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Abstract 
 
Background 
 

Gene annotation in eukaryotes is a non-trivial task that requires meticulous analysis of 

accumulated transcript data. Challenges include transcriptionally active regions of the 

genome that contain overlapping genes, genes that produce numerous transcripts, 

transposable elements and numerous diverse sequence repeats. Currently available 

gene annotation software applications depend on pre-constructed full-length gene 

sequence assemblies which are not guaranteed to be error-free. The origins of these 

sequences are often uncertain, making it difficult to identify and rectify errors in them. 

This hinders the creation of an accurate and holistic representation of the transcriptomic 

landscape across multiple tissue types and experimental conditions. Therefore, to 

gauge the extent of diversity in gene structures, a comprehensive analysis of genome-

wide expression data is imperative.  

 
Results  
 

We present FINDER, a fully automated computational tool that optimizes the entire 

process of annotating genes and transcript structures. Unlike current state-of-the-art 

pipelines, FINDER automates the RNA-Seq pre-processing step by working directly with 

raw sequence reads and optimizes gene prediction from BRAKER2 by supplementing 

these reads with associated proteins. The FINDER pipeline (1) reports transcripts and 

recognizes genes that are expressed under specific conditions, (2) generates all 

possible alternatively spliced transcripts from expressed RNA-Seq data, (3) analyzes 

read coverage patterns to modify existing transcript models and create new ones, and 

(4) scores genes as high- or low-confidence based on the available evidence across 

multiple datasets. We demonstrate the ability of FINDER to automatically annotate a 

diverse pool of genomes from eight species. 
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Conclusions 

 

FINDER takes a completely automated approach to annotate genes directly from raw 

expression data. It is capable of processing eukaryotic genomes of all sizes and 

requires no manual supervision – ideal for bench researchers with limited experience in 

handling computational tools.  

 

Keywords 
 

Genomics, transcriptomics, eukaryotic gene annotation, gene prediction, optimized 

RNA-Seq alignment, changepoint detection 

 

Background 
 

Recent advances in sequencing technology enable the construction of chromosomal-

level assemblies for even non-model organisms. As of December 2020, genomes of 

16,108 eukaryotes, 295,784 prokaryotes, 41,936 viruses, 26,079 plasmids and 17,820 

organelles are sequenced and available through GenBank [1], a considerable increase 

over the 1,500 sequences reported two decades ago (see Additional File 1: Figure S1). 

Therefore, to annotate the ever-rising number of genome sequences, annotation 

software applications need to be fast, accurate, and designed to handle large amounts 

of expression data to facilitate discovery of novel genes across different conditions [2–

5]. Extensive analysis of this available data is the key to achieving exhaustive gene 

discovery by analyzing samples from multiple tissues and conditions, obviating the need 

for additional sequencing. 

 

Genome annotation is the process of identifying transcriptionally active regions of the 

genome and defining gene structures. Decoding the correct structures of genes is 

essential since several downstream applications rely on accurate annotations: detecting 
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interactions between proteins [6–14], identifying post-translational modifications [15–

23], mining effectors [24–28], and determining protein structure [29–32]. Although we 

have seen a significant improvement in genome sequencing technology, annotation 

methods continue to underperform [33, 34]. Obtaining accurate gene annotations is 

challenging, especially in recently sequenced non-model organisms. The presence of 

sequences exchanged through horizontal gene transfer in such genomes and the 

existence of fragmented assemblies make it difficult to predict gene structures [35]. 

Multiple groups working on the same species have different and oftentimes conflicting 

annotations that are difficult to merge into a common consensus.  

 

The early 2000s saw initial genome annotation attempts with the introduction of PASA 

[36], which was developed to map full-length transcripts and Expressed Sequence Tags 

(ESTs) in order to annotate genomes. In parallel, FGENESH [37, 38], GeneGenerator 

[39], mGene [40] and GeneSeqer [41] were introduced which predicted gene structures 

directly from genome sequence. Tools such as MAKER [42–45] and PASA [36] closely 

depend on pre-assembled full-length transcripts to generate annotations. ESTs and/or 

de novo assembled transcriptomes have been often provided as inputs to these tools to 

generate annotations [46–52]. Transcripts constructed via de novo [53–57] or genome-

guided [58–63] approaches are sensitive to the nature of the assembler and its 

parameter settings. Such assemblers report sequences that are highly similar to one 

another, making the process of sifting the correct assemblies from artefacts difficult. 

This issue is moderately mitigated by BRAKER2 [64, 65], which uses read splice 

information instead of full-length assemblies to predict gene structures and has been 

shown to perform better than de novo approaches [66]. BRAKER2 entails a round of 

unsupervised gene predictions using GeneMark-ET [67] generating ab-initio gene 

predictions followed by a second round of training by AUGUSTUS [68] using a subset of 

the gene models created by GeneMark-ET [64]. All variations of MAKER (MAKER, 

MAKER2 and MAKER-P) use a combination of AUGUSTUS [68] and SNAP [69] to 

generate gene predictions. Unlike BRAKER2 or PASA, users need to run MAKER for 

multiple rounds to improve annotation. With no standard technique to optimize the 

number of rounds, users often undertake a trial-and-error approach to decide what data 
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is supplied to MAKER in each execution round. These unguided choices can create 

different annotations based on the same data sets. Thus, current approaches report 

either incomplete genes and/or derive annotations that are missing alternatively spliced 

transcripts. 

 

To overcome the drawbacks described above, we developed FINDER, a new, 

automated annotation pipeline that downloads RNA-Seq data from NCBI SRA [70], 

conducts genome-guided assembly of short reads, predicts gene structure, and 

annotates genes. FINDER annotates both untranslated and coding regions of genes, 

categorizes transcripts based on the tissue/conditions where they are expressed, and 

outputs a complete set of alternatively spliced transcripts. FINDER analyzes the spatial 

expression profile of each transcript to redefine its boundaries and/or even create newer 

transcripts and employs an optimized strategy to locate transcripts housing micro-

exons. Finally, gene models predicted by BRAKER2 are incorporated into the 

annotation along with assemblies generated by PsiCLASS [63]. We show that FINDER 

outperforms state-of-the-art annotation tools in constructing accurate gene structures, 

when executed with the same expression data. 

