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Abstract	
For	 polygenic	 traits,	 associations	 with	 genetic	 variants	 can	 be	 detected	 over	
many	chromosome	regions,	owing	 to	 the	availability	of	 large	sample	sizes.	The	
majority	of	variants,	however,	have	small	effects	on	disease	risk	and,	therefore,	
unraveling	 the	 causal	 variants,	 target	 genes,	 and	 biology	 of	 these	 variants	 is	
challenging.	Here,	we	define	 the	Bigger	 or	 False	Discovery	Rate	 (BFDR)	 as	 the	
probability	 that	 either	 a	 variant	 is	 a	 false-positive	 or	 a	 randomly	 drawn,	 true-
positive	 association	 that	 exceeds	 it	 in	 effect	 size.	 Using	 the	 BFDR,	 we	 identify	
new	 variants	 with	 larger	 effect	 associations	 with	 type	 1	 diabetes	 and	
autoimmune	thyroid	disease.		 	
	
Introduction	
Most	genome-wide	association	study	(GWAS)	associations	have	small	effects	on	
phenotypes,	 with	 the	 genetic	 risk	 for	 common	 diseases	 distributed	 across	
hundreds	 of	 loci,	mostly	with	 common	 alleles1.	 Interpretation	 of	 the	 biological	
effects	 of	 these	 variants,	 and	 establishment	 of	 which	 are	 causal,	 either	
statistically	 (fine-mapping)	 or	 experimentally,	 requires	 considerable	 effort	 and	
the	results	may	provide	limited	or	non-actionable	mechanistic	insight.	In	type	1	
diabetes	 (T1D),	 for	 example,	HLA,	PTPN22,	 INS,	 IFIH1	 and	 IL2RA	 have	 variants	
with	alleles	with	relatively	large	effects	on	risk	(Odds	Ratios	(ORs)>1.3),	and	it	is	
these	loci	that	have	yielded	most	biological	insights	so	far2-8,	subsequently	taken	
forward	to	translation	and	clinical	trials9.	As	sample	sizes	increase	even	further,	
for	example	from	the	availability	of	data	from	large	biobanks10,	loci	that	pass	the	
established	threshold	for	significance,	P	<	5	x	10-8,	have	either	lower	effect	sizes	
or	lower	MAFs,	the	latter	of	which	are	preferable	for	follow-up.	An	alternative	to	
typical	genome-wide	significance	threshold	is	the	false	discovery	rate	(FDR)11-13,	
an	 estimate	 of	 the	 probability	 that	 associations	 beyond	 a	 specified	 P	 value	
threshold	are	false	(e.g.,	at	FDR=0.01,	1%	of	associations	are	likely	to	be	false).		
	
Analyses	using	FDR	may	yield	more	variants	associated	with	a	trait	than	P	<	5	x	
10-8,	providing	motivation	to	develop	a	method	that	prioritises	variants	based	on	
both	 significance	 and	effect	 size.	We	define	 the	Bigger	or	False	Discovery	Rate	
(BFDR)	 as	 the	 probability	 that	 either	 a	 variant	 is	 a	 false	 positive	 or	 that	 a	
randomly	chosen	true	positive	association	exceeds	it	in	effect	size.	Variables	with	
BFDR	 of,	 for	 example,	 5%	 therefore	 warrant	 greater	 interest	 than	 those	 with	
FDR	of	5%,	as	they	are	likely	to	be	both	true	positives	and	to	exceed	most	other	
true	 positives	 in	 effect	 size.	Whereas	 FDR=5%	may	 be	 deemed	 too	 lenient	 for	
declaring	an	association	in	many	settings,	BFDR=5%	implies	both	FDR<5%	and	a	
large	 effect,	 and	 so	 a	 BFDR	 5%	 threshold	 could	 be	 used	 to	 select	 large	 effect	
variants	that	would	be	normally	missed	by	a	more	stringent	FDR	threshold.	This	
is	based	on	the	understanding	that	the	overall	cost	of	following	up	an	association	
is	 a	 combination	 of	 a)	 its	 probability	 of	 being	 false	 and	 b)	 its	 probability	 of	
having	an	unremarkable	effect	size	compared	to	other	associations.	Significantly,	
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we	show	 that,	under	 certain	assumptions,	 the	BFDR	applies	 to	 the	unobserved	
true	effect	sizes	in	addition	to	the	estimated	effect	sizes	(see	SI	Appendix).	

	
Genetic	 variation	 underlying	 susceptibility	 to	 T1D	 was	 revealed	 initially	 in	
candidate	gene	studies,	then	GWAS	and	then	fine-mapping	using	the	custom	SNP	
array,	 ImmunoChip14-18,	 identifying	 ~50	 chromosome	 regions	 associated	 with	
disease	 risk	 (https://www.opentargets.org/).	 Here,	 we	 apply	 the	 BFDR	 to	
discover	new	regions	affecting	T1D	risk	with	larger	effects.	We	performed	a	large	
GWAS	 meta-analysis	 (15,573	 cases),	 combining	 two	 UK	 case-control	 datasets,	
Sardinian	and	Finnish	case-control	datasets,	and	families	with	affected	offspring	
from	the	Type	1	Diabetes	Genetics	Consortium	(T1DGC).	Using	SNPs	outside	of	
the	 HLA	 region,	 we	 identified	 145	 independently	 associated	 susceptibility	
regions	 satisfying	 BFDR<5%	 (75	 not	 previously	 reported),	 of	 which	 46	would	
have	 been	 missed	 by	 using	 a	 conventional	 FDR	 threshold	 of	 1%.	 We	 found	
further	associations	for	74	regions	satisfying	FDR<1%	but	with	BFDR>5%,	which	
we	 suggest	 are	 likely	 to	be	 true	 associations	but	with	 risk	 effect	 sizes	 that	 are	
likely	to	be	difficult	to	follow	in	downstream	experiments.	
	
