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ABSTRACT 

Drosophila melanogaster is a premier model in population genetics and genomics, and a 2 

growing number of whole-genome datasets from natural populations of this species have 

been published over the last 20 years. A major challenge is the integration of these 4 

disparate datasets, often generated using different sequencing technologies and 

bioinformatic pipelines, which hampers our ability to address questions about the evolution 6 

and population structure of this species. Here we address these issues by developing a 

bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster 8 

to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies 

using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use 10 

this pipeline to generate the largest data repository of genomic data available for D. 

melanogaster to date, encompassing 271 population samples from over 100 locations in >20 12 

countries on four continents. Several of these locations are sampled at different seasons 

across multiple years. This dataset, which we call Drosophila Evolution over Space and 14 

Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome 

browser and web portal provide easy access to the SNP dataset. Our aim is to provide this 16 

scalable platform as a community resource which can be easily extended via future efforts 

for an even more extensive cosmopolitan dataset. Our resource will enable population 18 

geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. 

melanogaster populations in unprecedented detail. 20 

 

Keywords: Drosophila melanogaster, population genomics, SNPs, evolution, adaptation, 22 

demography 

 24 

 

  26 
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Introduction 

The vinegar fly Drosophila melanogaster is one of the oldest and most important genetic 28 

model systems and has played a key role in the development of theoretical and empirical 

population genetics (Schneider 2000; Hales et al. 2015; Haudry et al. 2020). Through 30 

decades of work, we now have a basic picture of the evolutionary origin (David and Capy 

1988; Lachaise et al. 1988; Keller 2007; Sprengelmeyer et al. 2020), colonization history and 32 

demography (Caracristi and Schlötterer 2003; Li and Stephan 2006; Duchen et al. 2013; 

Grenier et al. 2015; Arguello et al. 2019; Kapopoulou et al. 2020), and spatio-temporal 34 

diversification patterns of this species and its close relatives (Kolaczkowski et al. 2011; 

Fabian et al. 2012; Bergland et al. 2014; Lack et al. 2016; Machado et al. 2016; Kapun et al. 36 

2016, 2020). The availability of high-quality reference genomes (Adams 2000; Celniker and 

Rubin 2003; dos Santos et al. 2015) and genetic tools (Schneider 2000; Duffy 2002; 38 

Jennings 2011; Hales et al. 2015; Haudry et al. 2020) efficiently facilitates placing 

evolutionary studies of flies in a mechanistic context, allowing for the functional 40 

characterization of ecologically relevant polymorphism (e.g., de Jong and Bochdanovits 

2003; Paaby et al. 2010, 2014; Mateo et al. 2014; Kapun et al. 2016; Durmaz et al. 2018, 42 

2019; Ramaekers et al. 2019).  

Recently, work on the evolutionary biology of Drosophila has been fueled by the 44 

growing number of population genomic datasets from field collections across a large portion 

of D. melanogaster's range (Grenier et al. 2015; Machado et al. 2019; Guirao-Rico and 46 

González 2019; Arguello et al. 2019). These genomic data consist either of re-sequenced 

inbred (or haploid) individuals (e.g., Mackay et al. 2012; Langley et al. 2012; Grenier et al. 48 

2015; Lack et al. 2015, 2016; Mateo et al. 2018; Kapopoulou et al. 2020) or pooled 

sequencing (Pool-Seq; e.g., Kolaczkowski et al. 2011; Fabian et al. 2012; Bastide et al. 50 

2013; Campo et al. 2013; Bergland et al. 2014; Machado et al. 2016, 2019; Kapun et al. 

2016, 2020) of outbred population samples. Pooled re-sequencing provides accurate and 52 

precise estimates of allele frequencies across most of the allele frequency spectrum (Zhu et 

al. 2012; Lynch et al. 2014; Schlötterer et al. 2014) at a fraction of the cost of individual-54 

based sequencing. Although Pool-Seq retains limited information about linkage 

disequilibrium (LD) relative to individual sequencing (Feder et al. 2012), Pool-Seq data can 56 

be used to infer complex demographic histories (e.g., Cheng et al. 2012; Bergland et al. 

2016; Deitz et al. 2016; Gould et al. 2017; Corbett-Detig and Nielsen 2017; Giesen et al. 58 

2020), characterize levels of diversity (Kofler et al. 2011a, 2011b; Ferretti et al. 2013; Kapun 

et al. 2020), and infer genomic loci involved in recent adaptation in nature (Flatt 2016; Kapun 60 

et al. 2016, 2020; Gould et al. 2017; Machado et al. 2019; Bogaerts‐Márquez et al. 2020) 

and during experimental evolution (e.g. Turner et al. 2011; Orozco-terWengel et al. 2012; 62 
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Burke 2012; Kofler and Schlötterer 2014). However, the rapidly increasing number of 

genomic datasets processed with different bioinformatic pipelines makes it difficult to 64 

compare results across studies and to jointly analyze multiple datasets. Differences among 

bioinformatic pipelines include filtering methods for the raw reads, mapping algorithms, the 66 

choice of the reference genome or SNP calling approaches, potentially generating biases 

when combining processed datasets from different sources for joint analyses (e.g., Gautier 68 

et al. 2013; Hoban et al. 2016). 

To address these issues, we have developed a modular bioinformatics pipeline to map 70 

Pool-Seq reads to a hologenome consisting of fly and microbial genomes, to remove reads 

from potential D. simulans contaminants, and to estimate allele frequencies using two 72 

complementary SNP callers. Our pipeline is available as a Docker image (available from 

https://dest.bio) to standardize versions of software used for filtering and mapping, to make 74 

the pipeline available independently of the operating system used and to facilitate future 

updates and modification of the pipeline. In addition, our pipeline allows using either 76 

heuristic or probabilistic methods for SNP calling, based on PoolSNP (Kapun et al. 2020) 

and SNAPE-pooled (Raineri et al. 2012). We also provide tools for performing in-silico 78 

pooling of existing inbred (haploid) lines that exist as part of other Drosophila population 

genomic resources (Pool et al. 2012; Langley et al. 2012; Grenier et al. 2015; Kao et al. 80 

2015; Lack et al. 2015, 2016). This pipeline is also designed to be flexible, facilitating the 

streamlined addition of new population samples as they arise.  82 

Using this pipeline, we generated a unified dataset of pooled allele frequency estimates 

of D. melanogaster sampled across large portions of Europe and North America. This 84 

dataset is the result of the collaborative efforts of the European DrosEU (Kapun et al. 2020) 

and DrosRTEC (Machado et al. 2019) consortia and combines both novel and previously 86 

published population genomic data. Our dataset combines samples from 100 localities, 55 of 

which were sampled at two or more time points across the reproductive season (~10-15 88 

generations/year) for one or more years. Collectively, these samples represent >13,000 

individuals, cumulatively sequenced to >16,000x coverage. The cost-effectiveness of Pool-90 

Seq has enabled us to estimate genome-wide allele frequencies over geographic space 

(continental and sub-continental) and time (seasonal, annual and decadal) scales, thus 92 

making our data a unique resource for advancing our understanding of fundamental 

adaptive and neutral evolutionary processes. We provide data in two file formats (VCF and 94 

GDS: (Danecek et al. 2011; Zheng et al. 2017), thus allowing researchers to utilize a variety 

of tools for computational analyses. Our dataset also contains sampling and environmental 96 

meta-data to enable various downstream analyses of biological interest. 