 
Implementation 
 

The detailed workflow of FINDER is outlined in Fig. 1. The pipeline accepts metadata 

via a comma-separated values (csv) file (see Additional file 2: Table S1). Users can 

verify the input data using the `verifyInputsToFINDER` utility (Please check section 

1.5.1 of Additional file 9). Both single-end and paired-end data are accepted. The 

pipeline automatically downloads RNA-Seq data from NCBI SRA or the samples can be 

accessed locally. Multiple rounds of alignment are conducted using STAR [71, 72] with 

short reads, thus ensuring the capture of tissue-specific splice junctions and ultimately 

generates the most comprehensive set of alternatively spliced transcripts. FINDER uses 

PsiCLASS [63] to generate transcripts both at the tissue level and consolidates them to 

produce a consensus annotation. It employs change-point detection (CPD) using 
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coverage data to polish intron/exon boundaries if needed. Polished transcripts are then 

supplied to GeneMarkS-T [73] to predict protein coding regions. In addition to 

constructing genes from expression data, FINDER uses BRAKER2 [65] to predict genes 

de novo. Finally, gene models are assigned scores that reflect the confidence of 

prediction and evidence across different data sets. Throughout the pipeline run, 

intermediate temporary data is removed to optimize space usage. Proper logging of 

executions is implemented through ruffus [74]. 
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Fig 1. 

 
FINDER workflow. FINDER assembles short reads from RNA-Seq expression data, 
collected from multiple tissues and conditions, to generate full-length transcripts using 
PsiCLASS. Short read coverage profile is used to polish the structure of the transcripts 
to enhance the quality of annotation. GeneMarkS-T is used to predict coding regions of 
the transcripts. Gene models predicted by BRAKER2 and models obtained by mapping 
proteins are added to the gene models constructed from RNA-Seq data. Additionally, 
FINDER outputs the tissues where each transcript is expressed allowing users to work 
with tissue-specific transcripts. FINDER categorizes transcripts into two confidence 
levels depending on the available supporting evidence and depth of coverage. 
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Read alignments to the genome 

 

Reads from each sample are aligned to the genome using STAR [72]. FINDER accepts 

the location of the genomic STAR indices. If indices are not provided, then FINDER will 

generate them locally. FINDER implements multiple strategies to detect as many 

correct splice-junctions as possible. Several studies use a multi-step approach where 

splice junctions are detected in the first pass and then those junctions are used to guide 

the alignments in future passes [75, 76]. FINDER employs a similar strategy to align 

reads and obtain the most confident splice junctions in each tissue type and/or condition 

by conducting mapping in four passes (Please check section 1.3 of Additional file 9 for 

more details).  

 

Annotating transcripts with micro-exons 

 

Certain genes in eukaryotes have micro-exons (i.e., exons with fewer than 50 

nucleotides) [77–80] which impart important biological properties both in plants [81–85] 

and animals [86–90]. FINDER uses OLego [91] to map the reads which were reported 

unmapped by STAR, because OLego optimizes micro-exon sensitivity by checking 

intron signatures when no hits of seed sequences (~14 nt) are found. It is configured to 

align reads to exons of minimum length 2, with a minimum and maximum intron size of 

20 and 10K respectively.  

  

Generating exon-exon transcript structure annotation with PsiCLASS 
 

Alignments reported by STAR and OLego are combined and provided as input to 

PsiCLASS [63]. Unlike traditional assemblers, PsiCLASS accepts alignments from 

multiple samples at the same time. It generates annotations for each sample and one 

consolidated gene annotation for all the samples. FINDER runs PsiCLASS with the --

bamGroup option enabled which instructs PsiCLASS to preserve tissue/condition specific 

features. It is a fast meta-assembler generating 350 samples of output in less than three 

hours while running on 30 cores and consumes less than 50 GB of memory.  
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Polishing gene structures to optimize gene discovery 
 

Gene structure annotations reported by PsiCLASS were polished to generate the best 

assemblies. Annotations generated by assemblers often have three kinds of errors that 

impact accuracy: (1) presence of redundant transcripts that are proper subsets of other 

transcripts, (2) multiple transcripts on the same strand merged into one, and (3) 

transcripts with ill-defined exon boundaries. Most assemblers ignore such cases to 

boost the speed of operation. Developing solutions to deal with these kinds of errors 

increases the number of correct structural annotations thereby improving downstream 

analysis.  
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Fig 2. 

 
 

FINDER implements changepoint analysis of read coverages to modify existing 
gene models and/or generate new ones. Changepoint analysis is a statistical 
technique to assess alterations in trends over time. The same approach has been used 
to analyze read coverage patterns of a genome, where the data is distributed spatially. 
(A) Two Arabidopsis thaliana genes AT1G42960.1 and AT1G42970.1 are present within 
50 base pairs of each other on the positive strand. Reads originating from the end 
exons of either genes bleed into each other resulting in PsiCLASS to merge the two 
gene models. Changepoint analysis recognizes the fall the read coverage and reports a 
position within the exon where the trough exists. This information is used to split up the 
gene models. (B) A similar issue exists with closely spaced genes residing on opposite 
strands. The end exons (highlighted with a red box) for a transcript extend up to the 
nearest intron of the adjacent transcript. Changepoint analysis is used to determine the 
actual end/start of transcript based on the read coverage. 
 

FINDER uses different algorithmic and statistical approaches to deal with the above 

cases. To eliminate redundant transcripts, exon-intron structure of all transcripts is 

compared with each other to retain only unique transcripts. Even though eukaryotes 

possess large genomes, certain genes/transcripts are closely packed and are 

overlapping (Fig. 2). Reads originating from one of those genes often map to nearby 

overlapping genes making the task of distinctly recognizing the transcripts very 

challenging.  

