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ABSTRACT 

Language is a defining human behavior and is dependent on networks interactions amongst broadly distributed 

neuronal substrates. Transient dynamics between language regions that underpin speech production have long 

been postulated, yet have proven challenging to evaluate empirically. We used direct intracranial recordings 

during single word production to create a finely resolved spatiotemporal atlas (134 patients, 25810 electrodes, 

40278 words) of the entire language-dominant cortex and used this to derive single-trial state-space sequences 

of network motifs. We derived 5 discrete neural states during the production of each word, distinguished by 

unique patterns of distributed cortical interaction. This interactive model was significantly better than a model of 

the same design but lacking interactions between regions in explaining observed activity. Our results eschew 

strict functional attribution to localized cortical populations, supporting instead the idea that cognitive processes 

are better explained by distributed metastable network states. 

INTRODUCTION 

Speech production is a defining human faculty that enables eloquent communication. The ubiquity of word 

generation with remarkable speed, precision, and fluency belies its complexity. Articulating even a single word 

requires the selection of a conceptual representation, the construction of a word form, and the orchestration of 

a complex articulatory plan with associated output monitoring. Despite general agreement on the enumeration 

of cognitive processes that lead from intention to articulation1, no consensus has yet emerged describing the 

neurobiological architecture that implements these processes. 

The cortical basis of speech production has been probed by analyses of deficits secondary to lesions2 and 

neurodegenerative diseases3, as well as by analyses of intact language systems through functional imaging4,5, 

structural mapping6, and noninvasive electrophysiology7. Much of this work has focused on localizing specific 

cognitive processes to discrete neuroanatomic substrates, yet these efforts have yielded competing 

interpretations – even in landmark regions like Broca’s area8. An alternative framework shifts the focus from 

patterns of isolated activity in separable substrates to patterns of dynamic interaction between such cortical 

nodes9–11. Evaluation of this theory has been hampered by limitations inherent to the predominant methodologies 

available for studying the neurobiology of language. These methods lack the temporal or spatial resolution to 

discern the neural mechanisms driving networks characterized by rapid, transient dynamics across distributed 

substrates. Invasive human electrocorticography uniquely affords direct, high-resolution recordings of human 

cortical activity; however, such opportunities are rare and, as a result, prior language studies have been limited 

in scale and cortical coverage12–14. 

We overcame these limitations by using large-scale human electrocorticography (134 patients, 25810 

electrodes, 40278 trials) to elucidate the neurobiology of language production. This cohort included both subdural 

surface grid and stereotactic depth electrodes, encompassing the entirety of language-dominant cortex (Figure 

1). With this global perspective, we generated a comprehensive spatiotemporal atlas of a classical language 

paradigm: picture naming with scrambled images as a low-level control. We characterized functionally distinct 

regions within this atlas by pre- and post-articulatory encoding of established psycholinguistic variables including 

visual, semantic, lexical, and phonologic correlates. We further developed a grouped dynamical model to resolve 

discrete neural states that were distinguished by unique patterns of distributed cortical interaction. These data 

reveal the network architecture of speech production, informing and constraining the neurobiological instantiation 

of extant language models. 

In addition to providing new insights for language production theory, our approach investigates the broad utility 

of linking cognitive processes to network states rather than to activity in isolated substrates15. We critically 

evaluate the thesis that complex behaviors comprise sequences of network states16, each defining a set of 

reference dynamics to coordinate the generation and transmission of information throughout the cortex17. 

Speech production is an ideal testbed, requiring the coordination of multiple cognitive systems and resulting in 

an observable behavior. Elaborating the structural and functional properties of states during speech production 

will help to guide the derivation of generalizable dynamical principles governing cognition18. 
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RESULTS 

GLOBAL MEAN POWER DYNAMICS 

Cortical activity was integrated across the cohort to produce a spatiotemporal atlas of cued word production in 

the language-dominant hemisphere (Figure 2). These global mean dynamics were resolved with surface-based 

mixed-effects multilevel analysis (SB-MEMA) of high-gamma power in narrow time windows, generating a series 

of effect sizes and confidence estimates for every point on the standard atlas pial surface. The resulting frames 

together constitute a high-resolution movie (Figure 2A, Supplementary Figure 1). This analysis was repeated in 

the language-nondominant hemisphere (Supplementary Figure 2). We further investigated the response 

properties of this distributed cortical network for naming within regions of interest constrained by the SB-MEMA 

atlas (Figure 2B). The mean response of each region was analyzed in 3 adjacent time windows: post-stimulus, 

pre-articulation, and post-articulation (Figure 2C). A broad swath of language-dominant cortex was sequentially 

recruited during picture naming. The cortical response began in the calcarine sulcus, then spread both dorsally 

to the intraparietal sulcus and ventrally to the middle fusiform gyrus. Next, a complement of distinct foci in frontal 

cortex were engaged: pars triangularis, pars opercularis, the supplementary motor area, and the superior frontal 

sulcus. Significant peri-articulatory activity followed in the subcentral gyrus, peaking with the onset of articulation. 

The superior temporal and posterior middle temporal gyri were notably quiescent in the pre-articulatory interval, 

but were engaged throughout articulation. 

We then quantified the relationship between behavior – reaction time and articulatory duration – and neural 

response in each region of interest for both coherent and scrambled images (Figure 2D-F). Visual cortex, the 

intraparietal sulcus, and the middle fusiform gyrus responded at a fixed delay from picture presentation; in 

contrast, frontal cortex broadly responded later during trials with longer reaction times. Of the regions that were 

significantly more responsive to coherent images than scrambled images, cumulative high-gamma power and 

reaction time were significantly correlated in the middle-fusiform gyrus (r = 0.082, p < 10-13), pars triangularis (r 

= 0.278, p < 10-104), pars opercularis (r = 0.166, p < 10-28), the supplementary motor area (r = 0.082, p < 10-53), 

and the superior frontal sulcus (r = 0.219, p < 10-42). Cumulative post-articulatory high-gamma power and 

articulatory duration were significantly correlated in the superior frontal sulcus (r = 0.072, p < 10-4), the subcentral 

gyrus (r = 0.199, p < 10-55), and the superior temporal gyrus (r = 0.182, p < 10-67). The middle fusiform gyrus, 

pars triangularis and opercularis, and the supplementary motor area remained significantly more engaged for 

coherent versus scrambled images in the post-articulatory timeframe despite having no association with 

articulatory duration. 