 98 
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 100 

 

Materials and Methods 102 

Data sources. The genomic dataset presented here has been assembled from a 

combination of Pool-Seq libraries and in-silico pooled haplotypes. We combined 246 Pool-104 

Seq libraries of population samples from Europe, North America and the Caribbean that 

were sampled through space and time by two collaborating consortia in North America 106 

(DrosRTEC: https://web.sas.upenn.edu/paul-schmidt-lab/dros-rtec/) and Europe (DrosEU: 

http://droseu.net) between 2003 and 2016. In addition, we integrated genomic data from 108 

>900 inbred or haploid genomes from 25 populations in Africa, Europe, Australia, and North 

America available from the Drosophila Genome Nexus dataset (DGN; Lack et al. 2015, 110 

2016). We further included the D. simulans haplotype, built as part of the DGN dataset, as 

an outgroup, making this repository of 272 (246 pool-seq + 25 DGN + 1 D. simulans) whole-112 

genome sequenced samples the largest dataset of genome-wide SNPs available for D. 

melanogaster to date.  114 

 

Metadata. We assembled uniform meta-data for all samples (Supplemental Material, Table 116 

S1). This information includes collection coordinates, collection date, and the number of flies 

per sample. Samples are also linked to bioclimatic variables from the nearest WorldClim 118 

(Hijmans et al. 2005) raster cell at a resolution of 2.5° and to weather stations from the 

Global Historical Climatology Network (GHCND; ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/) 120 

for future analysis of the environmental drivers that might underlie genetic change. We also 

provide summaries of basic attributes of each sample derived from the sequencing data 122 

including average read depth, PCR-duplicate rate, D. simulans contamination rate, relative 

abundances of non-synonymous versus synonymous polymorphisms (pN/pS), the number of 124 

private polymorphisms, and diversity statistics (Watterson’s θ, π and Tajima’s D). 

 126 

Sample collection. The majority of population samples contributed by the DrosEU and the 

DrosRTEC consortia was collected in a coordinated fashion to generate a consistent dataset 128 

with minimized sampling bias. In brief, fly collections were performed exclusively in natural 

or semi-natural habitats, such as orchards, vineyards and compost piles. For most European 130 

collections, flies were collected using mashed banana, or apples with live yeast as bait in 

traps placed at sampling sites for multiple days to attract flies or by sweep netting (see 132 

Kapun et al. 2020 for more details). For North American collections, flies were collected by 

sweep-net, aspiration, or baiting over natural substrate or using baited traps (see Behrman 134 

et al. 2018; Machado et al. 2019 for details). Samples were either field caught flies (n-227), 
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from F1 offspring of wild caught females (n=7), from a mixture of F1 and wild caught flies 136 

(n=7), or from flies kept as isofemale lines in the lab for 5 generations or less (n=4); see 

Supplemental Table 1 for more information. To minimize cross-contamination with the 138 

closely related sympatric sister species D. simulans, we only sequenced male D. 

melanogaster specimens, allowing for higher confidence discrimination between the two 140 

species based on the morphology of male genitalia (Capy and Gibert 2004; Markow and 

O’Grady 2005). Samples were stored in 95% ethanol at -20°C before DNA extraction.  142 

 

DNA extraction and sequencing. The DrosEU and DrosRTEC consortia centralized 144 

extractions from pools of flies. DNA was extracted either using chloroform/phenol-based 

(DrosEU: Kapun et al. 2020) or lithium chloride/potassium acetate extraction protocols 146 

(DrosRTEC: Bergland et al. 2014; Machado et al. 2019) after homogenization with bead 

beating or a motorized pestle. DrosEU samples from the 2014 collection were sequenced on 148 

an Illumina NextSeq 500 sequencer at the Genomics Core Facility of Pompeu Fabra 

University in Barcelona, Spain. Libraries of the previously unpublished DrosEU samples 150 

from 2015 and 2016 were constructed using the Illumina TruSeq PCR Free library 

preparation kit following the manufacturer’s instructions and sequenced on the Illumina 152 

HiSeq X platform as paired-end fragments with 2 x 150 bp length at NGX Bio (San 

Francisco, California, USA). The previously published samples of the DrosRTEC consortium 154 

were prepared and sequenced on GAIIX, HiSeq2000 or HiSeq3000 platforms, as described 

in Bergland et al. (2014) and Machado et al. (2019). For information on DNA extraction and 156 

sequencing methods of the various DGN samples see Lack et al. (2016).  

 158 

Mapping pipeline. The joint analysis of genomic data from different sources requires the 

application of uniform quality criteria and a common bioinformatics pipeline. To accomplish 160 

this, we developed a standardized pipeline that performs filtering, quality control and 

mapping of any given Pool-Seq sample (see Supplemental Information Figure S1). This 162 

pipeline performs quality filtering of raw reads, maps reads to a hologenome (see below), 

performs realignment and filtering around indels, and filters for mapping quality. The output 164 

of this pipeline includes quality control metrics, bam files, pileup files, and allele frequency 

estimates for every site in the genome (gSYNC, see below). Our pipeline is provided as a 166 

Docker image, which automatically installs external software and executes the pipeline 

across various operating systems. Our pipeline will facilitate the integration of future samples 168 

to extend the worldwide D. melanogaster SNP dataset presented here.  

The mapping pipeline includes the following major steps. Prior to mapping, we removed 170 

sequencing adapters and trimmed the 3’ ends of all reads using cutadapt (Martin 2011). We 

enforced a minimum base quality score ≥ 18 (-q flag in cutadapt) and assessed the quality of 172 
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raw and trimmed reads with FASTQC (Andrews 2010). Trimmed reads with minimum length 

< 75 bp were discarded and only intact read pairs were considered for further analyses. 174 

Overlapping paired-end reads were merged using bbmerge (v. 35.50; (Bushnell et al. 2017). 

Trimmed reads were mapped against a compound reference genome (“hologenome”) 176 

consisting of the genomes of D. melanogaster (v.6.12) and D. simulans (Hu et al. 2013) as 

well as  genomes of common commensals and pathogens, including Saccharomyces 178 

cerevisiae (GCF_000146045.2), Wolbachia pipientis (NC_002978.6), Pseudomonas 

entomophila (NC_008027.1), Commensalibacter intestine (NZ_AGFR00000000.1), 180 

Acetobacter pomorum (NZ_AEUP00000000.1), Gluconobacter morbifer 

(NZ_AGQV00000000.1), Providencia burhodogranariea (NZ_AKKL00000000.1), 182 

Providencia alcalifaciens (NZ_AKKM01000049.1), Providencia rettgeri 

(NZ_AJSB00000000.1), Enterococcus faecalis (NC_004668.1), Lactobacillus brevis 184 

(NC_008497.1), and Lactobacillus plantarum (NC_004567.2), using bwa mem (v. 0.7.15; Li 

2013) with default parameters. We retained reads with mapping quality greater than 20 and 186 

reads with no secondary alignment using samtools (Li et al. 2009). PCR duplicate reads 

were removed using Picard MarkDuplicates (v.1.109; http://picard.sourceforge.net). 188 

Sequences were re-aligned in the proximity of insertions-deletions (indels) with GATK (v3.4-

46; McKenna et al. 2010). We identified and removed any reads that mapped to the D. 190 

simulans genome using a custom python script, following methods outlined previously 

(Machado et al. 2019; Kapun et al. 2020; for a more in-depth analysis of D. simulans 192 

contamination see Wallace et al. 2020).  