TAIR10
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Coverage
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FINDER is configured to use changepoint detection (CPD) analysis to detect the 

descent in read coverage at the junction of two overlapping transcripts. Statistical CPD 

is a procedure to detect changes in the probability distribution of a stochastic process. 

Typically, CPD is widely used to detect changes in time series [92–96], but can be 

extended to other applications as well [97, 98]. We have found that even though CPD 

was developed under the assumption of normality, it can also be used where normality 

is violated. 

 

In the first step in FINDER’s CPD, short read alignments to the genome are converted 

into number of read counts per nucleotide using bedtools [99]. A custom python script is 

used to transfer the per nucleotide coverage data from the genome to the transcriptome 

reported by PsiCLASS. Each internal exon is considered as a potential site for the 

presence of changepoints if there exist premature stop codons in all the three frame 

translations. CPD only considers exons that have a high chance of housing a 

changepoint, thereby reducing duration of operation. The coverage pattern of each exon 

is probed to detect changepoints. The data has been modeled using an exponential 

distribution, and binary segmentation has been used to determines the changepoints in 

the exonic coverage using the ‘changepoints’ package [100]. Read coverage of exons 

mimics a time series where each nucleotide position of an exon can be assumed to be a 

single unit of time. Coverage patterns of exons, suspected to be merged, contain a 

characteristic depression in the signal to split the gene models (Fig. 2A). Overlapping 

transcripts on opposite strands sometimes share a common exon (Fig. 2B). This 

negatively impacts precision since the boundaries of the predicted transcript exceed the 

boundaries of the transcript in the reference annotation. FINDER trims the transcript 

boundaries, using the changepoints, to better model the RNA-Seq coverage (Fig. 2B). 

These strategies improve the annotation by increasing the transcript F1 scores (Table 
1).  
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Table 1: Sensitivity, Specificity and F1 scores of transcripts generated by multiple gene 

annotation pipelines for three model organisms – Arabidopsis thaliana, Oryza sativa and Zea 

mays 

 

 
De novo gene prediction from expression data and proteins from closely related 
species 
 

Certain genes are expressed only under specific tissues and conditions [101]. However, 

constructing an exhaustive set of genes expressed across all possible tissues and 

conditions is a daunting task due to the mammoth volume of potential expression data. 

Hence, approaches that can predict structures of unknown genes using information 

obtained from known genes are needed. Within the FINDER framework, we used 

BRAKER2 [65] to predict the structure of protein coding genes. The pipeline is provided 

with alignment files generated by STAR and an optional, user-provided protein data file. 

If the previous execution fails, a second execution of BRAKER2 is launched without 

protein information. Genes predicted by BRAKER2 are compared to the genes obtained 

from expression data. To prevent too many false positives, predictions made by 

BRAKER2 are considered high confidence, only if those are supported by expression 

level or protein level evidence. 
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Prediction of coding regions 
 
We leveraged GeneMarkS-T [73] to predict protein-coding regions of genes constructed 

from expression data. GTF files are first converted to FASTA files using the provided 

genome. Those FASTA files are supplied to GeneMarkS-T as inputs. GeneMarkS-T 

outputs coding sequence for the transcripts. CDS annotations are incorporated into the 

final GTF file by converting the transcriptomic coordinates to genomic coordinates. 

 

Using proteins to annotate more genes 
 

In addition to RNA-Seq data, FINDER also uses protein data (when provided), in two 

ways (1) to assess the veracity of the transcript models generated by BRAKER2, and 

(2) to align those proteins not recognized by BRAKER2 or PsiCLASS. Protein coding 

genes obtained from expression data and predicted by BRAKER2 are BLASTed [102] to 

the protein set provided by the user. Proteins not encountering any hits are aligned to 

the genome using exonerate [103] with a minimum threshold of 90% similarity. These 

alignments are augmented to the final set of gene predictions. Since these transcripts 

are obtained solely from proteins, they lack UTR sequences. 

 

Tissue/condition specific transcripts/gene models 
 

Most eukaryotic genes have multiple isoforms which are derived from alternative 

transcripts. Expression of different transcripts can occur under different conditions in 

different tissues at different time points. FINDER compares assembled transcripts from 

each condition and prints out an association between each transcript and the provided 

tissue/condition (Additional file 9 section 1.5).  
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Scoring gene models 
 

FINDER groups genes into multiple categories based on supporting evidence.  Genes 

that are expressed in RNA-Seq datasets, predicted by BRAKER2, and have protein 

evidence, are put into the high-confidence gene set. BRAKER2-predicted genes with no 

evidence of expression and/or proteins are treated as low confidence genes. FINDER 

expects a soft masked genome since it is a BRAKER2 requirement. Genes which are 

located in the repeat regions are marked as such and moved to the set of low-

confidence genes.  

 

Results & Discussion 
 
Choice of species for comparison 
 

We tested the performance of FINDER primarily on three well-annotated plant 

organisms - Arabidopsis thaliana [104], Oryza sativa [105–107] and Zea mays [108, 

109]. The genomes assemblies of these model organisms have been frequently 

updated and are almost complete with telomere-to-telomere sequences with fewer gaps 

and unknown nucleotides. In addition, their gene annotations have undergone regular 

improvement by mining the large number of RNA-Seq datasets available in the 

literature. Also, The Arabidopsis Information Resource (TAIR) provides a five-star rating 

system based on available evidence for each gene. Such a system offers a platform to 

test the quality of gene annotation software. For further evaluation, and to ensure that 

FINDER is able to annotate a wider range of genome types, we selected the following 

additional species to test: Caenorhabditis elegans [110], Drosophila melanogaster [111, 

112], Homo sapiens [113, 114], Hordeum vulgare [115], and Triticum aestivum [115–