This holistic view of the cortical dynamics of picture naming was uniquely afforded by large-scale intracranial 

electrophysiology encompassing the entirety of language-dominant cortex. While there was a clear progression 

of activity across the cortex, many regions were jointly active for extended periods. These dynamics are 

inconsistent with the narrow assignment of linguistic operations to focal and isolated substrates. Instead, they 

may be better explained by cognitive computation that is orchestrated across transient, distributed, and 

overlapping networks – a thesis we further evaluate in subsequent analyses. 

MODELS OF BEHAVIOR AND NEURAL RESPONSE BY LINGUISTIC FEATURES 

Having characterized the mean spatiotemporal extent of high-gamma power, we evaluated the trial-by-trial 

effects of distinct linguistic representations on regional activity (Figure 3). Linear mixed-effects models were 

constructed as a function of visual complexity19, semantic familiarity20, lexical frequency21, lexical selectivity20, 

and phonological density22. These models were validated on behavioral measures (Figure 3A): reaction time 

was best explained by lexical selectivity (ß = 63.54ms, p < 10-75), while articulation length was best explained by 

phonological density (ß = -62.66ms, p < 10-205). 

We applied these models to high-gamma power in each region of interest during time windows before and after 

the onset of articulation. Visual cortex activity was related to visual complexity of the stimulus (ß = 0.116, p < 10-

5), consistent with localized feature processing. In the pre-articulatory period, semantic familiarity was uniquely 

related to middle fusiform gyrus activity (ß = -0.071, p < 10-3). Lexical frequency was also encoded in the middle 

fusiform gyrus (ß = -0.077, p < 10-4), as well as in pars triangularis (ß = -0.063, p = 0.0053) and opercularis (ß = 
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-0.116, p < 10-4). Lexical selectivity was related to activity in pars triangularis (ß = 0.069, p < 10-3), the 

supplementary motor area (ß = 0.070, p = 0.0014), and the superior frontal sulcus (ß = 0.069, p = 0.0011). After 

the onset of articulation, phonologic density of the spoken response was encoded in perisylvian regions: 

subcentral (ß = -0.061, p < 10-4), superior temporal (ß = -0.078, p < 10-8), and posterior middle temporal gyri (ß 

= -0.085, p = 0.0043). 

INTERREGIONAL INTERACTIONS OF CORTICAL STATE DYNAMICS 

We have established that language engages a distributed network of regions with concurrent activity and 

separable linguistic correlates; however, our analyses thus far assume that cognitive operations are locally 

computed in isolated substrates and time-locked to observable events. This assumption is deeply embedded in 

the cognitive neuroscience literature, confounding attempts to distinguish the neurobiological correlates of 

interactivity that are foundational to psycholinguistic models of speech production (Supplementary Figure 3)23. 

To relax this assumption and directly resolve interactions between regions, we implemented a grouped 

autoregressive hidden Markov model (gARHMM, Figure 4A). Critically, this model learns a single set of latent 

dynamical parameters across the patient population and emits state sequences of network interactions for each 

trial24. 

17 patients had concurrent coverage of the core language network: visual cortex, middle fusiform gyrus, pars 

triangularis, pars opercularis, subcentral sensorimotor cortex, and superior temporal gyrus. The 

hyperparameters – model order (𝜏 = 3) and number of states (𝑁𝑧 = 6) – were determined by 10-fold cross-

validation (Figure 4B) of the training dataset (80% of trials uniformly sampled from all patients). Latent dynamical 

parameters were then optimized on the training dataset and applied to the held-out test dataset. This model 

performed significantly better (p < 10-162) than a model of the same design but lacking interactions between 

regions (Figure 4C). Model training was unbiased by data from any single patient and testing generalized to data 

from held-out patients (Figure 4D). 

We identified 6 dynamical states – 5 states during speech production and a background state between trials 

(Figure 4E). The 5 active states demonstrated a consistent temporal precession relative to both picture 

presentation and articulation. These states lend themselves in number and timing to established psycholinguistic 

nomenclature1: visual processing, conceptualization (activation and selection of a lexical concept), formulation 

(staged form encoding to produce gestural scores), articulation, and monitoring (Supplementary Figure 4). The 

Granger-causal interactions between regions that define the dynamics of each state were quantified with partial 

directed coherence (Figure 4F). A second model trained on trials with scrambled images also identified 5 active 

states, but with differences in network architecture and state frequency (Figure 5, Supplementary Figure 5). 

Each state featured significant contributions from a complex network of pairwise regional interactions that were 

essential for optimal modeling of neuronal dynamics; the most salient interactive properties of these states are 

described here. The first state, visual processing, was concentrated in the ~250 ms immediately following picture 

presentation and its dynamics were dominated by outflow from visual cortex. This was followed by the second 

state, conceptualization, from ~250 to ~500 ms in a distributed network organized by outflow from the middle 

fusiform gyrus and pars triangularis. The network architecture of these two states was significantly altered during 

scrambled trials (Figure 5C); in particular, the outflow from the middle fusiform gyrus was largely replaced by 

outflow from visual cortex. The third state, formulation, recruited a decentralized perisylvian network that 

remained engaged through the onset of articulation and accounted for the majority of variance in reaction time 

(ß = 7.41, p < 10-23). The network architecture of this state was similar for coherent and scrambled trials, but it 

occurred significantly more frequently in response to coherent images (p < 10-23, Figure 5D). The fourth state, 

articulation, was engaged in the ~400 ms around articulatory onset with dynamics dominated by outflow from 

subcentral sensorimotor cortex. The fifth and final state, monitoring, was active throughout articulation relied 

predominantly on outflow from superior temporal gyrus. Both articulation and monitoring featured convergent 

network architectures and state frequencies for coherent and scrambled images. These results are consistent 

with our thesis that the fundamental unit of linguistic computation in the brain is not a set of discrete functional 

regions, but a sequence of dynamical network states. 
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We also computed state transition probabilities that describe the rate of observed pairwise switching (Figure 4G). 