The	 common	 autoimmune	 diseases	 share	 many	 loci	 across	 the	 genome,	 in	
addition	 to	HLA,	 and	 this	 overlap	 in	 genetic	 risk	 and	 immune	pathology	offers	
the	opportunity	to	conduct	joint	analyses	that	may	increase	statistical	power18,19.	
Since	 autoimmune	 thyroid	 disease	 (ATD)	 is	 very	 common	 in	 the	 UK	 Biobank	
(UKBB),	with	approximately	30,000	cases	out	of	500,000	participants,	we	used	
the	BFDR	and	the	UKBB	GWAS	data	to	map	ATD	associations	with	 larger-than-
average	 effects.	 We	 found	 367	 regions	 with	 BFDR<5%,	 of	 which	 232	 had	
FDR>1%.	We	 also	 found	 563	 (60%)	 associated	 with	 FDR<1%	 but	 with	 lower	
effect	 estimates	 (BFDR>5%).	 Using	 colocalisation	 analysis,	 we	 found	 several	
T1D-associated	 regions	 that	 showed	 no	 evidence	 of	 effects	 on	 ATD	 nor	 with	
other	 immune	 diseases,	 suggesting	 that	 they	 may	 have	 roles	 outside	 of	 the	
immune	 system,	 indicative	 of	 the	 distinct	 organ-specific	 targets	 of	 the	 two	
diseases,	 i.e.	 the	pancreatic	 islet	 beta	 cells	 (T1D)	 and	 thyroid	 gland	 (ATD).	We	
drew	on	the	higher	power	of	the	ATD	dataset,	together	with	pleiotropic	effects	of	
ATD	variants	on	T1D,	 to	 identify	56	additional	T1D	regions	 (37	not	previously	
reported)	with	either	BFDR<5%	or	FDR<1%	that	were	also	ATD-associated.		
	
	
Results	
Bigger	or	False	Discovery	Rate	(BFDR)	
We	 searched	 for	 variants	 which,	 as	 is	 the	 case	 for	 PTPN22,	 INS	 and	 the	 HLA	
region,	 have	 large	 effects	 on	 T1D	 risk,	 but	 which	might	 have	 been	 previously	
overlooked	due	 to	 their	 low	 frequencies,	 leading	 to	 lower	 statistical	 power	 for	
detection.	For	this	purpose	we	define	the	BFDR,	for	a	given	variant,	as	the	overall	
probability	that	either	a)	the	SNP	is	a	false	positive	association	or	b)	the	SNP	is	a	
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true	 positive	 but	 randomly	 choosing	 from	 the	 distribution	 of	 true	 associations	
produce	a	 larger	effect	size.	The	method	was	implemented	in	R.	 Informally,	 the	
BFDR	for	SNP	i	is:	
	

		
BFDR i =FDR i +Pr(Effect	of	random	non-null	variant	>	Effect	of	SNPi )×(1−FDR i )
		
The	BFDR	is	upper	bounded	by	the	FDR,	so	that	all	BFDRs	below	e.g.	1%	will	also	
have	 FDR<1%,	 and	 therefore	 applies	 further	 stringency	 (in	 terms	 of	 sizes	 of	
effects)	 to	 a	 set	 of	 associations	 passing	 the	 same	 FDR	 threshold.	Here,	we	 use	
BFDR<5%,	which	 is	 equivalent	 to	FDR<5%	 for	 the	SNP	effects	 estimated	 to	be	
largest.	
	
	
T1D	GWAS	meta-analysis		
Imputation,	QC	and	GWAS	analysis	was	performed	on	Illumina	(Infinium	550K,	
3983	cases)	and	Affymetrix	(GeneChip	500K,	1926	cases)	genotyped	UK	samples,	
and	on	samples	from	Sardinia	(Affymetrix	6.0	and	Illumina	Omni	Express,	1558	
cases).	 Affected-offspring	 trios	 from	 T1DGC	 were	 genotyped	 on	 the	 Illumina	
Human	Core	Exome	beadchip	and	analysed	with	the	TDT	test	(3173	trios)	after	
imputation	and	QC.	Results	from	the	four	cohorts	were	meta-analysed	under	the	
additive	model,	together	with	FinnGenn	(4933	cases).				
	
	LD-based	 filtering	 found	 219	 independent	 T1D-associated	 signals	 (Figures	 1a	
and	2a,	 Table	 S1a),	 173	 of	which	 satisfied	 FDR<1%	 for	 the	 lead	 variant	 in	 the	
signal,	with	the	remaining	46	having	BFDR	<5%	in	spite	of	having	FDR>1%.	We	
use	 'independent	 signals'	 to	 refer	 to	 a	 disease-associated	 variant	 or	 set	 of	
variants	in	LD,	related	to,	but	distinct,	from	a	physical	region.	These	46	variants	
would	 have	 been	 missed	 by	 using	 an	 FDR	 threshold	 of	 1%,	 despite	 having	 a	
median	 OR	 of	 1.19,	 (median	 MAF=4.4%)	 and	 by	 definition	 of	 the	 BFDR	 have	
FDR<5%.	 The	 145	 variants	 satisfying	 BFDR<5%,	 had	 median	 ORrisk=1.14	
(median	 MAF=10.1%)	 versus	 1.10	 for	 the	 173	 with	 FDR<1%	 (median	
MAF=26.4%),	indicating	the	shift	in	average	effect	sizes	and	MAF	using	BFDR.		
	
Of	 the	 219	 signals,	 118	 can	 be	 considered	 'new',	 being	 independent	 (r2<0.01)	
from	 any	 lead	 variants	 in	 neither	 the	 previously	 most	 highly	 powered	
GWAS/ImmunoChip	studies	to	date14,18	nor	in	an	even	larger	ImmunoChip	study	
20	(Table	S1b).	New	signals	consisted	of	75	associations	with	BFDR<5%	(median	
ORrisk=1.17,	median	MAF=6.5%),	plus	43	with	FDR<1%	but	BFDR>5%	(median	
ORrisk=1.08,	median	MAF=33.5%),	 indicating	 smaller	 effects	 on	 risk	 (Tables	 1a	
and	 S1b).	 New	 associations	with	 the	 largest	 ten	 effect	 estimates	 are	 shown	 in	
Table	1a.	In	addition	to	the	75	new	large	effect	signals,	70	out	of	101	previously	
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reported	T1D	signals	had	BFDR<5%	and	14	had	BFDR<1%	(INS,	PTPN22,	IL2RA,	
MAPKAPK2	(near	FCMR),	FKBP5	(near	DEF6),	PGAP3	(near	IKZF3),	SH2B3,	RPS26	
(near	 IKZF4),	 CTRB2	 (near	 BCAR1),	 PTPN11,	 PTPN2,	 CTSH,	 APOBR	 (near	 IL27)	
and	 MEG3	 (ORrisk	 ranging	 1.18-1.79),	 highlighting	 the	 importance	 of	 their	
biological	effects	on	T1D	risk.		
	