118]). The genomes of these species range from small (C. elegans, D. melanogaster, A. 

thaliana), medium (O. sativa), to large (H. sapiens, Z. mays, H. vulgare, and T. 

aestivum). Finally, we evaluated FINDER on three different versions of Z. mays 

annotations – RefSeq [119], AGPv3 [109, 120] and AGPv4 [108, 121]. 
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Metrics to assess quality of annotation 
 

We used four metrics to compare the quality of annotations generated by each pipeline: 

1) Annotation Edit Distance (AED) [42, 43, 122], 2) sensitivity, 3) specificity, and 4) F1 

score. Although these metrics could be computed both at the nucleotide- and exon-level 

we chose to make comparisons at the transcript level since it encompasses bases, 

exons, and introns. An AED score of 0 indicates complete agreement of the predicted 

annotation with the reference, and a score of 1 denotes that the reference has not been 

identified in the annotation. A transcript is considered to be “recognized” only when all 

its intron definitions agree with at least one transcript from the predicted set. We used 

the Mikado “compare” utility to compare the predictions with the reference annotations 

[123]. A highly sensitive annotation is one that can correctly recognize more reference 

transcripts. A set of annotations has high specificity when it reports minimal incorrect 

transcripts. For an annotation to be of good quality, both sensitivity and specificity 

should be high. A balanced metric is the F1 score which is the harmonic mean of 

sensitivity and specificity. While AED provides a good numeric assessment of how well 

the ground truth evidence is represented in an annotation, when individually used, it 

fails to capture the extent to which false positives are reported. Hence, F1 score 

complements AED since it incorporates both specificity and sensitivity. For evaluation 

purposes, we assume that the annotations achieved through community efforts are the 

ground truth and contain no errors.  

 
FINDER generates more accurate gene models than BRAKER2, MAKER2 and 
PASA 
 

FINDER leverages expression data to construct transcript models and employs 

statistical changepoint detection to enhance their structures (see Implementation). Both 

MAKER2 and PASA were run with transcript sequences reported by PsiCLASS. 
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Fig 3. 

 
Comparison of performance of predicted annotations in three model species – (A 
– C) A. thaliana, (D – F) O. sativa and (G – I) Z. mays. Annotation Edit Distance 
(AED) is an assessment of how well predicted annotations agree with the evidence and 
was used as a quality control metric. A value of 0 denotes complete agreement of two 
annotations while a value of 1 denotes that the ‘gold standard’ reference annotation was 
not detected. Transcripts from ‘gold standard’ reference annotations that are not 
detected in any of the predicted annotations are removed from analysis. (A, D & G) 
Distribution of AED scores. Violin plots wider at the base indicate high density of 
annotations with lower AED. FINDER was able to create gene models having lowest 
AED resulting in a wide base. Gene models generated by FINDER were enhanced by 
adding predictions made by BRAKER and including protein evidence. Wilcoxon’s signed 
rank test was used to compare the AED scores between FINDER and other annotating 
pipelines. The “***” symbol implies that the AED scores of FINDER gene models were 
significantly lesser (p_value<0.01) than the AED scores of the gene models reported by 
other pipelines. (B, E & H) Bar plot of F1 score of multiple approaches of annotation. 
Having a high nucleotide F1 (Base F1) or a high exon F1 score is not sufficient to 
conclude a good annotation. High value of transcript F1 score is indicative of good gene 
models with high sensitivity and high specificity. (C, F & I) Stacked bar plot showing 
percentage of transcripts in each of the four groups of AEDs. Higher number of 
transcripts to low AED denotes better annotation. In each of the three species, FINDER 
was able to generate a higher percentage of transcripts with low AED compared to 
other techniques of annotation. 
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To assess FINDER’s performance, we compared the AED scores of transcript models 

generated by FINDER with those generated by other commonly used annotation 

methods. As shown in Fig. 3A, 3D & 3G, the violin plots for FINDER are broader at the 

base, indicating a greater number of transcripts with lower AED scores as compared to 

BRAKER2, MAKER, and PASA. We compared the FINDER AED scores with the AED 

scores reported by other pipelines using Wilcoxon’s signed rank test (More details in 

Additional file 9 section 2.5). For all organisms (Fig. 3, Additional file 1: Figure S2–S5 
and Additional file 3: Table S2), the AED scores reported by FINDER were 

significantly lower (p_value<0.01) than that of any other pipeline. Fig. 3C, 3F & 3I, 
shows a stacked bar plot to represent the fraction of transcripts in each category of AED 

values. In all the cases, a higher percentage of transcripts reported by FINDER have 

lower AED scores (Additional file 1: Figure S2-S5). This indicates that FINDER is 

capable of constructing gene structures that better comply with the reference 

annotations.  

 

High-quality exhaustive annotations predict the fewest false positives thereby boosting 

the transcript F1 score. The transcript F1 scores of the gene models that were reported 

by FINDER for A. thaliana, O. sativa and Z. mays were higher than the models 

generated by BRAKER2, MAKER, and PASA (Fig. 3B, 3E & 3H). This same trend is 

observed for other tested organisms where FINDER was successful in detecting 

nucleotides, exons, introns, transcripts and genes (Table 1, Additional file 1: Figure 
S2-S5 and Additional file 3: Table S2). MAKER2 and BRAKER2 registered a high 

specificity for most of the organisms because fewer transcripts were reported than 

FINDER. MAKER2 and BRAKER2 also had lower F1 scores, indicating less sensitivity 

than FINDER. Additionally, we compared the CDS regions of genes reported by 

FINDER with those of BRAKER2. For most of the organisms, FINDER generated 

transcript models with a higher F1 score (Additional file 4: Table S3). These results 

show that the better performance of FINDER is ensured not only due to the presence of 

UTRs but also due to enhanced CDS structure of gene models.  
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Finally, including BRAKER2 predictions and protein sequences to FINDER enhanced 

the gene model predictions. About 15% of the gene models reported by BRAKER2, 

those having high sequence similarity with the provided protein sequences were 

included in the final annotations (Table 2). As shown in Table 1 and Additional file 5: 
Table S4, including evidence at the protein level led to the identification of more genes. 