 194 

Incorporation of the DGN dataset. We incorporated population allele frequency estimates 

derived from inbred-line and haploid embryo sequencing data from populations sampled 196 

throughout the world. These samples have been previously collected and sequenced by 

several groups (Pool et al. 2012; Langley et al. 2012; Grenier et al. 2015; Kao et al. 2015; 198 

Lack et al. 2015, 2016) and form the Drosophila Genome Nexus dataset (DGN; Lack et al. 

2015, 2016). We included 25 DGN populations with ≥ 5 individuals per population, plus the 200 

D. simulans haplotype built as part of the DGN dataset. The DGN populations that we used 

are primarily from Africa (n=18) but also include populations from Europe (n=2), North 202 

America (n=3), Australia (n=1), and Asia (n=1).  

To incorporate the DGN populations into the DrosEU and DrosRTEC Pool-Seq 204 

datasets, we used the pre-computed FASTA files (“Consensus Sequence Files” from 

https://www.johnpool.net/genomes.html) and calculated allele frequencies at every site, for 206 

each population, using custom bash scripts. We calculated allele frequencies per population 

by summing reference and alternative allele counts across all individuals. Since estimates of 208 

allele frequencies and total allele counts for the DGN samples only consider unambiguous 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.01.428994doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.428994
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kapun et al.  DEST Population Genomics 
 

7 
 

IUPAC codes, heterozygous sites or sites masked as N’s in the original FASTA files were 210 

converted to missing data. We used liftover (Kuhn et al. 2013) to translate genome 

coordinates to Drosophila reference genome release 6 (dos Santos et al. 2015) and 212 

formatted them to match the gSYNC format (described below).  

 214 

SNP calling strategies. We used two complementary approaches to perform SNP calling. 

The first was PoolSNP (Kapun et al. 2020), a heuristic tool which identifies polymorphisms 216 

based on the combined evidence from multiple samples. This approach is similar to other 

common Pool-Seq variant calling tools (Koboldt et al. 2009, 2012; Kofler et al. 2011a, 218 

2011b). PoolSNP integrates allele counts across multiple independent samples and applies 

stringent minor allele count and minor allele frequency thresholds for variant detection. 220 

PoolSNP is expected to be good at detecting variants present in multiple populations, but is 

not very sensitive to rare private alleles. The second approach was SNAPE-pooled (Raineri 222 

et al. 2012), a Bayesian tool which identifies polymorphic sites for each population 

independently using pairwise nucleotide diversity estimates as a prior. SNAPE-pooled is 224 

expected to be more sensitive to rare private polymorphisms, but also might have a higher 

false positive rate for variant detection.  226 

 

gSYNC generation and filtering. Our pipeline utilizes a common data-format (SYNC; Kofler 228 

et al. 2011b) to encode allele counts for each population sample. A “genome-wide SYNC'' 

(gSYNC) file records the number of A,T,C, and G for every site of the reference genome. 230 

Because gSYNC files for all populations have the same dimension, they can be quickly 

combined and passed to a SNP calling tool. They can be filtered and are also relatively 232 

small for a given sample (~500Mb), enabling efficient data sharing and access. The gSYNC 

file is analogous to the gVCF file format as part of the GATK HaplotypeCaller approach 234 

(McKenna et al. 2010) but is specifically tailored to Pool-Seq samples. 

To generate a Pool-SNP gSYNC file, we first converted BAM files to the MPILEUP 236 

format with samtools mpileup using the -B parameter to suppress recalculations of per-base 

alignment qualities and filtered for a minimum mapping quality with the parameter -q 25. 238 

Next, we converted the MPILEUP file containing mapped and filtered reads to the gSYNC 

format using custom python scripts, which are available at https://dest.bio. To generate a 240 

SNAPE-pooled gSYNC file, we ran the SNAPE-pooled version specific to Pool-Seq data for 

each sample with the following parameters: θ=0.005, D=0.01, prior=’informative’, 242 

fold=’unfolded’ and nchr=number of flies (x2 for autosomes and x1 for the X chromosome) 

following Guirao-Rico and Gonzalez (2021). We converted the SNAPE-pooled output file to 244 

a gSYNC file containing the counts of each allele per position and the posterior probability of 

polymorphism as defined by SNAPE-pooled using custom python scripts. We only 246 
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considered positions with a posterior probability ≥ 0.9 as being polymorphic and with a 

posterior probability ≤ 0.1 as being monomorphic. In all other cases, positions were marked 248 

as missing data. 

We masked gSYNC files for Pool-SNP and SNAPE-pooled using a common set of 250 

filters. Sites were filtered from gSYNC files if they had: (1) minimum read depth < 10; (2) 

maximum read depth > the 95% coverage percentile of a given chromosomal arm and 252 

sample; (3) located within repetitive elements as defined by RepeatMasker; (4) within 5 bp 

distance up- and downstream of indel polymorphisms identified by the GATK IndelRealigner. 254 

Filtered sites were converted to missing data in the gSYNC file. The location of masked 

positions for every sample was recorded as a BED file. 256 

 

VCF generation. We combined the masked PoolSNP-gSYNC files into a two-dimensional 258 

matrix, where rows correspond to each position in the reference genome and columns 

describe chromosome, position and reference allele, followed by allele counts in SYNC 260 

format for every sample in the dataset. This combined matrix was then subjected to variant 

calling using PoolSNP, resulting in a VCF formatted file. We performed SNP calling only for 262 

the major chromosomal arms (X, 2L, 2R, 3L, 3R) and the 4th (dot) chromosome. 

We first evaluated the choice of two heuristic parameters applied to PoolSNP: global 264 

minor allele count (MAC) and global minor allele frequency (MAF). Using all 272 samples, 

we varied MAF (0.001, 0.01, 0.05) and MAC (5-100) and called SNPs at a randomly 266 

selected 10% subset of the genome. We calculated pN/pS and used this value to tune our 

choice of MAF and MAC. We found that a global MAF=0.001 and a global MAC=50 provided 268 

reasonable estimates of pN/pS for all populations. We therefore used these parameters for 

genome-wide variant calling (see Results: Identification and quality control of SNPs). We 270 

kept a third heuristic parameter, the missing data rate, constant at a minimum of 50%.  

We generated three versions of the variant files, which differ in their inclusion of the 272 

DGN samples and the SNP calling strategy. For PoolSNP variant calling, we generated two 

variant tables: the first version incorporates all 272 samples of the Pool-Seq (DrosRTEC, 274 

DrosEU) and in-silico Pool-Seq populations (DGN). The second version only considers the 

246 Pool-Seq samples. We combined masked SNAPE-pooled gSYNC files into a two-276 

dimensional matrix, as described above, and generated a VCF formatted output based on 

allele counts for any site found to be polymorphic in one or more populations. Based on this 278 

dataset we then generated a SNAPE-pooled VCF file, which included the 246 Pool-Seq 

samples. Final VCF files were annotated with SNPeff (version 4.3; Cingolani et al. 2012) and 280 

stored in VCF and BCF (Danecek et al. 2011) file formats alongside an index file in TABIX 

format (Li 2011). Besides VCF files, we also stored SNP data in the GDS file format using 282 

the R package SeqArray (Zheng et al. 2017).  
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 284 

Population genetic analyses. We estimated allele frequencies for each site across 

populations as the ratio of the alternate allele count to the total site coverage. We also 286 

calculated per-site averages for nucleotide diversity (π, Nei 1987), Watterson’s θ (Watterson 