We	detected	31	previously	reported	independent	signals	that	were	significant	at	
FDR<1%	 but	 had	 BFDR>5%,	 implying	 smaller	 effects	 on	 risk	 relative	 to	 other	
true	 associations	 despite	 high	 confidence	 that	 they	 are	 disease-associated.	
Significance	was	at	the	genome-wide	level	(P<5x10-8)	for	seven	of	these	smaller	
effect	 associations	 (PRR15L,	 C14orf64,	 IKZF1,	 SMARCE1	 (near	 CCR7),	 GATA3,	
IKZF3,	CCDC88B)	with	ORrisk	 ranging	1.09-1.10).	Genome-wide	 significance	was	
observed	 for	 58	 signals	 in	 total	 (Manhattan	 plot	 in	 Fig	 S1a),	 with	 six	 signals	
(PRF1,	 RLIMP2,	 SLC25A37,	 MAGI3,	 LHFPL5	 and	 C11orf30)	 not	 previously	
reported.	 Numbers	 of	 signals	 satisfying	 various	 significance	 criteria	 are	
summarised	 in	 Figure	 3a.	 In	 total	 we	 found	 seven	 signals	 containing	multiple	
conditional	 signals	 after	 stepwise	 model	 selection	 (INS,	 PTPN22,	 IL2RA,	 CHD9,	
PTPN2,	RLIMP2	and	AKAP11,	Table	S1d).		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.05.429962doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429962


	 6	

Figure	1	
Volcano	 plots	 of	minor	 allele	 effect	 size	 (log	 odds	 ratio)	 versus	 significance	 (-
log10	P	 values)	 for	 a)	 type	 1	 diabetes	 and	b)	 autoimmune	 thyroid	 disease.	 All	
analysed	 SNPs	 are	 shown.	 SNPs	 with	 either	 i)	 Bigger	 or	 False	 Discovery	 Rate	
(BFDR)<5%	or	ii)	FDR<1%	were	designated	as	associations.		
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Table	1	
Ten	largest	effect	signals	among	a)	new	T1D	signals	and	b)	all	ATD	signals.	See	Tables	S1-S2	for	details	of	all	associated	signals.	All	ORs	
are	for	minor	alleles.	Bold	regions	were	missed	by	FDR<1%	but	detected	using	BFDR<5%.	IDs	are	for	each	signal's	lead	variant.	
a)	
Nearest	gene Band ID MAJ MIN	

(effect) 
MAF* Imputation	

Info** 
P OR FDR BFDR Annotation 

	RPL7P10 1p31.1 rs111551178 C T 0.77% 97.06% 8.36E-06 0.67	(0.57-0.8) 7.09E-03 7.14E-03 intergenic 
	KCNJ6 21q22.13 rs75795377 T A 0.99% 99.45% 6.36E-05 0.7	(0.59-0.84) 3.31E-02 3.32E-02 intron 
	RAD51D 17q12 rs28670687 T A 0.72% 95.28% 1.74E-05 1.42	(1.21-1.67) 1.26E-02 1.27E-02 NMD	transcript;	non	coding	transcript 
	HORMAD1 1q21.3 rs79019274 A T 1.05% 99.99% 6.97E-05 1.34	(1.16-1.55) 3.47E-02 3.50E-02 non	coding	transcript 
	DOCK2 5q35.1 rs113451103 T C 2.09% 99.39% 1.19E-05 0.75	(0.65-0.85) 9.31E-03 9.69E-03 NMD	transcript;	non	coding	transcript 
	KIAA1715 2q31.1 rs147483205 T A 1.37% 93.85% 8.52E-05 1.33	(1.15-1.54) 3.75E-02 3.79E-02 intron 
	TRIM67 1q42.2 rs148785295 G T 1.84% 95.70% 1.10E-04 0.77	(0.67-0.88) 4.47E-02 4.54E-02 intergenic 
	ID4 6p22.3 rs75356149 G T 2.33% 98.69% 1.04E-06 1.29	(1.16-1.42) 1.28E-03 2.17E-03 intergenic 
	TNFRSF19 13q12.12 rs138798300 A G 1.29% 94.19% 6.36E-05 1.28	(1.13-1.45) 3.31E-02 3.40E-02 intron 
	NRSN1 6p22.3 rs11965813 T A 1.30% 99.09% 1.58E-06 1.28	(1.16-1.42) 1.79E-03 2.80E-03 intergenic 
*UK	Illumina	controls		**UK	Illumina	all	samples	
b)	
Nearest	gene	 Band	 ID	 MAJ	 MIN	(effect)	 MAF*	 Imputati

on	Info	
P	 OR	 FDR	 BFDR	 Annotation	

	FLT3	 13q12.2	 rs76428106	 T	 C	 1.29%	 91.97%	 1.39E-34	 1.53	(1.43-1.64)	 1.44E-30	 7.80E-06	 NMD	transcript	
	SH3BP4	 2q37.2	 rs143481385	 A	 ATAATACATT	 0.05%	 91.94%	 1.67E-04	 0.67	(0.54-0.82)	 3.26E-02	 3.27E-02	 regulatory	region	
	ADCY7	 16q12.1	 rs78534766	 C	 A	 0.61%	 100%	 3.40E-16	 1.5	(1.36-1.65)	 1.11E-12	 1.69E-05	 missense;	NMD	transcript;	non	coding	

transcript	exon;	regulatory	region	
	PTPN22	 1p13.2	 rs2476601	 G	 A	 10.25%	 100%	 1.33E-