These revealed a locally interactive state switching behavior conserved across trials of varying reaction time and 

articulatory length. For every state, the most likely transition was to the next state. Transitions from formulation 

to any other state were common, while transitions directly from visual processing or conceptualization to 

articulation or monitoring were below chance. Together, the restricted set of cognitive state transitions and the 

imbricated set of interactive state dynamics ground the discreteness-interactivity axis23 of speech production 

models1,25,26 in the neurobiology of human cortex. 

DISCUSSION 

SPATIOTEMPORAL CARTOGRAPHY OF LANGUAGE DOMINANT CORTEX 

Language involves the coordinated activity and interaction of diverse cortical substrates, yet prior 

electrocorticographic investigations of language function have studied this broad network in fragments13,14,27–30 

due to the unique challenges of invasive human electrophysiology that limit the scope and scale of recordings31–

33. Complete coverage of the cortical surface with intracranial electrodes requires upwards of 10,000 contacts34. 

Furthermore, grid and depth electrodes have distinct stereotypic coverage probabilities: grid electrodes 

predominantly record from gyri on the lateral or ventral surface, while depth electrodes are more likely to record 

from cortical sulci, the ventral temporal surface, the medial bank of the hemisphere, and the insula. Our study 

yielded an unprecedented database of intracranial recordings from both grid and depth electrodes with the 

magnitude, density, and homogeneity of coverage necessary to build a comprehensive spatiotemporal map of 

speech production encompassing the entirety of language-dominant cortex. We used this resource to finely 

characterize the activity at specific network nodes and the evolving interactive dynamics between nodes. Such 

an approach is imperative for definitively resolving the processes that lead from intention to articulation1. 

FROM INTENTION TO ARTICULATION 

Despite general agreement on the processes required to convert a picture to its spoken name26,35, the 

instantiation of these processes in neural dynamics is unknown. Psycholinguists and neurobiologists have long 

engaged in parallel approaches for the study of speech production, probing the hidden internal processes of 

language generation and exploring the functional contributions of discrete neuroanatomic substrates. Picture 

naming has demonstrated exceptional utility in these pursuits. Varying stimulus complexity of isolated 

representational levels – semantic, lexical, and phonological – yields behavioral data which outline the veiled 

architecture of speech production. Reaction time variations following challenges to the production system with 

level-specific interference at early and late windows suggest at least two separate steps in lexical access25,36,37. 

Error types and rates constrain the interactions between representational levels in formalized models of 

production38–40 and, through the anatomic correlates of distinct aphasic patterns, establish connections to 

neurobiology41. Functional imaging in subjects with intact language, derived from measures of blood flow and 

metabolism, has catalyzed the spatial categorization of nodes in a complex and distributed language network5. 

The breadth of recruited substrates argues against localizationist accounts of production42,43 in favor of network-

dependent cognitive processes44,45, but measuring internodal communication requires fine temporal scale. 

Electrophysiology directly captures the dynamical behavior of neural substrates with radically improved temporal 

resolution46–48. In compiling a large dataset of intracranial recordings during picture naming, we are able to 

integrate cognitive models of speech production with the neurobiology of distributed and interactive cortical 

networks. We reveal 5 states engaged during picture naming, remarkably concordant with the 5 cognitive stages 

named in the seminal work by Indefrey and Levelt: visualization, conceptualization, formulation, articulation, and 

monitoring1. Each of these states is dually characterized by timing within a trial-specific transition sequence and 

by functional network structure comprising directed information exchange. 

The state characteristics inform two fundamental and disputed properties of conflicting production models: the 

seriality of separable cognitive processes and the interactivity between representational levels23,26,49. Our findings 

are concordant with a concerted serial propagation of network dynamics. A consistent sequence of states is 

observed from picture presentation through articulation and state switching is tightly constrained within pre- and 

post-formulation periods. Distant interactions, reflecting the unique pattern of information exchange during each 
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state, underline the distributed basis of cognitive processes. Some states, such as visualization and monitoring, 

are directed by singular foci while others feature a balanced distribution of largely reciprocal connections, as 

epitomized by formulation. Local interactions are manifest in substrates shared between states – most notably 

in ventral lateral prefrontal cortex during conceptualization, formulation, and articulation. These reflect a 

functionally heterogeneous population of neurons contributing to the signal measured at each electrode. Our 

results comprehensively delineate the neurobiology of picture naming in language-dominant cortex, robustly 

motivate the use of seriality in computational models of speech production, and establish a concrete mechanism 

for representational interactions in language networks. 

STATES APPROXIMATE NONLINEAR DYNAMICS 

We present two complementary accounts of temporal dynamics. The first, mean gamma activity, is local and 

rooted in physical space; the second, network connectivity patterns, is global and defined in state space. In a 

similar manner to piecewise linear approximation of a curve, this second account uses the switching 

characteristic of the hidden Markov model to approximate the high-dimensional state space of neural 

dynamics50,51. Each state then represents a set of reference dynamics at informative inflections of state space. 

Fluctuations around these reference dynamics provide a generic mechanism by which to disseminate information 

in a structured manner throughout complex networks17. The pairwise measures of information flow that we 

quantify are thus an average of interregional exchanges, amalgamating transmissions between small groups of 

neurons. This perspective integrates distributed interactions52 with modular cognitive processes1. 