1975) and Tajima’s D (Tajima 1989) across all sites or in non-overlapping windows of 100 288 

kb, 50 kb and 10 kb length. To estimate these summary statistics, we converted masked 

gSYNC files (with positions filtered for repetitive elements, low and high read depth, and 290 

proximity to indels; see gSYNC generation and filtering) back to the mpileup format using 

custom-made scripts. mpileup files were processed using npstat v.1 (Ferretti et al. 2013) 292 

with parameters -maxcov 10000 and -nolowfreq m=0 in order to include all filtered positions 

for analysis. We only considered sites identified as being polymorphic by PoolSNP or 294 

SNAPE-pooled for analysis, using the -snpfile option of npstat. For the DGN populations, 

chromosomes-wide summary statistics were estimated only for samples with less than 50% 296 

missing data per chromosome. Due to small sample sizes, Tajima’s D was not estimated for 

7 African DGN populations that consisted of only 5 haploid embryos. In addition, we 298 

calculated pN/pS ratios based on SNP annotations with SNPeff (Cingolani et al. 2012) using 

a custom-made python script. To compare population genetic estimates between the 300 

PoolSNP versus SNAPE-pooled datasets, we performed Pearson’s correlations on the 210 

populations present in both datasets (see Identification and quality control of SNPs) using 302 

the stats package of R v. 3.6.3. The effects of pool size (number of individuals sampled per 

population) on genome-wide estimates of π, Watterson’s θ, Tajima’s D and pN/pS estimates 304 

were examined for European and North American populations using the PoolSNP dataset 

and a generalized linear model (GLM) in R v3.6.3. Finally, for 48 European populations we 306 

estimated Pearson’s correlations between π, Watterson’s θ and Tajima’s D as estimated 

from the PoolSNP dataset versus previous estimates by Kapun et al. (2020) using the stats 308 

package of R v3.6.3. 

Next, we examined patterns of between-population differentiation by calculating 310 

window-wise estimates of pairwise FST, based on the method from Hivert et al. (2018) 

implemented in the computePairwiseFSTmatrix() function of the R package poolfstat 312 

(v1.1.1). This analysis was performed for the dataset composed of 271 samples processed 

with PoolSNP, focusing on SNPs shared across the whole dataset. Finally, we averaged 314 

pairwise FST within and among phylogenetic clusters (Africa [17 samples], North America [76 

samples], Eastern Europe [83 samples] and Western Europe [93 samples]; not included: 316 

China and Australia). These FST tracks at windows sizes of 100kb, 50kb and 10kb are 

available at https://dest.bio (Supplemental Figures S2, S3).  318 

To assess population structure in the worldwide dataset, we applied PCA, population 

clustering, and population assignment based on a discriminant analysis of principal 320 
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components (DAPC; Jombart et al. 2010) to all 271 PoolSNP-processed samples. For these 

analyses, we subsampled a set of 100,000 SNPs spaced apart from each other by at least 322 

500 bp. We optimized our models using cross-validation by iteratively dividing the data as 

90% for training and 10% for learning. We extracted the first 40 PCs from the PCA and ran 324 

Pearson’s correlations between each PC and all loci. We subsequently extracted the top 

33,000 SNPs with large and significant correlations to PCs 1-40. We chose the 33,000 326 

number as a compromise between panel size and differentiation power. For example, 

depending on the number of individuals surveyed, these 33,000 DIMs can discern 328 

divergence (τ) between two populations with parametric FST  of 0.001- 0.0001 for sample 

sizes (n) of 10-1000. These estimates come from the phase change formula: τ ≈ FST = 330 

1/(nm)1/2 (Patterson et al. 2006). Here, the two populations were sampled for n/2 individuals 

and genotyped at m=33,000 markers. Furthermore, we included SNPs as a function of the 332 

%VE of each PC. PCAs, clustering, and assignment-based DAPC analyses were carried out 

using the R packages FactoMiner (v. 2.3), factoextra (v. 1.0.7) and adegenet (v. 2.1.3), 334 

respectively.  

 336 

Web-based genome browser. Our HTML-based DEST browser (Supplemental Information 

Figure S2) is built on a JBrowse Docker container (Buels et al. 2016), which runs under 338 

Apache on a CentOS 7.2 Linux x64 server with 16 Intel Xeon 2.4 GHz processors and 32 

GB RAM. It implements a hierarchical data selector�that facilitates the visualization and 340 

selection of multiple population genetic metrics or statistics for the 272 samples based on 

the PoolSNP-processed dataset, taking into account sampling location and date. 342 

Importantly, our genome browser provides a portal for downloading allelic information and 

pre-computed population genetics statistics in multiple formats (Supplemental Information 344 

Figures 2A+C, S3), a usage tutorial (Supplemental Information Figure S2B) and versatile 

track information (Supplemental Information Figure S2D). Bulk downloads of full variation 346 

tracks are available in BigWig format (Kent et al. 2010) and Pool-Seq files (in VCF format) 

are downloadable by population and/or sampling date using custom options from the Tools 348 

menu (Supplemental Information Figure S2C). All data, tools, and supporting resources for 

the DEST dataset, as well as reference tracks downloaded from FlyBase (v.6.12) (dos 350 

Santos et al. 2015), are freely available at https://dest.bio.� 

 352 

 

Results and Discussion 354 

Integrating a worldwide collection of D. melanogaster population genomics 

resources. We developed a modular and standardized pipeline for generating allele 356 
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frequency estimates from pooled resequencing of D. melanogaster genomes (Supplemental 

Figure 1). Using this pipeline, we assembled a dataset of allele frequencies from 271 D. 358 

melanogaster populations sampled around the world (Figure 1A, Supplemental Material, 

Table S1). Many of these samples were collected at the same location, at different seasons 360 

and over multiple years (Figure 1B). The nature of the genomic data for each population 

varies as a consequence of biological origin (e.g., inbred lines or Pool-Seq), library 362 

preparation method, and sequencing platform.  

 364 
Figure 1. Sampling location, dates, and quality metrics. (A) Map showing the 271 sampling localities 

forming the DEST dataset. Colors denote the datasets that were combined together. (B) Collection 366 

dates for localities sampled more than once. (C) General sample features of the DEST dataset. The 

x-axis represents the population sample, ordered by the average read depth. 368 

 

To assess whether these features affect basic attributes of the dataset, we calculated six 370 

basic quality metrics (Figure 1C, Supplemental Material, Table S2). On average, median 

read depth across samples is 62X (DGN samples range: 1-190X; Pool-Seq samples range: 372 

10-217X). Missing data rates were less than 7% for most (95%) of the samples. Excluding 

populations with high missing data rate (>7%), the proportion of sites with missing data was 374 

positively correlated with read depth (p=1.2x109, R2=0.4). The positive correlation between 

ics 
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read depth and missing data rate is surprising and likely a consequence of masking sites 376 

with high coverage. The number of flies per sample varied from 40 to 205, with considerable 

heterogeneity among the DrosRTEC samples (standard deviation [sd] = 30), but not among 378 

DrosEU samples (sd = 0.04). Variation in the number of flies and in sequencing depth is 

reflected in the effective read depth, an estimate of the number of independent reads after 380 

accounting for double binomial sampling that occurs during PoolSeq (Eff. RD; Kolaczkowski 

et al. 2011; Feder et al. 2012; Figure 1C). There was considerable variation in PCR 382 

duplicate rate among samples, with notable differences between batches of DrosEU 

samples (~6% in 2014 vs. 18% in 2015/16; t-test p=1.8x10-19) and DrosRTEC samples (~3% 384 

in samples collected as part of Bergland et al. (2014) vs. ~14% in samples collected as part 

of Machado et al. (2019; p=6.37x10-3). Curiously, the 2015/2016 DrosEU samples were 386 

made with a PCR-free kit, suggesting that the observed PCR duplicates were optical 

duplicates and not amplification artifacts. Contamination of samples by D. simulans varied 388 

among populations but was generally absent (<1% D. simulans specific reads). 