185	
1.47	(1.43-1.51)	 1.50E-178	 3.20E-05	 missense;	 3	 prime	 UTR;	 NMD	

transcript;	non	coding	transcript	exon	
	MAGI3_3	 1p13.2	 rs547473095	 G	 C	 0.57%	 64.56%	 3.19E-08	 1.44	(1.27-1.64)	 2.74E-05	 8.62E-05	 non	coding	transcript	
	COX6CP2	 20q13.13	 rs73266407	 G	 A	 0.04%	 92.16%	 4.09E-05	 1.43	(1.2-1.69)	 1.11E-02	 1.11E-02	 intergenic	
	GCG	 2q24.2	 rs571130497	 A	 G	 0.57%	 65.69%	 3.03E-05	 0.7	(0.6-0.83)	 8.68E-03	 8.76E-03	 intergenic	
	CTLA4	 2q33.2	 rs79877750	 C	 T	 0.90%	 88.51%	 4.29E-15	 1.42	(1.3-1.55)	 1.29E-11	 9.16E-05	 regulatory	region	
	CNTNAP2_1	 7q35	 7:146077700_TA_T	 TA	 T	 0.53%	 41.77%	 6.78E-05	 1.41	(1.19-1.66)	 1.66E-02	 1.67E-02	 non	coding	transcript	
	CYCSP42_1	 21q21.1	 rs2823281	 A	 C	 0.04%	 88.05%	 2.12E-04	 1.4	(1.17-1.67)	 3.88E-02	 3.90E-02	 intergenic	
*White	Europeans		
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Among	 the	new	T1D	 signals,	RAD51D	 had	 the	 third	 largest	 effect	 (lead	 variant	
rs28670687,	P=2.12x10-6,	OR=1.91,	MAF=0.72%),	and	the	lead	variant	was	in	LD	
with	three	transcribed	3'UTR	variants	displaying	evidence	for	being	causal	(fine-
mapping	log10	Bayes	Factors	1.53)	(Table	S8),	though	they	could	not	definitively	
separated	from	a	larger	credible	set	(log	10	Bayes	factor	2.73).	The	chromosome	
region	encoding	its	interaction	partner,	RAD51B,	also	contained	a	proximal	T1D-
associated	variant,	but	which	had	a	much	smaller	effect	on	risk	 (OR=0.92	(0.9-
0.95),	P=6.11x10-7,	FDR=8.02x10-4,	BFDR=0.08).	
	
Using	 the	 two	 cohorts	 with	 individual	 genotypes	 available	 (UK	 Illumina	 and	
Affymetrix),	 we	 re-tested	 all	 additive	 associations	 for	 dominant	 and	 recessive	
effects	 at	 each	 lead	 variant	 (Table	 S1c).	Of	 the	 219	 lead	 SNPs,	 four	were	most	
significant	 under	 a	 model	 where	 the	 minor	 allele	 was	 dominant	 (Table	 2a)	
including	RAD51D.	No	lead	T1D	variants	were	most	significant	under	a	recessive	
model.	 We	 repeated	 the	 GWAS	 analysis	 under	 both	 dominant	 and	 recessive	
models,	finding	13	dominant	and	four	recessive	signals	that	were	missed	by	the	
additive-model	 GWAS	 (independent	 from	 additive	 lead	 variants	 at	 r2<0.05,	
Tables	S1e-f).	
	
Taking	 an	 alternate	 approach	 to	 discovery,	 we	 performed	 further	 GWAS	
discovery	meta-analysis	on	four	of	the	five	cohorts	(UK	Illumina,	UK	Affymetrix,	
Sardinians	 and	 T1DGC),	 and	 replication	 analysis	 in	 the	 left-out	 Finnish	 cohort	
(FinnGen,	 4933	 cases	 and	 148,190	 controls),	 providing	 further	 evidence	 for	
large-effect	 signals	 near	 the	 RAD51D,	 and	 also	 PRF1	 (ORrisk=1.26	 and	
BFDR=1.58x10-3)	(online	methods).	
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Figure	2	
Forest	 plots	 of	 lead	 variants	 in	 25	 largest-effect	 signals	 for	 a)	 T1D,	 all	 four	
cohorts	 used	 in	 meta-analysis,	 and	 b)	 ATD.	 Bars	 represent	 95%	 confidence	
intervals.	
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Table	2	
Signals	for	which	dominant	or	recessive	inheritance	models	provided	the	best	fits	(most	significant	P	value).	IDs	are	for	each	signal's	
lead	variant.		
a)	T1D	signals		
Nearest	
gene	

Band	 ID	 MAJ	 MIN	 MAF*	 Imputation	
info**	

P	(additive)	 OR	(additive)	 Annotation	 OR	(best	model)	 P	(best	model)	 Best	Model	

	RAD51D	 17q12	 rs28670687	 T	 A	 0.72%	 95.28%	 1.74E-05	 1.42	(1.21-1.67)	 NMD	
transcript;	
non	 coding	
transcript	

1.75	(1.36-2.25)	 1.50E-05	 DOM	

	CD6	 11q12.2	 rs185777177	 C	 G	 2.34%	 97.92%	 3.63E-05	 1.3	(1.15-1.48)	 intergenic	 1.43	(1.23-1.67)	 5.78E-06	 DOM	
	C11orf21	 11p15.5	 rs756919	 T	 G	 5.10%	 95.71%	 6.21E-06	 1.13	(1.07-1.19)	 intergenic	 1.3	(1.16-1.46)	 3.74E-06	 DOM	
	TBC1D4	 13q22.2	 rs554648	 T	 G	 41.02%	 97.61%	 1.03E-05	 1.07	(1.04-1.1)	 intergenic	 1.24	(1.15-1.35)	 6.06E-08	 DOM	
*UK	Illumina	controls		**UK	Illumina	all	samples	

	
b)	Top	five	largest-effect	ATD	signals	
Nearest	gene	 Band	 ID	 MAJ	 MIN	 MAF*	 Imputation	

Info	
P	
(additive)	

OR	(additive)	 Annotation	 OR	(best	model)	 P	(best	model)	 Best	model	

	TGFB2	 1q41	 rs767491614	 CAATAA
ATA	

C	 4.75%	 97.30%	 6.25E-07	 0.9	(0.87-0.94)	 intergenic	 0.48	(0.37-0.63)	 1.04E-07	 REC	

	FLT3	 13q12.2	 rs76428106	 T	 C	 1.29%	 91.97%	 1.39E-34	 1.53	(1.43-1.64)	 NMD	
transcript	

1.54	(1.44-1.65)	 4.79E-35	 DOM	

	ADCY7	 16q12.1	 rs78534766	 C	 A	 0.61%	 100%	 3.40E-16	 1.5	(1.36-1.65)	 missense;	NMD	
transcript;	 non	
coding	
transcript	
exon;	
regulatory	
region	

1.5	(1.36-1.65)	 2.74E-16	 DOM	

	MAGI3_3	 1p13.2	 rs547473095	 G	 C	 0.57%	 64.56%	 3.19E-08	 1.44	(1.27-1.64)	 non	 coding	
transcript	

1.45	(1.27-1.65)	 2.09E-08	 DOM	

	CNTNAP2_1	 7q35	 7:146077700_TA
_T	

TA	 T	 0.53%	 41.77%	 6.78E-05	 1.41	(1.19-1.66)	 non	 coding	
transcript	

1.42	(1.2-1.68)	 4.93E-05	 DOM	

*White	Europeans	

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.05.429962doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.05.429962


	 11	

ATD	GWAS	in	UKBB	
Using	28,742	unrelated	cases	and	427,388	unrelated	controls,	we	found	a	total	of	
930	ATD-associated	signals	 (Figure	1b,	Table	S2a):	698	variants	with	FDR<1%	
and	 367	 with	 BFDR<5%,	 with	 median	 ORrisk	 of	 1.07	 and	 1.22,	 respectively	
(median	 MAFs	 18.5%	 and	 0.9%).	 Among	 the	 232	 variants	 that	 failed	 to	 pass	
FDR<1%	but	passed	BFDR<5%,	the	median	ORrisk	was	1.22	(median	MAF	0.8%).		
	