Neural state sequences comprise a powerful framework by which to model cognition. We provide empirical 

evidence consistent with this framework; our dynamical model identifies 5 states in speech production. 

Specifying fewer states results in refolding a pair of states together; specifying more states results in degenerate 

splitting of the baseline state. Stated another way, simplifications of state space produce coarser structures that 

exhibit functionally similar behavior53. A hierarchically organized neural state structure may reveal increasing 

dynamical detail with improved observation of the system. This behavior suggests that incorporating data from 

additional regions, latent parameters for patient-specific network variability, and progressively finer-scale cortical 

recordings could result in further decomposition of our observed states, e.g. formulation might splinter into 

morphologic, phonologic, and phonetic encoding. Uncovering dynamical systems in the brain provides an 

improved understanding both of granular processes, such as picture naming, and of cognition more generally.  
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MATERIALS AND METHODS 

EXPERIMENTAL DESIGN 

We recorded cortical activity in 134 patients undergoing presurgical evaluation of refractory epilepsy with either 

subdural grid electrodes (46 patients, 6120 electrodes) or stereotactic depth electrodes (99 patients, 19690 

electrodes). Patients named images of common objects; a scrambled image control condition was interweaved. 

Stimulus, naming accuracy, articulation onset and offset, and articulatory content were recorded for every trial. 

A surface-based mixed-effects multilevel analysis (SB-MEMA) of high-gamma activity was used to generate a 

high-resolution whole-brain movie of mean power dynamics. To characterize the function of local responses in 

nodes of the distributed naming network, the regional variance in high-gamma power during pre- and intra- 

articulatory time windows was explored with canonical psycholinguistic descriptors. Single-trial nonlinear 

interactional dynamics of ventral and perisylvian cortex were subsequently described with the novel application 

of a grouped autoregressive hidden Markov model (gARHMM). Model hyperparameters were optimized by 

cross-validation on held-out data. 

HUMAN SUBJECTS 

After obtaining written informed consent, we enrolled 134 patients (65 men, 69 women; mean age 33 ± 10 years; 

mean IQ 96 ± 14) undergoing evaluation of intractable epilepsy with intracranial electrodes. The study design 

was approved by the committee for the protection of human subjects at The University of Texas Health Science 

Center. Hemispheric language dominance was evaluated in 88 patients (left, n = 82; right, n = 6) by intracarotid 

sodium amytal injection54 (n = 40), fMRI laterality index55 (n = 27), or cortical stimulation mapping56 (n = 21). The 

remaining patients were determined to be right (n = 43) or left handed (n = 3) by the Edinburgh Handedness 

Inventory57; they were assumed to be left hemisphere language-dominant. 

LANGUAGE PARADIGM 

Patients engaged in a picture naming task. They were instructed to articulate the name for common objects 

depicted by line drawings20,58 as quickly and accurately as possible. A control condition was intermixed consisting 

of the same images with pixel blocks randomly rotated; patients were instructed to respond with “scrambled.” 

Each visual stimulus was displayed on a 15-in LCD screen positioned at eye level for 2 seconds with an 

interstimulus interval of 3 seconds. A minimum of 120 (mean 298) visual stimuli were presented to each patient 

using stimulus presentation software (Python v2.7). Mean accuracy was >90% in all patients. 

STRUCTURAL IMAGING 

Preoperative anatomical MRI scans were obtained using a 3T whole-body MRI scanner (Philips Medical 

Systems) fitted with a 16-channel SENSE head coil. Images were collected using a magnetization-prepared 180° 

radiofrequency pulse and rapid gradient-echo sequence with 1-mm sagittal slices and an in-plane resolution of 

0.938 × 0.938 mm. Pial surface reconstructions were computed with FreeSurfer (v5.1)59 and imported to AFNI60. 

Postoperative CT scans were registered to preoperative MRI scans for localization of electrodes relative to 

cortex. Grid electrode locations were determined by a recursive grid partitioning technique and then optimized 

using intraoperative photographs61. Depth electrode locations were informed by implantation trajectories62 from 

the Robotic Surgical Assistant (ROSA, Zimmer-Biomet) system. 

ELECTROPHYSIOLOGY ACQUISITION 

Grid electrodes—subdural platinum-iridium electrodes embedded in a silicone elastomer sheet (PMT 

Corporation, top-hat design; 3-mm diameter cortical contact)—were surgically implanted via a craniotomy56. 

Electrocorticography recordings were performed at least 2 days after the craniotomy to allow for recovery from 

the anesthesia and narcotic medications. Depth stereo-electroencephalographic platinum-iridium electrodes 

(PMT Corporation; 0.8-mm diameter, 2.0-mm length cylinders; separated from adjacent contacts by 1.5 to 2.43 

mm) were implanted using ROSA, with stereotactic skull screws registered to both a computed tomographic 

angiogram and an anatomical MRI63–65. There were from 8 to 16 contacts along each depth probe, and each 

patient had multiple (12 to 18) probes implanted. 
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For the first 19 recordings, electrocorticography data were collected with a sampling rate of 1 kHz and bandwidth 

of 0.15 to 300 Hz using Neurofax (Nihon Kohden). For the latter 126 recordings, data were collected with a 

sampling rate of 2 kHz and bandwidth of 0.1 to 700 Hz using NeuroPort NSP (Blackrock Microsystems). 

Continuous audio recordings of each patient were performed with both an omnidirectional microphone (Audio 

Technica U841A, 30 to 20,000 Hz response, 73 dB SNR) placed adjacent to the presentation laptop and a 

cardioid lavalier microphone (Audio Technica AT898, 200 to 15,000 Hz response, 63 dB SNR) clipped to clothing 

near the mouth. These recordings were analyzed offline to transcribe patient responses, as well as to determine 

the time of articulatory onset and offset. 