 

Unlike BRAKER2, FINDER does not assume a homogeneous nucleotide composition of 

the genome [124]. FINDER outperforms BRAKER2 while constructing gene models in 

complex organisms like H. sapiens, H. vulgare, and Z. mays since assemblers 

generating transcriptomes from alignments do not require a genome to possess 

homogeneous nucleotide composition. 

 
Table 2: Improvement in overall gene recognition by adding gene models predicted by 

BRAKER2 and aligning protein sequences 

 

 

 
FINDER in itself is restricted to annotate genes only in regions of the genome that are 

transcriptionally active. Recognizing that BRAKER2, being a gene predictor, can 

construct gene models in transcriptionally silent regions of the genome, FINDER is 

designed to incorporate the gene models predicted by BRAKER2 into the final 

annotations. 
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Table 3 Classification of gene models into different groups based on their relative 

location to other genes, number of isoforms and other criteria. 

 

 

 

 

 

 

 

 

 

Name Description

Group 1 Uni-exon transcripts Transcripts having a single exon 
and no introns

Group 2 Transcripts without 
UTRs

Transcripts missing either the 5' 
or the 3' UTR sequence

Group 3 Transcripts with UTRs Transcripts having both UTRs

Group 4 Transcripts with micro-
exons

Transcripts where at least one 
exon has length less than 50 
nucleotides

Group 5 Transcripts with long 
introns

Transcripts where at least one 
intron has a length greater than 
10,000 bp

Group 6
Closely placed 
transcripts on same 
strand

Transcripts on the same strand 
having less than 250 
nucleotides between each other

Group 7
Closely placed 
transcripts on 
opposite strand

Transcripts on the opposite 
strands having less than 250 
nucleotides between each other

Group 8 Multi transcript gene Transcripts of a gene that have 
multiple transcripts

Group 9 Single transcript gene Transcripts of a gene that have 
single transcript
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Distinct gene groups are accurately annotated with FINDER 
 

Although eukaryotic genes differ from one another in terms of location, structure and the 

isoforms they encode, most annotation pipelines annotate and evaluate gene 

predictions with a global and uniform approach. The problem arises when these 

variances prompt each pipeline to perform differently on dissimilar groups of genes. To 

avoid this pitfall, we created groups of genes and transcripts based on various criteria 

(Table 3) and compared the performance of FINDER with BRAKER2, MAKER, and 

PASA for each of these sets.  
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Fig 4. 

 
FINDER vs other pipelines on different groups of genes in three model species – 
(A) A. thaliana, (B) O. sativa and (C) Z. mays. F1 score is the harmonic mean 
between sensitivity and specificity. Higher F1 score indicates better agreement with the 
reference transcript models. We created groups of transcripts that have similar 
characteristics as shown in the y-axis legend. A pool of transcripts was created 
containing multi-exonic transcript predictions, from each pipeline, that has a complete 
intron chain match with at least one reference annotation. Mono exonic transcripts were 
considered if at least 80% of the nucleotides overlap with one reference annotation. 
Transcript F1 scores, for each of the annotation pipelines, have been plotted as a bar 
graph. Even though all annotation pipelines are designed to serve the same purpose of 
annotating genomes, each pipeline adopts a different strategy. Each strategy has its 
own merits and demerits that lead to better annotation of a certain category of genes. 
This plot helps understand the performance of each annotation pipeline on different 
categories. The symbol “#” denotes the best annotator in each gene group. 
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On the set of UTR-containing transcripts, FINDER reported the best transcript F1 

scores (Fig. 4, Additional file 1: Figure S6, S7). Unlike BRAKER2, FINDER uses 

GeneMark S/T to predict CDS from the transcript sequences assembled by PsiCLASS 

and can hence annotate UTR regions. For most of the organisms, BRAKER2 and 

MAKER2 gene models register a low transcript F1 score in this category of genes. Next, 

we tested the performance of the annotation pipelines on transcripts that are closely 

located in the genome. On this set of transcripts, FINDER reported the best F1 

transcript score for A. thaliana, O. sativa, and Z. mays (Fig. 4), and comparable scores 

for D. melanogaster (Additional file 1: Figure S6), H. vulgare (Additional file 1: 
Figure S8), and C. elegans (Additional file 1: Figure S7) with BRAKER2. Most 

eukaryotic genes have multiple isoforms which differ from one another by their exon-

intron definition. Splice sites and coverage information provides clues to construct such 

alternatively spliced transcripts. We selected genes with more than one transcript to 

check how well each annotation pipeline was able to detect transcript isoforms. For this 

case, FINDER was able to generate the best transcript structures with the highest 

transcript F1 score among all the pipelines gene annotation software applications (Fig. 
4 and Additional file 1: Figure S6-S9). Surprisingly, BRAKER2 fared poorly in this 

category despite training with all the detected splice sites from RNA-Seq data. This 

demonstrates that FINDER is capable of leveraging both intron splice sites and read 

coverages to report best transcript structures. For H. sapiens, PASA was able to 

generate the best transcript structures across all categories of transcripts. Adding 

transcripts from BRAKER2 and protein evidence improved the transcript F1 score for all 

the organisms, signifying the importance of incorporating de novo gene models and 

protein evidence. 
 

BRAKER2 generated the best transcript annotation for the set of transcripts with a 

single exon (Fig. 4A&B and Additional file 1: Figure S6-S9). Such transcripts, devoid 

of any introns, are difficult to construct from RNA-Seq alone. Also, the direction of the 

splice sites infers the direction of a transcript.  Without any introns, such a single-exon 

transcript has to be probed for a CDS sequences' presence to infer directionality. 