Previously	established	associations	in	PTPN22,	ADCY7	and	CTLA421-23	have	effect	
estimates	within	the	largest	ten	(Table	1b),	verifying	their	biological	importance.	
The	largest-effect	association,	FLT3,	has	a	lead	SNP	minor	allele	(rs76428106	C:	
OR=1.53,	MAF=1.29%)	associated	with	increased	monocyte	count	in	UKBB24.	Its	
importance	as	the	largest	known	risk	effect	outside	the	HLA	region	has	recently	
been	highlighted25.	Applying	the	BFDR<5%	threshold,	we	found	four	additional	
signals	with	effect	sizes	in	the	top	ten	(Table	1b),	that	did	not	pass	P<5x10-8	or	
FDR<1%	thresholds.	The	largest,	SH3BP4	(ORrisk=1.49,	MAF=0.05%),	had	a	9	bp	
insertion	as	the	lead	and	most	likely	causal	variant	(log10	Bayes	Factor	2.49,	see	
Figure	S4d	and	Table	S9	for	fine-mapping	results),	situated	within	an	enhancer	
element	2.8	Mb	upstream	of	AGAP1,	and	is	thus	plausibly	functional.	The	variant	
is	common	in	Africa	(e.g.	25%	in	HapMap	Yorubans)	but	only	present	in	0.05%	of	
white	 Europeans.	 A	 5	 bp	 insertion	 within	 the	 same	 enhancer,	 with	 almost	
identical	 effect	 size	 and	MAF,	 also	 showed	 evidence	 for	 causality	 (log10	Bayes	
Factor	2.39).	
	
Despite	a	considerable	overlap	 in	data,	we	detected	674	new	signals	 that	were	
not	 found	 in	 a	 recent	UKBB	ATD	GWAS23.	 By	 including	 further	 samples	 not	 of	
white-European	ancestry,	we	found	32	new	signals	with	P<5x10-8,	but	also	436	
further	signals	using	an	FDR<1%	threshold	(Table	S2b).	The	remaining	206	new	
signals	were	found	using	BFDR<5%	(Figure	3b).	Only	three	associations	from	the	
previous	GWAS	were	further	than	500	Kb	from	one	of	our	lead	variants,	two	of	
which	we	defined	to	be	in	the	HLA	region	and	thus	were	analysed	further.		
	
Risk	 ORs	 for	 the	 698	 variants	 with	 FDR<1%	 ranged	 from	 1.04-1.53,	
demonstrating	the	high	polygenicity	of	ATD,	with	many	small	effect	associations	
that	are	detectable	with	 large	 sample	 sizes.	Genome-wide	 significance	 (P	<	5	x	
10-8)	was	 obtained	 for	 181	 signals	 in	 total	 (Fig	 S1b).	Of	 these,	 148	 (82%)	had	
BFDR>5%	(risk	ORs	ranging	1.05-1.12),	demonstrating	that	most	genome-wide	
hits	 are	 obtained	 for	 variants	 that	 we	 are	 >95%	 sure	 are	 either	 a)	 false	
associations	or	b)	true	associations	with	effect	sizes	below	top	5%	when	ranked	
by	size.	However,	BFDR	analysis	finds	that	30/149	(20%)	of	previously	reported	
genome-wide	significant	associations	are	likely	to	have	risk	effects	in	the	top	5%	
(Figure	3b).	Applying	stepwise	model	selection,	36	of	the	930	signals	contained	
multiple	conditional	signals	(Table	S2d).	
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Testing	 all	 930	 lead	 SNPs	 under	 dominant	 and	 recessive	 inheritance	 models	
revealed	 256	 (28%)	 that	 were	 most	 significantly	 associated	 with	 dominantly	
acting	 minor	 alleles	 (Table	 S2c),	 including	 four	 of	 the	 largest-effect	 signals	 in	
Table	 1b):	 FLT3	 (ORdom=1.54,	 Pdom=4.79x10-35),	 ADCY7	 (ORdom=1.50,	
Pdom=2.74x10-16),	 MAGI3	 (ORdom=1.45,	 Pdom=2.09x10-8)	 and	 CNTNAP2_1	
(ORdom=1.42,	 Pdom=4.93x10-5).	Recessive	models	were	most	 significant	 for	 nine	
lead	 SNPs	 (1%),	 eight	 of	 which	 had	 small	 effects	 under	 both	 additive	 and	
recessive	 models	 (additive	 ORrisk	 ranging	 1.04-1.05,	 risk	 ORrec	 ranging	 1.07-
1.11).	One	exception	was	TGFB2	(rs767491614,	deletion	of	AATAAATA),	which	
showed	a	large	protective	recessive	effect	of	the	minor	deletion	allele,	despite	a	
small	additive	effect	(ORrec=0.48,	Prec=1.04x10-7,	ORADD=0.90).	Details	of	the	five	
largest-effect	 non-additive	 signals	 are	 shown	 in	 Table	 2b.	 When	 examining	
genome-wide	 under	 dominant	 and	 recessive	models,	 we	 detected	 49	 and	 136	
signals,	 respectively	 that	 were	 independent	 (r2<0.05)	 from	 any	 additive	 lead	
variants	(Tables	S2e-f).	
	