DATA PROCESSING 

A total of 25810 electrodes (6120 grids, 19690 depths) were implanted in this cohort (Figure 1). Only the 18483 

electrodes (4476 depths, 14007 grids) unaffected by epileptic activity, artifacts, or electrical noise were used in 

subsequent analyses. Each trial was defined by the presentation of a visual stimulus. Trials in which the patient 

answered incorrectly or did not respond were eliminated. Additionally, trials in which the patient responded after 

more than 3 seconds were removed. 

DIGITAL SIGNAL PROCESSING 

Analyses were performed with trials time-locked to either picture presentation or to articulation onset. In all 

analyses, the baseline was defined relative to the picture presentation (-750 to -250 ms). Line noise was removed 

with zero-phase second-order Butterworth bandstop filters at 60, 120, and 180 Hz. The high-gamma (60 to 120 

Hz) analytic signal was generated from raw electrocorticography data by a frequency domain bandpass Hilbert 

filter (paired sigmoid flanks with half-width 1.5 Hz)62,66. Power was then calculated as the squared envelope of 

the analytic signal, normalized as a percent of baseline activity. 

INVERSE MODEL OF ELECTRODE RECORDING ZONES 

In the same manner as previous work29,62, response properties of individual electrodes were mapped to patient-

specific cortical models via a surface recording zone. This zone both constrained the surface-based spatial 

registration of individual cortical models to a standard atlas and constrained the weighted estimate of cortical 

contributions to the observed signal at each electrode. 

The definition of electrode recording zone was tailored to the type of electrode. For grid electrodes, the central 

coordinate of each electrode was matched to its closest node on the cortical envelope. This seed was then grown 

to a geodesic radius of 1.5 mm, matching the dimensions of the electrode. Each of the vertices within this region 

was mapped to its closest vertex on the pial surface model. These seeds were then grown along the surface to 

a maximum geodesic radius of 10 mm, constituting the surface electrode recording zone. For depth electrodes, 

the central coordinate of each electrode was simply mapped directly to the closest vertex on the pial surface 

model. This seed was then grown to a maximum geodesic radius of 10 mm to define the surface electrode 

recording zone. 

For both electrode types, the inverse model within the recording zone was defined by the same piecewise inverse 

function. Cortex directly adjacent to electrodes (e.g. beneath grid electrodes or alongside depth electrodes) was 

assigned a weight of 1; more distant cortex was weighted according to exponential decay with a full-width half-

maximum at 2.3 mm. Individual electrode statistics were subsequently propagated onto the cortical surface with 

this inverse function. 

SURFACE-BASED REGISTRATION TO STANDARD ATLAS 

All group analysis was performed in standard space on the MNI N27 cortical surface. Electrode locations and 

recording zones were transformed to standard space with a nonlinear surface-based registration67,68. This 

registration was used to generate coverage maps, define regions of interest, and to enable group statistics at 

each vertex in the mixed-effects multilevel analysis29,62. 

MIXED-EFFECTS MULTILEVEL ANALYSIS 
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To generate statistically robust and topologically precise estimates of percent change in power across the cortex, 

we used a surface-based mixed-effects multilevel analysis (SB-MEMA, Supplemental Figure XX) leveraging the 

electrode recordings zones and nonlinear transform to standard space defined previously. This method 

addresses universal challenges for grouped analysis of human invasive electrophysiology: a) accurate 

localization and spatial localization of cortical sources29,62; b) data integration across the cohort, accounting for 

sparse sampling and anatomic variability67–69; c) statistical modeling of population-level effects, mitigating outlier 

inferences and accounting for intra- and interpatient response variability that violate the assumptions of simpler 

models (e.g., ANOVA, t-tests)28,70. 

The model consisted of two levels: the individual and the group. At the individual level, an estimate of percent 

change in power at each electrode was fitted with a mixed-effects model informed by the sampling variance. The 

resulting effect and significance estimates were propagated onto the patient-specific cortical model using the 

surface recording zone of each electrode. These patient-specific maps then underwent surface-based 

registration to the standard atlas. Finally, a mixed-effects model at the group level generated the effect and 

significance estimates for each vertex on the MNI N27 atlas29,62. The entirety of this model is graphically 

described in Supplemental Figure 6. 

This model was run on 150 ms wide windows at 10 ms increments separately aligned to picture presentation 

and articulation onset. These were then integrated into two continuous movies48 – one for each alignment. A 

geodesic Gaussian smoothing filter (3 mm full-width at half-maximum)62 was applied to each frame. Significance 

was evaluated at an alpha of p < 0.01 with familywise correction for multiple comparisons29. Activity masks were 

further constrained to coverage in at least 3 patients and effect estimates exceeding a 5% change in power62. 

REGIONS OF INTEREST DELINEATION 

To further explore the distributed cortical dynamics of naming, we delineated 10 regions of interest by functional 

and anatomical constraints. The full SB-MEMA model in the language dominant hemisphere revealed 

spatiotemporally distinct nodes of activity. These were further refined by anatomical boundaries (e.g. inferior 

frontal gyrus was split into pars triangularis and opercularis). Each region of interest was explicitly defined by a 

central point in standard MNI N27 space and a geodesic radius on the atlas pial surface. Electrodes within each 

region were identified; those that were deemed inactive with a high-gamma power percent change of less than 

10% from baseline were removed. For patients with multiple electrodes within a single region of interest, only 

the most active electrode was retained. 

GROUPED TIME SERIES ANALYSIS 

Grouped estimates of the percent change in power for a regional collection of electrodes were calculated by 

averaging across trials at each electrode and then determining an ensemble average across electrodes within 

each region28,62. A Savitsky-Golay polynomial filter (3rd order, 251-ms frame length) was subsequently applied 

to each time series. Significance was evaluated against baseline and between conditions with two-sided paired 

t-tests corrected for multiple comparisons with the false discovery rate. 

