundary vectors were randomized such that the durations 
between events was preserved but the order of events was shuffled. This randomization was repeated 
1000 times and in each case,  we recomputed the correlation with the neural state boundary vectors 
and identified the maximal correlation across the nine possible delays. The final adjusted correlation 
metric was computed by scaling the maximum correlation measure of the real data with respect to the 
average expected correlation measure in the randomized data; zero indicates that the correlation is 
the same as the average expected correlation and one indicates perfect correspondence between the 
two boundary vectors.  

In addition to investigating the similarity between the event boundary vectors and the state boundary 
vectors, we also investigated the effect of boundary strength and boundary co-occurrence, using the 
same approach. Boundary strength is defined as the Pearson correlation distance between the neural 
activity patterns of consecutive neural states. Boundary co-occurrence is defined as the proportion of 
searchlights that show a boundary at the same time. For computing the association between event 
boundaries and boundary strength, only TRs in which a neural state boundary occurred were taken 
into account.  

Each analysis was done separately across each of the 15 independent samples. A p-value was obtained 
for each region by testing whether the adjusted correlations across all 15 samples differed significantly 
from zero using a Wilcoxon signed rank test (Wilcoxon, 1945). P-values were corrected for multiple 
comparisons using FDR correction (Benjamini and Yekutieli, 2001). 

To ensure that differences between regions in the correspondence between neural state boundaries 
and event boundaries were not driven by timescale differences, we ran an additional analysis where 
we fixed the number of states in each region to be identical to the number of events (K=19; rather than 
using each region’s optimal number of states).  
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Identification of functional networks 

In order to identify networks of regions that contained the same neural state boundaries, and not 
simply the same duration of states, we calculated a matrix of Pearson correlations between the 
boundary vectors in each of the searchlights for each of the 15 independent groups. Functional 
networks were detected using a consensus partitioning algorithm (Lancichinetti and Fortunato, 2012), 
as implemented in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). An initial partition into 
functional networks was created using the Louvain modularity algorithm (Blondel et al., 2008), which 
was refined using a modularity fine-tuning algorithm (Sun et al., 2009) to optimize the modularity. The 
fit of the partitioning was quantified using an asymmetric measure of modularity that assigns a lower 
importance to negative weights than positive weights (Rubinov and Sporns, 2011).   

The partitioning was done separately for each of the 15 independent participant groups and was 
repeated 100 times within in each participant group to take the stochasticity of the modularity 
maximization into account. Subsequently, all repetitions were combined into a consensus matrix. Each 
element in the consensus matrix indicates the proportion of repetitions and groups in which the 
corresponding two searchlights were assigned to the same network. The consensus matrix was 
thresholded such that values less than those expected by chance were set to zero (Bassett et al., 2013). 
This thresholded consensus matrix was used as the input for a new partitioning, using the same 
method described above, until the algorithm converged to a single partition (such that the final 
consensus matrix consisted only of ones and zeroes).  

The procedure described above was applied for multiple resolutions (varying gamma between 1 and 
3, Reichardt and Bornholdt, 2006), which was always matched across the initial and consensus 
partitioning. We selected the partition with the highest similarity to a previous whole brain network 
partition (Power et al., 2011), as measured by adjusted mutual information (aMI; Xuan Vinh et al., 
2010). To compare our network labels for each searchlight to the voxelwise Power (2011) networks, 
we labeled each searchlight according to the Power network label that occurred most frequently in 
the searchlight voxels. The highest similarity was observed for gamma=2.3 (aMI=0.41). We named each 
functional network we identified in accordance with the Power (2011) network that it overlapped most 
with, in addition to a descriptive term about the network location (e.g. ventral, posterior).  

We also investigated whether neural states are shared in a hierarchical fashion across different 
functional networks. To this end, we computed partial correlations between the averaged boundary 
vectors within each functional network, controlling for the average boundary vectors in all other 
networks. Using partial correlations allowed us to focus on direct, rather than indirect connections 
between networks (Smith et al., 2011). To identify pairs of networks with partial correlations that were 
significantly higher than zero, we applied the Wilcoxon signed rank test to the partial correlation 
estimates across all 15 independent groups of participants (Wilcoxon, 1945). P-values were corrected 
for multiple comparisons using FDR correction (Benjamini and Yekutieli, 2001). Connections that would 
be estimated as positive by full correlation, but were estimated as negative by partial correlation were 
not taken into account because it is not clear how they should be interpreted (Smith et al., 2011). 
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Data visualization 

In all analyses, p-values from the searchlights were projected to the voxel level and averaged across 
the searchlights that overlapped each voxel before they were thresholded using the FDR-corrected 
critical p-value (Benjamini and Yekutieli, 2001). When projecting the results of the analyses to the 
voxel-level, we excluded voxels for which less than half of the searchlights that covered that voxel were 
included in the analysis. These excluded searchlights had too few in-brain voxels (see section Neural 
state boundaries). Data were projected to the surface for visualization, using the Caret toolbox (Van 
Essen et al., 2001).  
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Supplementary materials 

 

Figure S1: The regions with significantly shorter or longer median state lengths than average  are 
depicted (FDR-corrected p-value<0.05), indicating that differences in the median state length across 
brain regions are reliable. 

 

Figure S2. A. Association between the neural state boundaries identified in the fMRI data and the 
subjective event boundaries identified by participants outside the scanner, where the number of 
neural states is fixed at K=19 for each searchlight. Results are highly similar to the findings reported 
in the paper based on the optimal number of states for each brain region.  B. The delay for which the 
optimal correspondence between neural state boundaries and event boundaries was observed. The 
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scatterplot shows that the observed delay in each searchlight was similar to the BOLD signal time lag 
that was previously identified based on the time lag of the global signal (Amemiya et al., 2020).  

 

Figure S3. A. The correlation matrix between the state boundary vectors of each pair of searchlights. 
B. The correlation matrix based on the averaged brain activity timecourse in each searchlight (i.e., 
standard measure of functional connectivity). C. The difference between each pair of searchlights in 
median state length was markedly different from the correlation between state boundary vectors 
(S3A), showing that the correlation between different regions was not just due to regional differences 
in the optimal number of states.   

 

Supplementary table 1: For each network, the table lists the network defined by Power et al (2011) 
that showed the highest overlap and the percentage of searchlights in the network that overlapped 
with that particular Power (2011) network.  

Network name Power network 

Percentage 
of 
searchlights 

Auditory Auditory 24 
Sensorimotor-medial Sensorimotor (hand) 41 
Sensorimotor-lateral Sensorimotor (hand) 20 
Visual medial Visual 83 
Visual medial ventral Visual 53 
Visual medial dorsal Visual 73 
Fusiform Fusiform* 50 
Visual lateral posterior Visual 76 
Visual lateral  Visual 34 
Dorsal attention network Dorsal attention network 25 
Default mode network 
posterior Default mode network 40 
Fronto-parietal task control Fronto-parietal task control 34 
Default mode network anterior Default mode network 52 
* This network was not mentioned in the Power (2011) manuscript. However, it was part of the voxel-
wise network labeled nifti image that was made available. We named this network in accordance 
with its overlap with the Fusiform gyrus in the automated anatomical labeling atlas (Tzourio-Mazoyer 
et al., 2002).  
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