Figure	3	
Numbers	 of	 new	 and	 previously	 reported	 signals	 satisfying	 our	 various	
significance	 criteria	 for	a)	 type	1	diabetes	and	b)	autoimmune	 thyroid	disease,	
quantified	using	the	lead	variant	in	each	signals.	
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Shared	and	non-shared	genetic	causes	of	ATD/T1D	
We	 define	 a	 total	 of	 1066	 independent	 signals	 from	 the	 full	 set	 of	 1149	 (219	
T1D-defined	plus	930	ATD-defined),	by	removing	signals	with	 lead	SNPs	closer	
than	 100	 Kb	 to	 a	 more	 significant	 lead	 variant	 in	 the	 other	 disease,	 to	 avoid	
analysing	 them	 twice,	 leaving	 177	 T1D-defined	 and	 889	 ATD-defined	 signals.	
Colocalisation	 analysis	 of	 the	 summary	 statistics	 in	 both	phenotypes26	 found	 a	
number	 of	 signals	 showing	 strong	 evidence	 for	 one	 of	 four	 hypotheses,	
quantified	by	 the	 corresponding	posterior	probabilities	 (PPs):	 a)	 affecting	T1D	
only	 (PPT1D),	 b)	 affecting	 ATD	 only	 (PPATD),	 c)	 separate	 causal	 associations	 in	
each	 dataset	 (PPseparate)	 or	 d)	 a	 shared	 causal	 variant	 (PPshared).	 We	 found	 19	
signals	with	PPT1D>0.9,	and	85	with	PPATD>0.9	(Figure	4a-b	limited	to	the	25	with	
highest	PP).	Of	 these,	only	3/20	PPT1D>0.9	signals	and	23/85	PPATD>0.9	signals	
were	 found	 to	 associate	 with	 other	 immune	 diseases	 in	 the	 Open	 Targets	
Genetics	database	(Table	S10).	Strong	evidence	for	separate	signals	was	found	in	
16	signals	(PPseparate>0.9,	Figure	4c)	and	shared	signals	in	32	signals	(PPshared>0.9,	
Figure	 4d,	 limited	 to	 the	 25	 with	 highest	 PPshared,	 Tables	 S5	 and	 S6	 for	 full	
results).	 Several	 established	 autoimmune	 loci	 show	 high	 evidence	 of	 shared	
signals,	 e.g.	 PTPN22,	 CTLA4,	 UBASH3A	 and	 BACH2.	 The	 colocalisation	 method	
assumes	 a	 single	 causal	 signal	 within	 each	 signal,	 though	 SNPs	 in	 LD	 with	
multiple	 signals'	 lead	 variants	 (r2>0.01)	were	 assigned	 to	 the	most	 significant	
signal	and	excluded	from	others.	
	
When	both	diseases	share	a	genetic	risk	signal,	 it	 is	possible	that	the	risk	allele	
for	 one	 disease	 is	 protective	 towards	 the	 other.	 We	 found	 that	 risk	 and	
protective	alleles	for	the	lead	variants	(or	largest	available	association	present	in	
both	the	ATD	and	T1D	datasets)	were	the	same	in	both	diseases	for	all	32	signals	
with	PPshared>0.9.		
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Figure	4	
Posterior	probabilities	of	colocalisation	for	signals	with	PP>0.9	for	a)	association	
with	T1D	only,	b)	with	ATD	only,	c)separate	associations	for	each	disease	within	
the	signal	d)a	single	association	shared	between	the	diseases	within	the	signal.	
Up	to	the	top	25	signals,	ranked	for	maximum	posterior	probability,	are	shown	in	
each	 case	 (full	 results	 in	Tables	 S5	 and	 S6).	Multiple	 independent	 signals	 near	
the	 same	 gene	 have	 numerical	 suffixes,	 and	 the	 suffixes	 '.ATD'	 and	 '.T1D'	 are	
used	when	both	ATD	and	T1D	defined	 lead	SNPs	>100	Kb	apart	are	nearest	 to	
the	 same	 gene	 (when	 lead	 SNPs	 are	 <100	 Kb	 apart,	 these	 are	 taken	 to	 be	 the	
same	signal).	Posterior	probabilities	are	truncated	at	0.9	to	aid	visualisation.	
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To	determine	 the	extent	of	 shared	genetic	architecture	between	T1D	and	ATD,	
we	examined	 the	proportions	of	 variants	with	high	 evidence	 for	 association	 in	
only	one	of	the	diseases	(PPT1D	or	PPATD	>	0.9).	Only	85/889	ATD	signals	showed	
some	degree	of	ATD-only	effect	by	this	definition	(PPATD>0.9,	10%),	and	19/177	
for	T1D	(PPT1D>0.9,	11%).	However,	many	signals	have	quite	high	PP	for	the	null	
hypothesis	 of	 neither	 variant	 being	 associated	 (PPnull),	 with	 many	 more	 ATD	
signals	showing	PPnull	>	0.33	proportionally	(NATD=580/889,	NT1D=70/177).	This	
is	most	likely	due	to	the	conservative	prior	probability	(99.99%)	assigned	to	the	
null	hypothesis	 that	 a	 signal	 is	not	disease-associated.	As	 local	FDRs	 (fdrs)	 are	
empirical	 Bayesian	 estimates	 of	 the	 probability	 of	 zero	 effect	 for	 a	 given	 P	
value27,	 we	 computed	 rescaled	 posterior	 probabilities	 (rsPPs)	 in	 order	 to	
maintain	 approximate	 consistency	 with	 our	 GWAS	 fdrs.	 Using	 ATD	 as	 an	
example,	PPATD,	PPshared	and	PPseparate	can	be	scaled	to	sum	to	1-fdrATD,	and	PPnull	
and	PPT1D	scaled	to	sum	to	fdrATD	(see	online	Methods).	After	rescaling,	102/177	
T1D	 signals	 (58%)	 and	 555/889	 ATD	 signals	 (62%)	 showed	 rsPPT1D/ATD	 >	 0.9	
(full	results	in	Table	S7).	Neither	the	lead	ATD	variants	in	FLT3	or	SH3BP4,	nor	
any	of	their	close	LD	proxies,	passed	QC	in	our	T1D	meta-analysis	data	(Figures	
S3e-f),	 so	power	 for	detecting	shared	signals	was	 low,	but	 the	FLT	 variant	was	
present	 in	 the	 UK	 Affymetrix	 cohort	 and	 exhibited	 no	 association	 with	 T1D	
(OR=1.25	(0.80-1.96)).	
	