SELECTION OF PSYCHOLINGUISTIC FEATURES 

Four psycholinguistic features were chosen to represent distinct cognitive processes in the production of single-

word articulations. Each is well-studied and readily available to optimize cross-study comparisons. Visual 

complexity was assessed for each stimulus with the number of Scale Invariant Feature Transform descriptors19. 

Familiarity and selectivity were assessed for each stimulus using the Snodgrass and Vanderwart measures20. 

Lexical frequency was assessed for each articulation using the SUBTLEXus CD count21. Phonologic density was 

assessed for each articulation, quantifying the number of words with a unitary Hamming distance from the 

target22. The expected psychometric effects of these variables on reaction time and articulatory duration were 

validated with separate linear mixed-effects models. 

REGIONAL LINEAR MIXED EFFECTS MODELS 
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For each of the 10 regions of interest, the variability of single-trial high-gamma power was modeled with the 

psycholinguistic features described earlier. Total gamma power in 4 time windows of interest were separately 

modeled. Each model was comprised of fixed effects for each psycholinguistic feature, a random intercept 

grouped by patient, and a random estimate of each psycholinguistic feature grouped by patient. All effect sizes 

describe the change per standard deviation. 

GROUPED AUTOREGRESSIVE HIDDEN MARKOV MODEL 

The autoregressive hidden Markov model (ARHMM) combines autoregressive (AR) stochastic linear dynamics 

with the discrete switching latent states of a hidden Markov model (HMM)24. This method enables single-trial 

analysis that does not require manual alignment of trials by picture presentation or articulation onset. 

Furthermore, it obviates the dubious assumption underlying all cross-trial averaging metrics that the same 

cognitive processes are occurring at the same times in all trials. All latent parameters – the time series of network 

states, their transition probabilities, and the dynamics of each state – are inferred directly from neural data. In 

this work, we have expanded on our past instantiation of this model with the implementation of a grouped training 

method (gARHMM) that enables us to infer a single set of generalized latent parameters across the entire patient 

cohort. 

An AR process is a random process with temporal structure, where the current state 𝒙𝑡 of a system is the sum 

of a linear combination of previous states and a stochastic innovation 𝒗𝑡 drawn from zero-mean isotropic white 

noise. The linear dynamics of such a system can be described by 𝑁𝜏 matrices of AR coefficients 𝐴𝜏 at different 

time delays 𝜏, which can be combined into a tensor 𝑨 = {𝐴𝜏}. The stochastic elements of the AR process are 

specified by a covariance matrix 𝑄. 

𝒙𝜏 = ∑ 𝐴𝜏𝒙𝑡−𝜏

𝑁𝜏

𝜏 = 1

+ 𝑄1 2⁄ 𝒗𝑡 

Since this model is linear, it is a poor approximation of nonlinear neural dynamics. This limitation motivated our 

subsequent extension of the model to include switching dynamics. 

The defining property of a first-order Markov model is that transition probabilities between states depends only 

on the previous state. In a hidden Markov model, this dynamic is unobserved – each state emits observable 

quantities with some associated probability. Autoregressive hidden Markov models combine the stochastic linear 

dynamics of AR processes with the partial observability of a hidden Markov model. Here we use a discrete latent 

state 𝑧 and assume autoregressive Gaussian emissions conditioned on that latent state. Each latent state 𝑧 

indexes a different stochastic linear process with a state-specific dynamics tensor 𝑨𝑧  and a state-specific 

process noise covariance 𝑄𝑧 . The switching characteristics allow an ARHMM to approximate a stochastic 

nonlinear dynamical system. 

In the context of invasive electrophysiology, the observations are time series of high-gamma power at a fixed 

number of regions (visual cortex, mid-fusiform gyrus, pars triangularis, pars opercularis, subcentral gyrus, and 

superior temporal gyrus). The AR coefficients 𝐴𝑧𝜏𝑗𝑘 specify the Granger causal dynamical relationship between 

regions 𝑗 and 𝑘 at time lag 𝜏 in state 𝑧. For a given state 𝑧 at time 𝑡, the multivariate high-gamma power signal 𝒙 

is modeled as 

𝒙𝑡 = ∑𝐴𝑧𝑡𝜏𝒙𝑡−𝜏

𝑁𝜏

𝜏=1

+ 𝑄𝑧𝑡
1 2⁄ 𝒗𝑡 + µ𝑧𝑡 

where µ𝑧 is a state-dependent bias. Probabilistic inference on observed neural data determines the unobserved 

latent parameters: the time series of network states 𝑧𝑡 , their transition probabilities Φ𝑧𝑡−1𝑧𝑡 , and the linear 

dynamics parameters of each state {𝑨𝑧, 𝑄𝑧, µ𝑧}. 
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The model was trained with iterative estimation of the state time series and state dynamics across all patients 

using the Baum-Welch expectation-maximization algorithm71,72. Initial conditions for 𝑨 and 𝑄 were informed by 

the lagged correlation of multivariate AR clustering73,74. The state-dependent biases µ𝑧 were drawn randomly 

from a standard Gaussian. State transitions were sampled from a uniform prior. 

TRAINING, VALIDATION, AND TESTING 

A random 80% of trials from each patient were used for training the latent dynamical parameters. 10-fold 

validation on the training set was used to select hyperparameters. The model contains 2 hyperparameters that 

constrain its architecture: model order 𝑁𝜏 and state number 𝑁𝑠. Both were evaluated with log-likelihood and AIC. 

The return for increasing model order plateaued after 𝑁𝜏 = 3. Additional states exceeding 𝑁𝑠 = 6 trivially split the 

background state during inter-trial periods. We trained a second model with interaction terms forced to zero – 

otherwise, the architecture was preserved. This mean-only model converged to a stable solution, but its 

performance was inferior to the complete model featuring interactions between regions. 