 390 

Identification and quality control of SNPs. In order to determine appropriate SNP calling 

and filtering parameters, and to identify potentially problematic population samples, we first 392 

calculated the ratio of non-synonymous to synonymous polymorphism (pN/pS) for each 

population sample. We chose this metric because it can reflect the presence of sequencing 394 

errors that would disproportionately inflate pN relative to pS. 

For the PoolSNP dataset, we varied the global minor allele count (MAC) and global 396 

minor allele frequency (MAF) and then calculated pN/pS. We observed that pN/pS was 

negatively correlated with MAC (linear regression; p<0.001; Figure 2A). MAC thresholds <50 398 

resulted in large variances of pN/pS caused by 36 populations characterized by unusually 

high pN/pS ratios (Supplemental Material, Table S3; Figures 2A and 2C). Some (n=21) of 400 

these samples had previously been found to show positive values of Tajima’s D across the 

whole genome (Kapun et al. 2020) and are characterized by a large number of private 402 

polymorphisms (Supplemental Material, Table S3; see below), indicating that there may be 

elevated numbers of  sequencing errors in some samples. Applying a MAC threshold of 50 404 

reduced the elevated pN/pS ratios to values similar to the rest of the dataset, and suggesting 

that the potential sequencing errors had been largely removed. To minimize false positive 406 

variant calling, we therefore conservatively chose MAC=50 and MAF=0.001 as threshold 

parameters for SNP calling with PoolSNP. Using these parameters, we identified 4,381,144 408 

polymorphisms segregating among the 271 D. melanogaster samples (Pool-Seq plus DGN), 

and 4,042,456 polymorphisms segregating among the 246 Pool-Seq samples (excluding 410 

DGN), using PoolSNP. 
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SNAPE calls variants in each sample separately using a probabilistic approach, in 412 

contrast to PoolSNP, which integrates allelic information across all populations for heuristic 

SNP calling. To quantify the amount of putative sequencing errors among low frequency 414 

variants we varied the local MAF threshold per sample and calculated pN/pS for each sample 

in the SNAPE-pooled dataset. Similar to PoolSNP, we found that elevated pN/pS was 416 

negatively correlated with a local MAF threshold (linear regression; p<0.001; Figure 2B) and 

that the 36 above-mentioned problematic samples also had a strong effect on the variance 418 

and mean of pN/pS ratios. Accordingly, we removed these 36 samples and applied a 

conservative MAF filter of 5% for the remainder of the SNAPE-pooled analysis. Our results 420 

identified 8,541,651 polymorphisms segregating among the remaining 210 samples. Below, 

we discuss the geographic distribution and global frequency of SNPs identified using these 422 

two methods in order to provide insight into the stark discrepancy in the number of SNPs 

that they identify.   424 

 
 426 

Figure 2. The effect of heuristic minor allele count (MAC) and minor allele frequency (MAF) 

thresholds on pN/pS ratios in SNP data based on PoolSNP (A) and SNAPE-pooled (B). Blue lines in 428 

both panels show average genome-wide pN/pS ratios across 271 and 246 populations, respectively. 

The blue ribbons depict the corresponding standard deviations. The bottom panels (C) and (D), 430 

correspond to the top panels A and B but excluding 36 problematic samples, which are characterized 

by elevated pN/pS, an exceptionally large number of private SNPs and genome-wide positive Tajima’s 432 

D. Note that the y-axes of the bottom and top panels differ in scale. The two arrows show the MAC 

and MAF thresholds used for the final datasets. 434 
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Patterns of polymorphism between PoolSNP and SNAPE-pooled. We calculated three 436 

metrics related to the amount of polymorphism discovered by our pipelines: the abundance 

of polymorphisms segregating in n populations across each chromosome (Figure 3A), the 438 

difference of discovered polymorphisms between SNAPE-pooled and PoolSNP (defined as 

the absolute value of PoolSNP minus SNAPE-pooled; Figure 3B), and the amount of 440 

polymorphism discovered per minor allele frequency bin (Figure 3C). We evaluated these 

three metrics across a 2x2 filtering scheme: two MAF filters (0.001, 0.05) and two sample 442 

sets (the whole dataset of 246 samples; and the 210 samples that passed the sequencing 

error filter in SNAPE-pooled; see Identification and quality control). Notably, PoolSNP was 444 

biased towards identification of common SNPs present in multiple samples, whereas 

SNAPE-pooled was more sensitive to the identification of polymorphisms that appeared in 446 

few populations only (Figure 3B). For example, at a MAF filter of 0.001, SNAPE-pooled 

discovered more polymorphisms that were shared in less than 25 populations (relative to 448 

PoolSNP), and these accounted for ~79% of all polymorphisms discovered by the pipeline. 

Likewise, at a MAF filter of 0.05, SNAPE-pooled discovered more polymorphisms that were 450 

shared in less than 97 populations; these accounted for ~71% of all discovered 

polymorphisms. SNAPE-pooled identifies fewer polymorphic sites that are shared among a 452 

large number of populations than PoolSNP does because SNAPE pooled does not integrate 

information across multiple populations. As a consequence, it can fail to identify SNPs which 454 

are overall at low frequencies and get called as monomorphic or missing in a subset of 

populations given the posterior-probability thresholds that we employed (see Materials and 456 

Methods). 

We also compared allele frequency estimates between the two callers using the 458 

aforementioned dataset of 210 populations applying a MAF filter of 0.05 (see Supplemental 

Material, Table S2). Among the positions identified as polymorphic by both calling methods, 460 

our frequency estimates were consistent for the great majority of SNPs in all samples 

analyzed (> 97% of samples). A very small proportion differed in less than 5% frequency 462 

among both methods (< 2.3% in all samples), and very few polymorphic SNPs differed by a 

frequency of between 5-10% (< 0.15% in all samples) or greater than 10% (< 0.03% in all 464 

samples) (Supplemental Material, Table S4). Positions with a discordant calling represented 

less than a 25% of all common positions in all samples (Supplemental Material, Table S4), 466 

the majority of them being called polymorphic by PoolSNP and classified as missing data by 

SNAPE-pooled (Supplemental Material, Table S4). This is consistent with the SNAPE-468 

pooled method as well as the stringent parameters used (see Materials and Methods). 
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 470 
Figure 3. (A) Number of polymorphic sites discovered across populations. The x-axis shows the 

number of populations which share a polymorphic site. The y-axis corresponds to the number of 472 

polymorphic sites shared by any number of populations, on alog10 scale. The colored lines represent 

different chromosomes, and are stacked on top of each other. (B) The difference of discovered 474 

polymorphisms between SNAPE-pooled and PoolSNP. (C) Number of polymorphic sites as a function 

of allele frequency and the number of populations the polymorphisms is present in. The color gradient 476 

represents the number of variant alleles from low to high (black to green). The x-axis is the same as in 

A, and the y-axis is the minor allele frequency. The 2x2 filtering scheme is shown on the right side of 478 

the figure. 