BRAKER2 was configured to optimally predict only CDS regions of genes, hence, it 
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performs well with the set of transcripts that have missing UTRs for organisms with 

small and moderate sized genomes (Fig. 4A&B and Additional file 1: Figure S6-S9). 
The average number of transcripts per gene reported by BRAKER2 is lower than 

FINDER. While this boosts specificity, it compromises recall since BRAKER2 is not 

sensitive to detecting alternatively spliced transcripts. Hence, BRAKER2 accomplishes 

the best F1 score when tested on a set of single-transcript genes but performs poorly on 

a set of multi-transcript genes (Fig. 4A&B and Additional file 1: Figure S6-S9). 

 

Performance comparison on TAIR’s 5-star System 
 
In order to assess the performance of the annotation pipelines on groups of genes 

constructed from varying levels of evidence, we used the TAIR10 5-star system. TAIR 

associates a quality score to each A. thaliana transcript based on the evidence used to 

construct the models, with five stars designating the best evidence and zero stars the 

least [125]. The three categories with limited evidence (<3 stars) have fewer than 3,000 

transcripts each. BRAKER2’s performance, on the genes in these three categories, was 

slightly better than the rest of the annotation pipelines (Fig. 5). The other two categories 

(five star and four star) have 9,067 and 18,374 transcripts respectively. In both of these 

categories, FINDER was able to detect more transcripts than any other annotation 

pipeline. 51.5% and 86.4% of genes in the 5-star and 4-star category respectively were 

multi-exonic. In both these categories, FINDER correctly constructed more gene models 

compared to any other annotation pipeline (Fig. 5). FINDER reported 80% of the gene 

models belonging to the 4-star category – 18% more than BRAKER2 (Fig. 5). Hence, it 

is evident from this analysis that FINDER can reconstruct the structures of most of the 

genes that are well-supported by underlying evidence. 
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Fig 5. 

 
Performance of annotation pipelines on gene groups of Arabidopsis thaliana 
generated by TAIR10. The Arabidopsis Information Resource (TAIR) group has 
created a quality ranking system to indicate the level of confidence in an annotated 
gene/transcript. The ranking system has five levels (denoted by stars). Higher number 
of stars denote the availability of more information to generate the gene structure. Here 
we display the percentage of transcripts in each category that was identified by a 
particular annotation pipeline. A high percentage of identified transcripts indicate higher 
sensitivity and hence a better annotation. The number below each legend in the x-axis 
denote the number of genes in that respective group. The “#” denotes the predictor 
which detected the maximum number of transcripts within each group. 
 

Improving transcript annotations using changepoint analysis 
 

The co-location of multiple overlapping genes on the genome strands makes it difficult 

to correctly annotate their structures (see Methods Polishing gene structures to 
optimize gene discovery). FINDER employs changepoint detection (CPD) [100] to 

split the merged transcripts reported by PsiCLASS (Fig. 2). To gauge the magnitude of 
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improvement in transcript structures brought about by the application of CPD, we 

compared the accuracy of the predicted transcriptome before and after implementing 

CPD based on read coverage. As shown in Table 4 and Additional file 6: Table S5, 

implementing the CPD improved both specificity and sensitivity in organisms with small 

or medium-sized genomes. In A. thaliana, the transcript F1 scores increased from 40.78 

to 45.95 (Table 4 and Additional file 6: Table S5) and in C. elegans it increased from 

40 to 50. In large genomes, the improvement was not as significant, mainly because 

there are only a few genes that overlap with one another. 

 

 
Table 4: Comparison of specificity, sensitivity and F1 scores of transcripts assemblies 

generated by Strawberry, Scallop, Stringtie, PsiCLASS and FINDER for three model organisms 

– A. thaliana, O. sativa and Z. mays. 

 
 

PsiCLASS meta- assembly works better than other approaches 
 

We explored three popularly used software applications for merging transcriptome 

assemblies – StringTie-merge  [76, 126–132], TACO [133–138] and Cuffmerge [139–

144] to combine 116 A. thaliana assemblies constructed by StringTie [59], Scallop [61] 

and Strawberry [60] (Please check section 3 of Additional file 9 for more details). The 

best assembly was reported by StringTie-merge and was hence used for all other 
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organisms. We compared the accuracy of the consensus transcript models generated 

by StringTie-merge with the transcript models reported by PsiCLASS [63]. As depicted 

in Table 4 and Additional file 6: Table S5, PsiCLASS generated the best transcript 

models for all organisms registering the highest transcript F1 score improving upon the 

StringTie models by up to 15%. Hence, FINDER uses only PsiCLASS to generate 

assemblies from short-read data. 

 
Impact of missing untranslated region on annotation of transcripts 
 

Gene transcription is triggered by adherence of a transcription factor in the promoter 

region of a gene. Promoters are typically located within 1,000 bp upstream of a gene’s 

transcription start site (TSS) [145–147]. Determining the TSS from sequencing data is 

best facilitated by RAMPAGE [148, 149] or CAGE-Seq [150], but this data is usually 

unavailable due to constraints imposed by cost and time. Nevertheless, a good estimate 

can be obtained from RNA-Seq data by assuming the start coordinates of the 

assembled genes as the TSS.  Thus, researchers often localize their investigation to a 

section 500-1,000 bp upstream of the assumed TSS [151, 152]. Without 5’ UTR 

annotation it is impossible to deduce a good approximation of the TSS. This leads to 

conducting promoter mining in a completely incorrect genome location. To assess the 

quality of 5’ UTR annotation, we plotted the difference of TSS between the reference 

genes and the genes reported by BRAKER2 and FINDER using a violin plot (Fig. 6). 

Further, we applied Wilcoxon’s rank-sum test and found that the TSS distances 

reported by FINDER were significantly less than that of BRAKER2 for A. thaliana and Z. 

mays. Interestingly, for O. sativa, BRAKER2 generated better gene models for more 

transcripts. Over 25% of reference gene models in O. sativa have no UTRs annotated 

which is higher compared to 15% UTR-less gene models in A. thaliana and Z. mays. 