The remaining 20% of trials from each patient were allocated to the testing pool to assess model fit. Performance 

of the model, measured with log-likelihood, was equivalent on training and testing sets. In addition, we iteratively 

held out each patient from training to ensure that the model was not overfit to individual-level effects. We report 

the state sequences generated by the model for all trials in the testing set. 

QUANTIFYING INTERACTIONS WITH PARTIAL DIRECT COHERENCE 

The ARHMM classifies dynamical states by the network connectivity encoded in their AR coefficients. These 

dynamics can be captured by partial directed coherence (PDC) in the frequency domain75 – a measure of 

Granger causal information flow. For each state 𝑧, the pairwise PDC between regions 𝑗 and 𝑘 is defined as 

𝜋𝑧𝑗𝑘(𝑓) =  
�̅�𝑧𝑗𝑘(𝑓)

‖�̅�𝑧𝑘(𝑓)‖
 

where 

�̅�𝑧𝑗𝑘(𝑓) =  

{
 
 

 
 
1 − ∑𝐴𝑧𝜏𝑗𝑘𝑒

−2𝜋𝑖𝑓𝜏

𝑁𝜏

𝜏=1

   for 𝑗 = 𝑘

− ∑𝐴𝑧𝜏𝑗𝑘𝑒
−2𝜋𝑖𝑓𝜏

𝑁𝜏

𝜏=1

         otherwise

 

represents the transfer function at frequency 𝑓. In this manuscript, the directed graph for each state is shown 

with nodes representing regions and edges representing the broadband causal interactions. 
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Figure 1: Invasive Human Electrophysiology with Grid and Depth Electrodes in 135 Patients 

Distribution of electrodes in left language-dominant cortex. (A) Cortical surface model for a single patient who 

underwent staged implants with grid (light blue) and depth (dark blue) electrodes. The surface has been sliced 

to reveal intracortical MRI along depth trajectories: frontal-insular (left), supratemporal (middle), medial frontal 

and midtemporal (right). (B) Joint coverage with grid and depth electrodes. Grid electrodes sample from limited 

cortex at the apex of gyri on the lateral and frontal surfaces; depth electrodes sample evenly throughout cortex 

including sulci, deep intrasylvian structures, and the medial surface. (C) Aggregate cortical coverage in the 

patient population (n = 134, 25810 electrodes). The surface recording zone for each electrode is estimated by 

its aspect and location with an inverse model using Euclidean exponential decay subjected to geodesic 

constraints. 98% of left language dominant cortex is sampled in at least 3 patients.  
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Figure 2: Spatiotemporal Atlas of High-Gamma Power During Picture Naming 

Complete mapping of high-gamma power magnitude, extent, and timing in the language-dominant hemisphere. 

(A) Surface-based mixed-effects multilevel analysis of high-gamma power (112 patients, 13812 electrodes, 

19465 trials). The model was calculated for 150ms wide windows in 10ms increments from 700ms before to 300 

ms after the onset of articulation. For every point on the cortex, the magnitude and timing of peak high-gamma 

power were identified. The brightness mask highlights cortex that was significantly more active for coherent 

images than scrambled images during this time window. (B) 10 regions of interest were delineated, spanning 

the picture naming cortical network: occipital (n = 30), intraparietal sulcus (n = 27), middle fusiform (n = 55), 

supplementary motor area (n = 20), pars triangularis (n = 40), pars opercularis (n = 30), superior frontal sulcus 
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(n = 27), subcentral (n = 41), superior temporal (n = 61), and middle temporal (n = 21). (C) The mean percent 

change in high-gamma power from pre-stimulus baseline in these ROIs is shown for three periods: post-stimulus, 

pre-articulation, and post-articulation. Significance was determined with the Wilcoxon signed-rank test at an 

alpha level of p < 0.001 using familywise error correction and further constrained to effect sizes greater than 

25% of the peak response. (D) Raster plots of single-trial high-gamma power sorted by reaction time in the post-

stimulus and pre-articulation windows and by articulatory duration in the post-articulation window. (E) Boxplots 

show average gamma power in the 4 seconds after picture presentation for coherent (left) and scrambled (right) 

stimuli. Significance was determined with the Wilcoxon rank sum test (* p < 0.05, ** p < 0.01, *** p < 0.001). 

Hexagonally discretized scatter plots show the distribution of average high-gamma power against reaction time 

for coherent images. Regression lines are overlaid for those regions with a correlation that was both significant 

during coherent trials and significantly greater than during scrambled trials. Correlations were evaluated with 

Spearman’s rho at an alpha level of p < 0.001 and the difference between correlations with Fischer’s z-transform 

at an alpha level of p < 0.001. (F) This analysis was repeated for the average gamma power in the 1 second 

after articulation onset.  
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Figure 3: Linguistic Features Mapped to Neurobiology 

Linear mixed-effects models of behavior and regional high-gamma power with psycholinguistic predictors. (A) 

Five psycholinguistic parameters were used: visual complexity (SIFT feature count), semantic familiarity 

(Snodgrass and Vanderwart), log lexical frequency (SUBTLEXus CD count), lexical selectivity (naming 

agreement), and log phonological density (Irvine Phonotactic Online Dictionary). Reaction time was defined as 

the duration from picture presentation to the onset of articulation; articulation length spanned from the onset to 

the offset of articulation. The distribution of each input to the model is shown on the margins. Hexagonally 

discretized scatter plots include correct trials from patients with electrodes in left language-dominant cortex (112 

patients, 19465 trials). The conditional estimates are overlaid with 99% confidence intervals. (B) The same 

parameters were used to model regional high-gamma power response in a pre-articulatory (-2150 to 0ms) and 

articulatory (0 to 850ms) time window. These ranges were defined as the mean population reaction time and 

articulation width, respectively, plus twice the standard error of the mean. Significance was evaluated at an alpha 

level of p < 0.01. (C) The aggregate cortical spread of electrodes in each region of interest is colored by the 

predictor with the largest significant t-value.  
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Figure 4: Nonlinear Dynamics in Distributed Cortical Networks 