 480 

Mutation-class frequencies. We estimated the percentage of mutation classes (e.g., A→C, 

A→G, A→T, etc.) accepted as polymorphisms in both our SNP calling pipelines, and 482 

classified these loci as being either “rare” (i.e., allele frequency < 5% and shared in less than 

50 populations) or “common” (allele frequency > 5% and shared in more than 150 484 

populations). For this analysis, we classified the minor allele as the derived allele. Figure 4A 

shows the percentage of each mutation class for the 210 populations which passed filters in 486 

both SNAPE-pooled and PoolSNP. In addition, we overlaid, as a horizontal line, the 

expected mutation frequencies for rare (blue; Assaf et al. 2017) and common (red; Mackay 488 

et al. 2012) mutations. For example, A→C variants are expected to be more abundant as 

common mutations than as rare mutations, and the opposite is true for C→A variants. In 490 

general, our SNP discovery pipelines produced mutation-class relative frequencies of rare 

and common mutations that are consistent with empirical expectations, however, there were 492 

some exceptions to this pattern. For example, the frequencies of the C/G rare mutation-class 

was consistently underestimated by both callers, a phenomenon that might be related to the 494 

known GC bias of modern sequencing machines (Benjamini and Speed 2012). The 

ics 
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correlation between SNP calling pipelines was high across both common and rare mutation 496 

classes, with marginal discrepancies observed for rare variants (Figure 4B). 

 498 

 
Figure 4. Frequencies of observed nucleotide polymorphism in the DEST dataset (210 populations 500 

common to PoolSNP and SNAPE-pooled). (A) Each panel represents a mutation type. The red color 

indicates common mutations (AF > 0.05, and common in more than 150 populations) whereas the 502 

blue color indicates rare mutations (AF < 0.05, and shared in less than 50 populations). The dark 

colors correspond to the PoolSNP pipeline and the soft colors correspond to the SNAPE-pooled 504 

pipeline. The hovering red and blue horizontal lines represent the estimated mutation rates for 

common and rare mutations, respectively. (B) Correlation between the observed mutation frequencies 506 

seen in SNAPE-pooled and PoolSNP. The one-to-one correspondence line is shown as a black-

dashed diagonal. Correlation estimates (Pearson’s correlation) and p-values for common and rare 508 

mutations are shown.  

 510 

Comparison to previously published datasets. We compared the allele frequency and 

read depth estimates from the DEST dataset (based on PoolSNP) to previously published 512 

estimates by Bergland et al. (2014), Machado et al. (2019), and Kapun et al. (2020). For 

these datasets we employed two types of correlations, the nominal correlation (i.e., 514 

Pearson’s correlation; CO) and the concordance correlation coefficient (CCC; Lin 1989; Liao 

and Lewis 2000). The CCC determines how much the observed data deviate from the line of 516 

perfect concordance (i.e., the 45 degree-line on a square scatter plot).  

Estimates of allele frequency were strongly correlated and consistent with previously 518 

published data. The strongest correlation of DEST allele frequencies and previously 

published allele frequencies was observed with the data of Kapun et al. (2020) (average CO 520 

and CCC > 0.99; Figure 5, top row; Supplemental Material, Figure S4). Allele frequency 

correlations with Machado et al. (2019) are also generally high (average CO and CCC > 522 
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0.98; Figure 5, top row; Supplemental Material, Figure S5). Allele frequency correlations with 

the data from Bergland et al. (2014) were lower (0.94; Supplemental Material, Figure S6), 524 

likely reflecting differences in data processing and quality control.  

We also examined two aspects of read depth, i.e., nominal coverage and effective 526 

coverage. Nominal coverage is the number of reads mapping to a site that has passed 

quality control. Effective coverage is the approximate number of independent reads, after 528 

accounting for double binomial sampling, and is useful for obtaining unbiased estimates of 

the precision of allele frequency estimates (Kolaczkowski et al. 2011; Kofler et al. 2011a; 530 

Feder et al. 2012; Schlötterer et al. 2014). Similar to allele frequency estimates, the Pearson 

correlation coefficients for both coverage and effective coverage were large (0.92, 0.95, 0.90 532 

for Machado et al. (2019), Kapun et al. (2020), and Bergland et al. (2014), respectively; see 

Supplemental Material, Figures S7-12), indicating that sample identity was preserved 534 

appropriately. However, the concordance correlation coefficients were substantially lower 

between the datasets (0.24, 0.88, 0.79, respectively), indicating systematic differences in 536 

read depth between the DEST dataset and previously published data. Indeed, read depth 

estimates were on average ~12%, ~14% and ~20% lower in the DEST dataset as compared 538 

to the previously published data in Machado et al. (2019), Kapun et al. (2020), and Bergland 

et al. (2014)(2014) respectively. The lower read depth and effective read depth estimates in 540 

the DEST dataset reflects our more stringent quality control and filtering. 

 542 

 
 544 

Figure 5. Correlations between DEST dataset and previously published datasets.  Correlations 

between allele frequencies (AF), Nominal Coverage (COV), and Effective Coverage (NEFF) between 546 
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the DEST dataset (using the PoolSNP method) and three previously Drosophila datasets: Machado et 

al. (2019), Kapun et al. (2020), and Bergland et al. (2014). For each dataset, we show the distribution 548 

of two types of correlation coefficients: the nominal (Pearson’s) correlation (CO; dashed lines) and the 

concordant correlation (CCC; solid lines). In addition to the actual correlations between the datasets 550 

(red distributions), we show the distributions of correlations estimated with random population pairs 

(green distributions). 552 

 

Genetic diversity. We estimated nucleotide diversity (π), Watterson’s θ and Tajima’s D for 554 

both the PoolSNP and SNAPE-pooled datasets (Supplemental Material, Table S5). Results 

for the African, European and North American population samples are presented in Figure 6 556 

(also see Supplemental Material, Figure S13 for estimates by chromosome arm). All 

estimates were positively correlated between PoolSNP and SNAPE-pooled (p<0.001), with 558 

Pearson’s correlation coefficients of 0.88, 0.94 and 0.73 for π, Watterson’s θ, and Tajima’s 

D, respectively. Higher values of genetic diversity were obtained for the SNAPE-pooled 560 

dataset, probably due to its higher sensitivity for detecting rare variants (see Patterns of 

polymorphism between PoolSNP and SNAPE-pooled). Pool size had no significant effect on 562 

the four summary statistics in European or in North American populations (GLMs, all 

p>0.05), suggesting that data from populations with heterogeneous pool sizes can be safely 564 

merged for accurate population genomic analysis.  