Of	 the	 20	 signals	 showing	 T1D-only	 effects	 using	 the	 more	 conservative,	
unscaled	PPs,	(PPT1D>0.9,	Figure	4a),	PRF1,	BPTF	and	ASZ1	fell	into	the	subset	of	
118	 T1D-associated	 signals	 that	 have	 not	 been	 detected	 in	 previous	 GWAS	 or	
ImmunoChip	analyses.	None	of	 these	three	signals	had	 lead	variants	associated	
with	other	 immune	conditions	 in	 the	Open	Targets	database	(Table	S10).	PRF1	
was	 notable	 for	 having	 a	 larger	 risk	 effect	 (ORrisk=1.26,	 colocalisation	 plot	 in	
Figure	 S3b).	 Other	 large	 risk	 effect	 signals	 with	 high	 T1D	 specificity	 are	 the	
previously	reported	INS	(OR=0.68)	and	CTSH	(OR=0.84)	(Figure	4a,	Figures	S3c	
and	 S3d).	 Despite	 weak	 evidence	 for	 T1D	 specificity	 using	 unscaled	
colocalisation	 PPs	 (PPT1D=0.15,	 PPnull=0.83),	 RAD51D	 showed	 a	 marked	
difference	 in	 the	appearances	of	 signals	 in	ATD	and	T1D	(Figure	S3a),	and	 fdr-
rescaling	gave	rsPPT1D=0.96.		
	
Colocalisation	analysis	suggested	that	power	might	be	increased	for	discovering	
T1D	associations	with	pleiotropic	ATD	effects	by	utilising	 information	from	the	
larger	 ATD	 study.	 There	 are	 a	 number	 of	 methods	 for	 jointly	 analysing	
pleiotropic	 phenotypes28-31,	 but	 we	 took	 a	 straightforward	 approach	 by	
calculating	BFDRs	and	FDRs	for	T1D	association	using	only	those	SNPs	satisfying	
our	 significance	 criteria	 in	 ATD	 (BFDR<5%	 or	 FDR<1%).	 These	 SNPs	 were	
enriched	 for	T1D	association,	 so	 the	 resulting	BFDRs	and	FDRs	were	 lower.	Of	
the	41,561	SNPs	 satisfying	 the	 significance	 criteria	 in	ATD	 (outside	of	 the	HLA	
region),	31,304	were	present	in	the	T1D	data.	An	additional	56	T1D	signals	were	
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identified	 (r2<0.01	 with	 any	 lead	 variant	 in	 the	 primary	 T1D	 analysis),	 37	 of	
which	 have	 not	 been	 previously	 reported	 as	 T1D-associated.	 Most	 had	 small	
effects	 (ORrisk	 1.05-1.12),	 but	 the	 one	 signal	 (CD200R1)	 had	 ORrisk=1.20	
(FDR=0.04,	BFDR=0.04)	(Tables	S3a	and	S3b).		
	
Discussion	
Using	 highly	 powered	 GWAS	 analyses	 of	 T1D	 and	 ATD,	 we	 detected	 a	 large	
number	of	independent	genetic	signals	with	larger	effects	on	risk,	many	of	which	
have	not	been	associated	with	either	disease	before.	Part	of	our	success	has	been	
in	identifying	associations	via	the	BFDR,	a	new	metric	for	selecting	associations	
with	extreme	risk	effects.	It	is	has	become	widely	acknowledged	that	many,	even	
most,	variants	are	likely	to	have	non-zero	effects	on	complex	phenotypes32-34.	A	
large	 proportion	 of	 small-effect	 'polygenic'	 risk	 variants	 are	 likely	 to	 be	
discovered	in	a	large	GWAS,	especially	applying	thresholds	on	FDRs	rather	than	
conservative	Bonferroni-corrected	P	values,	exemplified	by	our	discovery	of	517	
ATD	 risk	 variants	 at	 sub	 genome-wide	 significance	 but	 with	 FDR<1%	 (Figure	
3b).	This	 issue	 is	 likely	 to	become	exacerbated	by	 the	 increasing	availability	of	
even	 larger	 genome-wide	 SNP	 and	 sequencing	 datasets.	 The	BFDR	 is	 designed	
for	selecting	genetic	associations	for	follow-up	in	the	'post-GWAS'	era,	in	which	
the	 prior	 expectation	 is	 for	 there	 to	 be	 a	 very	 large	 number	 of	 small-risk	
associations,	many	with	unknown	biological	connections	to	the	phenotype	under	
study.	A	cruder	approach	would	be	to	follow-up	variants	that	are	both	significant	
at	a	satisfactory	FDR	(e.g.	<5%)	and	have	a	satisfactory	effect	estimate.	However,	
thresholds	 on	 effect	 size	will	 be	 fairly	 arbitrary	when	 there	 is	 no	 indication	of	
what	proportion	of	true	associations	have	effects	that	fall	below	it,	meaning	that,	
without	more	information	about	the	distribution	of	effects,	an	OR	of	e.g.	1.2	could	
be	considered	either	large	or	small.		
	
In	addition	to	objectively	delineating	variants	with	low	FDRs	but	small	effects	on	
risk,	we	 find	potentially	 important	 variants	 for	T1D	and	ATD	with	 low	BFDRs,	
but	that	would	have	been	missed	by	an	FDR<1%	threshold,	for	example	a	T1D-
specific	 signal	near	RAD51D,	which	encodes	a	DNA	repair	protein	belonging	 to	
the	BRCA1	 and	BRCA2	 interacting	 BCDX2	 complex35.	 This	 is	 supported	 by	 our	
finding	 that	RAD51B,	 another	 BCDX2	 component,	 is	 T1D-	 and	 ATD-associated,	
albeit	with	much	 smaller	 effects	on	 risk.	Three	potential	 causal	 variants	 are	 in	
the	 RAD51D	 3'UTR,	 implicated	 by	 fine-mapping	 and	 in	 high	 LD	 with	 the	 lead	
variant	 (rs28670687).	 Mutations	 in	 RAD51D	 are	 associated	 with	 ovarian	
cancer36,	 and	 cells	 lacking	 RAD51D	 frequently	 undergo	 deletions	 of	 large	
chromosome	segments,	demonstrating	 its	role	 in	genome	stability37.	Pancreatic	
beta	 cells	 are	 long	 lived	 and	 non-duplicating,	 thus	 requiring	 high	 levels	 of	
genome-stability	for	normal	functioning,	and	could	therefore	be	where	RAD51D	
variants	lead	to	T1D	risk,	though	evidence	for	pancreatic	RAD51D	expression	is	
mixed38,39.	We	 also	 detected	RAD51D	 in	 both	 discovery	 and	 replication	 phases	
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when	 holding-out	 a	 Finnish	 replication	 cohort	 from	 our	 T1D	 meta-analysis.	
Using	 this	 approach,	 we	 also	 verified	 a	 large-effect	 regulatory	 region	 variant	
upstream	of	the	gene	for	perforin	(PRF1),	which	is	key	to	the	cytolytic	activity	of	
cytotoxic	T-cells,	 and	has	opposite	 risk	effects	on	T1D	and	multiple	 sclerosis40,	
though	 it	 has	 no	 strong	 associations	 in	 other	 common	 diseases.	 Colocalisation	
analysis	 provided	 evidence	 that	 neither	 RAD51D	 nor	 PRF1	 signals	 have	 any	
strong	effect	on	ATD.	
	