Autoregressive hidden Markov model applied to single-trial high-gamma power in 17 patients with electrodes 

over visual cortex, middle fusiform gyrus, pars triangularis and opercularis, subcentral gyrus, and superior 

temporal gyrus. (A) Model design schematic. Latent states z and observations x evolve according to 

autoregressive state dynamics A, regional process covariances Q, and state transition probabilities . A single 

set of parameters A, Q, and  were learned across all 19 patients. (B) Hyperparameter selection with 10-fold 

cross-validation on the training set, evaluated with AIC relative to trough. (C) Model comparison. Training and 

cross-validated testing for fully interactive model and reduced mean-only model. (D) Analysis of robustness and 

validity. Each patient was iteratively held-out from training. The full model was then tested on trials exclusively 

from each patient. The model is robust to any single patient and generalizes well to all patients. (E) State 

sequences on held-out testing data. Each of the 5 active states is shown with a unique color. For each raster, all 

trials were sorted by reaction time in the left column and by articulatory duration in the right column. The 

maximum of each state color scale is set to 400% of the mean state density. (F) Interregional dynamics. The 

graph nodes represent distinct regions. The graph edges represent the pairwise partial directed coherence 

(PDC), a Granger causal measure of interaction derived from the unique dynamics that define each state. The 

size of each node is proportional to the total outflowing PDC. The significance of every pairwise interactional 

coefficient and each nodal outflow was evaluated via bootstrapping (n = 10000) at an alpha level of p < 0.001. 

No interactional coefficient in the residual state was significant.  (G) State transition probabilities. The observed 

probability of transitioning “forwards” (e.g. blue to purple) is shown flowing downwards on the right; probability of 

transitioning “backwards” (e.g. yellow to green) is shown flowing upwards on the left. The lower threshold is set 

to the uniform probability of non-self-transitions. 
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Figure 5: Network Activity Contrast in Coherent and Scrambled Picture Naming 

Distinct nonlinear dynamics in cortical networks during trials with coherent versus scrambled pictures. (A) The 

fraction of trials engaging a given state as a function of time from stimulus presentation for coherent (left, light 

colors) and scrambled (right, muted colors) images. (B) Contrast of the learned network states. Pairwise 

interactions, quantified with partial directed coherence, that were greater during coherent trials are shown in the 

top row; those greater during scrambled trials are shown in the bottom row. Similarly, nodes with greater outflow 

during coherent versus scrambled trials are shown in the top and bottom row, respectively, with radius 

proportional to the magnitude of difference. The significance of every pairwise interactional coefficient and each 

nodal outflow was evaluated with the Wilcoxon rank sum test on bootstrapped distributions (n = 10000) at an 

alpha level of p < 0.001. (C) Cosine similarity of each network state pair. The first two states were different during 

coherent and scrambled images, while the latter three states were similar. (D) Distribution of state frequency. 

Significance was evaluated with the Wilcoxon rank sum test (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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Supplemental Figure 1: SB-MEMA Movie 

Surface-based mixed-effects multilevel analysis of high-gamma power (112 patients, 13812 electrodes, 19465 

trials). The model was calculated for 150ms wide windows in 10ms increments, time-locked separately to picture 

presentation and articulatory onset. 
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Supplemental Figure 2: Spatiotemporal Atlas in the Language-Nondominant Hemisphere 

Response dynamics in right language non-dominant hemisphere. (A) Aggregate cortical coverage in the patient 

population. (B) Surface-based mixed-effects multilevel analysis of high-gamma power. 
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Supplemental Figure 5: Linear Dynamical System Modeling of Discrete-Interactivity Axis 

Theoretical models of speech production instantiated with switching linear dynamic systems. Each model 

features four unique states (white, orange, purple, and green) with pre-determined dynamics and state transition 

probabilities; these were used to generate 100 trials of data with varying reaction times at 3 regions. The state 

sequence raster, inter-regional interactions, and state transition probabilities are shown. 
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Supplemental Figure 4: Indefrey & Levelt Model of Picture Naming 

The five stages of cognitive processing during picture naming, as defined by Indefrey & Levelt. We have applied 

these stages to an example picture from the Snodgrass & Vanderwart stimuli. 
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Supplemental Figure 5: Nonlinear Dynamics during Scrambled Naming 

Autoregressive hidden Markov model applied to single-trial high-gamma power during scrambled trials. (A) State 

sequences on held-out testing data. Each of the 5 active states is shown with a unique color. For each raster, all 

trials were sorted by reaction time in the left column and by articulatory duration in the right column. The 

maximum of each state color scale is set to 400% of the mean state density. (B) Interregional dynamics. The 

graph nodes represent distinct regions. The graph edges represent the pairwise partial directed coherence 

(PDC), a Granger causal measure of interaction derived from the unique dynamics that define each state. The 

size of each node is proportional to the total outflowing PDC. The significance of every pairwise interactional 

coefficient and each nodal outflow was evaluated via bootstrapping (n = 10000) at an alpha level of p < 0.001. 

No interactional coefficient in the residual state was significant.  (C) State transition probabilities. The observed 

probability of transitioning “forwards” (e.g. blue to purple) is shown flowing downwards on the right; probability of 

transitioning “backwards” (e.g. yellow to green) is shown flowing upwards on the left. The lower threshold is set 

to the uniform probability of non-self-transitions. 
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Supplemental Figure 6: Surface-Based Mixed-Effects Multilevel Analysis (SB-MEMA) 

High-gamma power is extracted for all trials at each electrode and processed with a mixed-effects model. The 

effect size and confidence estimates are propagated onto the patient-specific pial surface via the cortical spread 

function. Patient surfaces are nonlinearly warped to the standard atlas using a surface-based transform. Data 

from all patients is integrated with a multilevel analysis in group space. 
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