 566 

 
Figure 6. Population genetic estimates for African, European and North American populations. 568 

Shown are genome-wide estimates of (A) nucleotide diversity (π), (B) Watterson’s θ and (C) Tajima’s 

D for African populations using the PoolSNP data set, and for European and North American 570 

populations using both the PoolSNP and SNAPE-pooled (SNAPE) datasets. As can be seen from the 
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figure, estimates based on PoolSNP versus SNAPE-pooled (SNAPE) are highly correlated (see main 572 

text). Genetic variability is seen to be highest for African populations, followed by North American and 

then European populations, as previously observed (e.g., see Lack et al. 2016; Kapun et al. 2020). 574 

 

The highest levels of genetic variability were observed for ancestral African populations 576 

(mean π = 0.0060, mean θ = 0.0059); North American populations exhibited higher genetic 

variability (mean π = 0.0054, mean θ = 0.0054) than European populations (mean π = 578 

0.0049, mean θ = 0.0048). These results are consistent with previous observations based on 

individual genome sequencing (e.g., see Lack et al. 2016; Kapun et al. 2020). Our 580 

observations are also consistent with previous estimates based on pooled data from three 

North American populations (mean π = 0.00577, mean θ = 0.00597; Fabian et al. 2012) and 582 

48 European populations (mean π = 0.0051, mean θ = 0.0052; Kapun et al. 2020). 

Estimates of Tajima’s D were positive when using PoolSNP, and slightly negative using 584 

SNAPE. These results are expected given biases in the detection of rare alleles between 

these two SNP calling methods. In addition, our estimates for π, Watterson’s θ and Tajima’s 586 

D were positively correlated with previous estimates for the 48 European populations 

analyzed by Kapun et al. (2020) (all p<0.01). Notably, slightly lower levels of Tajima’s D in 588 

North America compared to both Africa and Europe (Figure 6B) may be indicative for 

admixture (Stajich and Hahn 2005) which has been identified previously along the North 590 

American east coast (Caracristi and Schlötterer 2003; Kao et al. 2015; Bergland et al. 2016). 

 592 

Phylogeographic clusters in D. melanogaster. We performed PCA on the PoolSNP 

variants in order to include samples from North America (DrosRTEC), Europe (DrosEU), and 594 

Africa (DGN) datasets (excluding all Asian and Oceanian samples). Prior to analysis we 

filtered the joint datasets to include only high-quality biallelic SNPs. Because LD decays 596 

rapidly in Drosophila (Comeron et al. 2012), we only considered SNPs at least 500 bp away 

from each other. PCA on the resulting 100,000 SNPs revealed evidence for discrete 598 

phylogeographic clusters that correspond to geographic regions (Supplemental Material, 

Figure S14B). PC1 (24% variance explained [VE]) partitions samples between Africa and the 600 

other continents (Figure 7A). PC2 (9% VE) separates European from North American 

populations, and both PC2 and PC3 (4% VE) divide Europe into two population clusters 602 

(Figure 7B). Notably, these spatial relationships become evident when PCA projections from 

each sample are plotted onto a world map (Figure 7C). Interestingly, the emergent clusters 604 

in Europe are not strictly defined by geography. For example, the western cluster (diamonds 

in Figure 7D) includes Western Europe as well as Finland, Turkey, Cyprus, and Egypt. The 606 

eastern cluster, on the other hand, consists of several populations collected in previous 

Soviet republics as well as Poland, Hungary, Serbia and Austria, raising the possibility that 608 
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recent geo-political division in Europe could have affected migration and population 

structure. Whether this result arises as a relic of recent geopolitical history within Europe, 610 

more ancient migration and colonization (e.g., following post-glacial range expansion, Kapun 

et al. 2020), local adaptation, or sampling strategy (Novembre and Stephens 2008; cf. 612 

Kapun et al. 2020) remains unknown. Future targeted sampling is needed to resolve these 

alternative explanations.  614 

 

 616 
 

Figure 7. Demographic signatures of the DrosEU, DrosRTEC, and DGN data (using the PoolSNP 618 

pipeline). (A) PCA dimensions 1 and 2. The mean centroid of a country’s assignment is labeled. (B) 

PCA dimensions 1 and 3. (C) Projections of PC1 onto a World map. PC1 projections define the 620 

existence of continental level clusters of population structure (indicated by the shapes circles: Africa; 

triangles: North America; diamonds and squares: Europe). (D) Projections of PC3 onto Europe. These 622 

projections show the existence of a demographic divide within Europe: the diamond shapes indicate a 

western cluster, whereas the squares represent an eastern cluster. For panels C and D, the intensity 624 

of the color is proportional to the PC projection. The black dashed line shows the two-cluster divide. 

 626 
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A unique feature of this dataset is that it contains a mixture of Pool-Seq and inbred (or 

haploid) genome data. For some geographic regions, the DEST dataset contains both data 628 

types. Inbred and Pool-Seq samples from nearby geographic regions clustered in the same 

regions of PC space (Supplemental Material, Figure S15). Excluding the DGN-derived 630 

African samples, no PC was significantly correlated with data type (PC1 p = 0.352, PC2 p = 

0.223, PC3 p = 0.998).  632 

 

Geographic proximity analysis. The geographic distribution of our samples allows 634 

leveraging basic principles of phylogeography and population genetics to assess the 

biological significance of rare SNPs (Wright 1943; Battey et al. 2020). Accordingly, we 636 

expect to observe young neutral alleles at low frequencies among geographically close 

populations. We tested this hypothesis by estimating the average geographic distance 638 

among pairs of populations that share SNPs only occurring in these two populations 

(doubletons), among three populations that share tripletons, and so forth. Without imposing 640 

a MAF filter, both SNAPE-pooled and PoolSNP pipelines produced patterns concordant with 

the expectation. Populations in close proximity were more likely to share rare mutations 642 

relative to random chance pairings (Figure 8A). Notably, the PoolSNP dataset showed an 

elevated number of rare alleles, which violate the phylogeographic expectation (Figure 8A); 644 

however, this only affects 0.31% of all PoolSNP mutations. To further evaluate this pattern, 

we estimated the probability that any given population pair belongs to a particular 646 

phylogeographic cluster (Supplemental Material, Figure S16) as a function of their shared 

variants. Our results indicate that rare variants, private to geographically proximate 648 

populations, are strong predictors of phylogeographic provenance (see Figure 8B).  

 650 
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Figure 8. Geographic Proximity Analysis. (A) Average geographic distance between populations that 

share a polymorphism at any given site for PoolSNP and SNAPE-pooled. The x-axis represents the 652 

number of populations considered; the y-axis is the mean geographic distance among samples. The 

yellow line represents the random expectation calculated as random pairings of the data. The band 654 

around the lines is the standard deviation of the estimator. (B) Probability that all populations 

containing a polymorphic site come from the same phylogeographic cluster (Supplemental Figure 14). 656 

The y-axis is the probability of “x” populations belonging to the same phylogeographic cluster. The 

axis only shows up to 40 populations; after that point, the probability approaches 0. The colors are 658 

consistent across panels. 

   660 

Demography-informative markers. An inherent strength of our broad biogeographic 

sampling is the potential to generate a panel of core demography SNPs to investigate the 662 

provenance of current and future samples. We created a panel of demography-informative 

markers (DIMs) by conducting a DAPC to discover which loci drive the phylogeographic 664 

signal in the dataset. We trained two separate DAPC models: the first utilized the four 

phylogeographic clusters identified by principal components (PCs; Figure 6AB, 666 

Supplemental Material, Figure S16, Table S1); the second utilized the geographic localities 

where the samples were collected (i.e., countries in Europe and the US states). This 668 

optimization indicated that the information contained in the first 40 PCs maximizes the 

probability of successful assignment (Figure 9A). This resulted in the inclusion of 30,000 670 

DIMs, most of which were strongly associated with PCs 1-3 (Figure 9B inset). Moreover, the 

correlations were larger among the first 3 PCs and decayed monotonically for the additional 672 

PCs (Figure 9B). Lastly, our DIMs were uniformly distributed across the fly genome (Figure 

9C). 674 

We assessed the accuracy of our DIM panel using a leave-one-out cross-validation 

approach (LOOCV). We trained the DAPC model using all but one sample and then 676 

classified the excluded sample. We performed LOOCV separately for the phylogeographic 

cluster groups, as well as for the state/country labels. The phylogeographic model used all 678 

DrosRTEC, DrosEU, and DGN samples (excluding Asia and Oceania with too few 

individuals per sample); the state/country model used only samples for which each label had 680 

at least 3 or more samples. Our results showed that the model is 100% accurate in terms of 

resolving samples at the phylogeographic cluster level (Figure 9D) and 89% at the 682 

state/country level (Figure 9E). We anticipate that this set of DIMs will be useful for future 

analysis of geographic provenance of North American and European samples. We provide a 684 

tutorial on the usage of the DIM in Supplemental Methods.  