This result illustrates that more FINDER transcripts have a TSS closer to the evidence 

as compared to the TSS of the transcripts reported by BRAKER2.  This is an expected 

result since BRAKER2 was configured to annotate only CDS regions of transcripts. 

Table 5 highlights the number of transcripts that have better agreement with the 

reference TSS for FINDER and BRAKER2.  
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Table 5 Use of RNA-Seq evidence to improve annotation of untranslated regions to aid 

in promoter mining and epigenetic studies 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Number of 
FINDER1 
transcripts 

having TSS 
better than 
BRAKER2

Number of 
BRAKER2 
transcripts 

having TSS 
better than 
FINDER1

Arabidopsis thaliana 15063 (65%) 8022 (35%)
Oryza sativa 11089 (66%) 5762 (34%)
Zea mays (NCBI) 20721 (76%) 6628 (24%)
Zea mays (AGPv3) 7618 (28%) 19731 (72%)
Zea mays (AGPv4) 18114 (69%) 8297 (31%)
Caenorhabditis elegans 8681 (33%) 17730 (67%)
Drosophila melanogaster 10238 (63%) 5917 (37%)
Homo sapiens 10158 (74%) 3486 (26%)
Hordeum vulgare 10373 (65%) 5607 (35%)
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Fig 6. 

 
Comparison of distance between transcription start sites of gene models 
predicted by BRAKER2 and FINDER. Violin plots of the distribution of the distance 
between the actual transcription start site (TSS) and the predicted transcription start 
site. In a set of well annotation complete gene structures, a higher fraction of genes is 
expected to have low deviation from the actual TSS. We considered genes that were 
reported in either BRAKER or FINDER for this analysis. Wilcoxon’s rank sum test was 
used to compare the TSS distances between FINDER and BRAKER2. The “***” symbol 
implies that TSS distance for FINDER gene models was significantly less than 
BRAKER2 gene models. 
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Enhancing ground truth annotations by extending untranslated regions 
 

Official annotations of several model organisms, used as ground truth for this study, 

contain transcripts with missing UTR sequences. Even though UTRs do not code for 

proteins, they are relevant segments of a transcript involved in several important 

biological processes like mRNA translation [153–155], regulation of expression [156–

160]] and a number of diseases [161–165]. In the A. thaliana TAIR10 annotations, there 

are 7,888 transcripts missing either UTR; 50% of these had a rating below 2 stars.  

 

PacBio (Menlo Park, CA) offers long-read sequencing that contain both CDS and UTRs. 

Therefore, we used the PacBio annotations instead of the incomplete TAIR10 

transcripts to assess FINDER’s performance on transcripts that were missing UTRs 

(Please refer to section 2.6 in Additional file 9 for more details). Out of the 7,888 TAIR10 

transcripts with missing UTRs, 113 transcripts were found both in the PacBio data and 

the 116 short-read RNA-Seq samples. We compared the FINDER annotations against 

these 113 transcripts. FINDER annotations were able to recall 91.55% of the 

nucleotides in 113 transcripts of TAIR10 and 97.86% of PacBio transcripts. The 

specificity of the FINDER annotations is markedly higher with PacBio transcripts 

(79.67%) compared to TAIR10 transcripts (72.14%). This demonstrates that FINDER 

enhances and improves upon the existing annotation.  

 

The TRITEX H. vulgare annotation (Morex version r2) [115], released by the 

International Barley Sequencing Consortium (IBSC), is devoid of UTRs. We used 

FINDER to update and enrich the existing annotations by flanking the CDS region with 

UTRs on both sides. To verify the accuracy of the gene models reported by FINDER, 

we used PacBio full-length mRNA sequences derived from a time course of powdery 

mildew infected barley leaf tissue [166, 167]. A total of 7,352 gene models from IBSC, 

FINDER, and PacBio had a complete intron-chain match with each other. The gene 

structures for more than 93% (6,886 out of 7,352) of the FINDER models were 

improved when compared to PacBio full-length sequences (Additional file 7: Table 
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S6). The highest F1 score achieved was 87.16. This shows that FINDER is capable of 

constructing accurate gene structures constituting both CDS and UTRs.  

 

Evaluating performance with different annotations of Zea mays 
 

Z. mays is an important model organism for crops and has been one of the most studied 

plants for genetics by researchers in several different fields [168–171] . Genes have 

been annotated in multiple ways using different kinds of data, resulting in substantial 

differences in gene structures [120]. Here we compare three alternative annotation sets 

of Z. mays – RefSeq, AGPv3, and AGPv4 and the performance of FINDER surpassed 

all three approaches. The transcript F1 score for FINDER gene models compared 

against the NCBI gene models were 43.48, whereas the F1 scores for AGPv3 and 

AGPv4 were 26.69 and 22.51 respectively. We observed the same trend for other 

annotation pipelines and reported a higher transcript F1 score for NCBI than the AGP 

annotations (Table 1 and Additional file 3: Table S2). Hence, FINDER generated 

high-quality gene structures with high transcript F1 scores for different Z. mays 

annotations. 

 

Evaluating FINDER on different clades reported by Phylostratr 
 
Genes in each organism can be categorized by their evolutionary history [172, 173]. We 

used Phylostratr [174] to classify genes into evolutionary strata. Here we present our 

results on the three model organisms – A. thaliana, O. sativa, and Z. mays. For all 

three, FINDER was able to accurately detect more genes in highly populated strata 

(Fig. 7). The performance of FINDER and PASA was comparable in strata with few 

genes. It was surprising to note that BRAKER2 was unable to identify highly conserved 

genes (those from the “cellular organisms” strata) since those would be easier to predict 

than organism specific genes. This demonstrates that FINDER is capable of effectively 

constructing genes from different evolutionary backgrounds. 
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Fig. 7 
 

 
Assessment of annotation pipelines on genes from each phylostrata – Genes from 

three model species – (A) Arabidopsis thaliana, (B) Oryza sativa and (C) Zea mays, 

were allocated into evolutionary classes using Phylostratr. The number of genes 

correctly constructed by each pipeline was computed and plotted as a bar graph. 

Numbers below each stratum indicate the number of genes allocated to that strata. 

Strata having genes fewer than 500 are not shown in the graph. 
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FINDER constructs gene models for polyploid genomes  
 

Being a general-purpose genome annotator, in addition to diploid organisms, FINDER 

can annotate the genomes of polyploid organisms. We generated gene structures of 

Triticum aestivum, a hexaploid with 120,744 annotated genes and 146,597 transcripts 

[115]. FINDER was able to detect 48,129 transcripts (39.9%). Out of the 130,582 

transcripts predicted by FINDER, 48,104 (36.83%) matched perfectly with at least one 

reference annotation. 

 

Conclusion 
 

Identifying genes on chromosomes and deducing their structures from a plethora of 

evidence has been undertaken in multiple ways, with each method having advantages 

and disadvantages. Herein, we propose FINDER – an entirely automated, general-

purpose pipeline to annotate genes in eukaryotic genomes. FINDER (1) implements an 

optimized mapping strategy that reduces the number of spurious mappings, (2) 

produces complete full-length transcripts comprising UTRs while identifying transcripts 

with micro-exons, (3) employs statistical CPD to modify gene boundaries and construct 

new genes, (4) reports more alternatively spliced transcripts as compared to other state-

of-the-art annotation pipelines, and (5) assigns confidence classes to each transcript 

based on the evidence(s) that were used to construct those. 

 

With a wide variety of available data for annotation, researchers often struggle to 

manage and optimize their usage. Several gene annotation software also offer users 

complicated configurations without providing substantial guidance. FINDER makes the 

job of gene annotation easy for bench scientists by automating the entire process from 

RNA-Seq data processing to gene prediction. Since FINDER does not assume the 

ploidy or the nucleotide composition of a genome, it could be applied to derive gene 

structures for a wide range of species, including non-model organisms. FINDER 

constructs gene models primarily from RNA-Seq data and is therefore capable of 

constructing tissue- and/or condition- specific isoforms which would have been 
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impossible to obtain from ESTs only. FINDER supersedes the performance of existing 

software applications by utilizing read coverage information to fine-tune gene model 

boundaries. Instead of removing low-quality transcripts, FINDER flags them as low 

confidence – giving users the choice of using them as they seem fit. As a proof of 

concept, we provided evidence that using read coverage signal indeed enhances gene 

structures in a diverse set of organisms. Thus, we are confident that FINDER will pave 

the way for improved gene structure annotation in the future. 

 

Availability and requirements 
Project name: FINDER 

Project home page: https://github.com/sagnikbanerjee15/Finder 

Operating system(s): Linux, MacOS 

Programming language: Python, C, C++, Perl, Shell 

License: MIT 

Other software requirements: All software requirements are listed in 

https://github.com/sagnikbanerjee15/Finder/blob/master/environment.yml 
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CDS: Coding Sequence 

CPU: Central Processing Unit 
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Organism Number of 
transcript 
models 

borrowed 
from 

BRAKER 

Percentag
e of 

transcript 
models 

borrowed 
from 

BRAKER 

Improvement 
in average 
annotation 

score 

Number of 
transcript 
models 

from 
protein 

alignments 

Percenta
ge of 

transcript 
models 

from 
protein 

alignment
s 

Improvement 
in average 
annotation 

score 

Arabidopsis thaliana 1692 5 1.43 185 0.01 0.05 
Oryza sativa 5662 10 0.15 440 0.01 0.15 
Zea mays 1061 2 0.05 452 0.01 -0.02 
Caenorhabditis elegans  4807 18 0.48 389 0.01 0.58 
Drosophila melanogaster  2421 9 0.44 481 0.02 0.22 
Homo sapiens 5776 16 0.05 229 0.01 0.15 
Hordeum vulgare  1065 3 0.01 19 0 -0.57 

 



 Name Description 
Group 1 Uni-exon transcripts Transcripts having a single exon 

and no introns 
Group 2 Transcripts without 

UTRs 
Transcripts missing either the 5' 
or the 3' UTR sequence 

Group 3 Transcripts with UTRs Transcripts having both UTRs 

Group 4 Transcripts with micro-
exons 

Transcripts where at least one 
exon has length less than 50 
nucleotides 

Group 5 Transcripts with long 
introns 

Transcripts where at least one 
intron has a length greater than 
10,000 bp 

Group 6 Closely placed 
transcripts on same 
strand 

Transcripts on the same strand 
having less than 250 nucleotides 
between each other 

Group 7 Closely placed 
transcripts on opposite 
strand 

Transcripts on the opposite 
strands having less than 250 
nucleotides between each other 

Group 8 Multi transcript gene Transcripts of a gene that have 
multiple transcripts 

Group 9 Single transcript gene Transcripts of a gene that have 
single transcript 
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Number of 
FINDER1 
transcripts 

having TSS 
better than 
BRAKER2

Number of 
BRAKER2 
transcripts 

having TSS 
better than 
FINDER1

Arabidopsis thaliana 15063 (65%) 8022 (35%)
Oryza sativa 11089 (66%) 5762 (34%)
Zea mays (NCBI) 20721 (76%) 6628 (24%)
Zea mays (AGPv3) 7618 (28%) 19731 (72%)
Zea mays (AGPv4) 18114 (69%) 8297 (31%)
Caenorhabditis elegans 8681 (33%) 17730 (67%)
Drosophila melanogaster 10238 (63%) 5917 (37%)
Homo sapiens 10158 (74%) 3486 (26%)
Hordeum vulgare 10373 (65%) 5607 (35%)