 686 
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Figure 9. Demography-informative markers. (A) Number of retained PCs which maximize the DAPC 688 

model’s capacity to assign group membership. Model trained on the phylogeographic clusters 

(dashed lines) or the country/state labels (solid line). (B) Absolute correlation for the 33,000 individual 690 

SNPs with highest weights onto the first 40 components of the PCA. Inset: Number of SNPs per PC. 

(C) Location of the 33,000 most informative demographic SNPs across the chromosomes. (D) 692 

LOOCV of the DAPC model trained on the phylogeographic clusters. (E) LOOCV of the DAPC model 

trained on the phylogeographic state/country labels. For panels D and E, the y-axis shows the highest 694 

posterior produced by the prediction model and the x-axis is the posterior assigned to the actual label 

classification of the sample. Also, for D and E, marginal histograms are shown. 696 

 

Conclusions and Outlook 698 

Here we have presented a new, modular and unified bioinformatics pipeline for processing, 

integrating and analyzing SNP variants segregating in population samples of D. 700 

melanogaster. We have used this pipeline to assemble the largest worldwide data repository 

of genome-wide SNPs in D. melanogaster to date, based both on previously published data 702 

(DGN: Africa; Lack et al. 2015, 2016) as well as on new data collected by our two 

collaborating consortia (DrosRTEC: mostly North America; Machado et al. 2019; DrosEU: 704 

mostly Europe; Kapun et al. 2020). We assembled this dataset using two SNP calling 

strategies that differ in their ability to identify rare polymorphisms, thereby enabling future 706 

work studying the evolutionary history of this species. We are dubbing this data repository 

and the supporting bioinformatics tools Drosophila Evolution over Space and Time (DEST).  708 
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One of the biggest challenges in the present “omics” era is the rapidly growing number 

of complex large-scale datasets which require technically elaborate bioinformatics know-how 710 

to become accessible and utilizable. This hurdle often prohibits the exploitation of already 

available genomics datasets by scientists without a strong bioinformatics or computational 712 

background. To remedy this situation for the Drosophila evolution community, our 

bioinformatics pipeline is provided as a Docker image (to standardize across software 714 

versions, as well as make the pipeline independent of specific operating systems) and a new 

genome browser makes our SNP dataset available through an easy-to-use web interface 716 

(see Supplemental Information Figures S2, S3; available at https://dest.bio). 

The DEST data repository and platform will enable the population genomics community 718 

to address a variety of longstanding, fundamental questions in ecological and evolutionary 

genetics. The current dataset might for instance be valuable for providing a more accurate 720 

picture of the demographic history of D. melanogaster populations, in particular in Europe 

and North America, and with respect to multiple bouts of out-of-Africa migration and recent 722 

patterns of admixture.  

The DEST dataset will likewise be useful for an improved understanding of the genomic 724 

signatures underlying both global and local adaptation, including a more fine-grained view of 

selective sweeps, their evolutionary origin and distribution (e.g., see Glinka et al. 2003; 726 

Beisswanger et al. 2006; Ometto 2010; Stephan 2016; Kapun et al. 2020). In terms of local 

adaptation, the broad spatial sampling across latitudinal and longitudinal gradients on the 728 

North American and European continents, encompassing a broad range of climate zones 

and areas of varying degrees of seasonality, will allow examining the parallel nature of local 730 

(clinal) adaptation in response to similar environmental factors in greater depth than possible 

before (e.g., Turner et al. 2008; Kolaczkowski et al. 2011; Fabian et al. 2012; Reinhardt et al. 732 

2014; Kapun et al. 2016, 2020; Machado et al. 2019; Bogaerts‐Márquez et al. 2020; 

Waldvogel et al. 2020). 734 

Another major opportunity provided by the DEST dataset lies in studying the temporal 

dynamics of evolutionary change. Sampling at dozens of localities across the growing 736 

season and over multiple years will help to advance our understanding of the short-term 

population and evolutionary dynamics of flies living in diverse environments, thereby 738 

providing novel insights into the nature of temporally varying selection (e.g., Wittmann et al.; 

Bergland et al. 2014; Machado et al. 2019) and evolutionary responses to climate change 740 

(e.g., Umina 2005; Rodríguez-Trelles et al. 2013; Waldvogel et al. 2020). 

Moreover, by integrating these worldwide estimates of allele frequencies, those from 742 

lab- and field-based ‘evolve and resequence’ (E&R; Turner et al. 2011; reviewed in Kofler 

and Schlötterer 2014; Schlötterer et al. 2014; Flatt 2020) and mesocosm experiments (e.g., 744 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.01.428994doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.01.428994
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kapun et al.  DEST Population Genomics 
 

25 
 

Rudman et al. 2019; Erickson et al. 2020), we might be able to gain deeper insights into the 

genetic basis and evolutionary history of variation in fitness components (e.g., Flatt 2020). 746 

The real value of the DEST dataset lies in the future: its long-term utility will grow as 

natural and experimental populations are continually being sampled, resequenced and 748 

added to the repository by the community of Drosophila evolutionary geneticists. The 

pipeline that we have established will make future updates to the data-repository 750 

straightforward. Furthermore, since it is not easily feasible for any single research group to 

sample flies densely through time and across a broad geographic range, the growing value 752 

of the DEST dataset will depend upon the synergistic collaboration among research groups 

across the globe, as exemplified by the DrosRTEC and DrosEU consortia. Importantly, in an 754 

era of rapidly decreasing sequencing costs, comprehensive population genomic analyses 

are no longer limited by genetic marker density but by the availability of biological samples 756 

from standardized, collaborative long-term collection efforts through space and time (e.g., 

Machado et al. 2019; Kapun et al. 2020). In this vein, the collaborative framework presented 758 

here might allow us, as a global community, to fill some important gaps in the current data 

repository: for example, many areas of the world (notably Asia and South America) remain 760 

largely uncharted territory in Drosophila population genomics, and the addition of phased 

sequencing data (e.g., providing information on haplotypes, LD, linked selection) will be 762 

crucially important for future analyses of demography, selection and their interplay. 

We are convinced that the DEST platform will become a valuable and widely-used 764 

resource for scientists interested in Drosophila evolution and genetics, and we actively 

encourage the community to join the collaborative effort we are seeking to build. 766 

 

Data availability 768 

All scripts to make figures and perform analyses associated with this manuscript are 

available here: https://github.com/DEST-bio/data-paper. All scripts to build the dataset, 770 

including the mapping pipeline, SNP calling scripts, and meta-data are available here: 

https://github.com/DEST-bio/DEST_freeze1. All output from the DEST pipeline, including 772 

intermediate output files, metadata, etc. can be found here: https://dest.bio. The genome 

browser associated with the DEST dataset can be found here: 774 

http://dgvbrowser.uab.cat/dest/browser/. The mapping and SNP calling pipeline can be 

found here: https://hub.docker.com/r/destbiodocker/destbiodocker 776 
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