We	found	a	number	of	 low	frequency	variants	associated	with	larger	effects	on	
ATD,	 including	 a	 previously	 reported	 variant	 in	 FLT3,	 which	 appears	 to	 act	
dominantly	(ORdom=1.54).	The	minor	allele	is	associated	with	both	ATD	risk	and	
monocyte	count24,	but	has	no	effect	on	T1D.	Monocytes,	somewhat	surprisingly,	
are	not	prioritized	as	a	causal	cell	type	in	T1D20	and	hence	this	may	explain	why	
the	 FLT3	variant	 has	 no	 effect	 in	 T1D.	Mutations	 in	 FLT3	 are	 known	 to	 cause	
acute	myeloid	 leukemia41.	 Analysing	 non-additive	 inheritance	models,	 we	 also	
found	 that	 a	 deletion	 near	 TGFB2	was	 associated	 with	 approximately	 halving	
ATD	 risk	when	 present	 in	 two	 copies,	 though	 in	 a	 well-mixed	 population	 this	
would	only	affect	0.22%	of	individuals	(MAF=4.75%).	Evidence	for	dominant	and	
recessive	effects	of	minor	alleles	was	present	for	approximately	28%	and	1%	of	
lead	ATD	variants,	respectively.		
	
A	 low-frequency	 enhancer	 insertion	 near	 SH3BP4	 showed	 a	 larger	 protective	
effect	on	ATD	(OR=0.67),	which	is	likely	to	be	causal.	The	enhancer	element	lies	
in	a	region	of	few	genes,	but	is	downstream	of	SH3BP4	and	upstream	of	AGAP1,	
either	 or	 both	 of	 which	 may	 be	 causal.	 Despite	 having	 low	 MAF	 in	 most	
populations,	the	protective	minor	allele	is	found	in	roughly	25%	of	West-African	
individuals,	emphasising	the	requirement	for	more	diverse	GWAS	datasets.	Our	
BFDR	analysis	confirms	the	importance	of	30	previously	reported	genome-wide	
significant	 ATD	 signals.	 In	 particular,	 signals	 near	 ADCY7	 (BFDR=1.69x10-5),	
PTPN22	(BFDR=3.20x10-5)	MAGI3	(BFDR=8.62x10-5)	and	CTLA4	(BFDR=9.16x10-
5),	 are	 among	 the	 largest	 genetic	 risk	 factors.	 However,	 BFDR	 found	 that	 only	
30/148	 (20%)	 of	 previously	 reported	 genome-wide	 significant	 associations	
could	be	confirmed	as	having	risk	effects	within	the	top	5%,	suggesting	the	need	
for	 prioritisation	 of	 associations	 based	 on	 effect-size	 rather	 than	 on	 statistical	
significance	alone.	
	
As	T1D	and	ATD	are	both	autoimmune	disorders,	some	genetic	risk	variants	are	
likely	to	have	pleiotropic	effects	on	both	disorders.	As	the	ATD	analysis	in	UKBB	
is	highly	powered,	this	provided	an	opportunity	to	leverage	additional	statistical	
power	 for	 T1D	 association	 analysis.	 Restricting	 computation	 of	 T1D	 FDRs	 and	
BFDRs	 to	 SNPs	 associated	 with	 ATD,	 we	 found	 56	 associations	 that	 were	 not	
significant	 in	 our	 primary	 T1D	 GWAS	meta-analysis,	 though	 these	 had	mostly	
small	risk	effects.	
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By	 using	 a	 conventional	 FDR<1%	 threshold	 in	 addition	 to	 BFDR<5%,	 we	 find	
further	common	(high	MAF)	associations	for	both	diseases,	but	with	smaller	risk	
effects.	 The	 median	 effect	 size	 of	 lead	 SNPs	 with	 FDR<1%,	 i.e.	 those	 selected	
using	significance	alone,	was	1.10	for	T1D	and	1.07	for	ATD	(median	MAF	26.4%	
and	 18.5%).	 However,	 this	 missed	 46	 T1D	 and	 232	 ATD	 variants	 passing	
BFDR<5%,	 with	 median	 effect	 sizes	 1.19	 and	 1.22	 (median	 MAF	 4.4%	 and	
0.80%).	 Associations	 with	 low	 FDR	 but	 small	 effects	 may	 be	 of	 limited	
importance	 for	 exploring	 biological	 hypotheses,	 and	 we	 recommend	 using	 a	
combination	of	 effect	 size	 and	 significance	 (e.g.	 using	 the	BFDR).	Nevertheless,	
loci	and	common	variants	with	smaller	effects	may	be	useful	 for	gene-category	
enrichment	 analysis,	 for	 fitting	 polygenic	 risk	 scores,	 and	 for	 providing	
supporting	evidence	for	the	involvement	of	any	larger	effect	variants	with	which	
they	may	biologically	interact.	
	
	
Online	Methods	
T1DGC	data	QC	and	GWAS	analysis		
Samples	were	obtained	through	the	Type	1	Diabetes	Genetics	Consortium	(T1DGC).	

T1DGC	samples	were	genotyped	on	Illumina	Human	Core	Exome	beadchip	following	

manufacturer	 protocols	 and	 genotype	 clusters	 were	 generated	 using	 the	 Illumina	

GeneTrain2	 algorithm	 at	 University	 of	 Virginia.	 Since	multiple	 array	 versions	were	

used,	we	harmonized	variants	across	array	versions	in	the	following	way:	For	those	

SNPs	that	are	available	on	the	1000	Genomes	Project	SNP	panel,	we	align	them	to	

the	 1000	Genomes	Project	 SNPs	 separately	 for	 each	 array	 version;	 for	 those	 SNPs	

that	are	not	available	on	the	1000	Genomes	Project	SNP	panel,	we	harmonize	them	

according	 to	 their	 positions/names,	 allele	 labels	 and	 allele	 frequencies	 that	 are	

specific	to	each	of	the	four	array	versions.	

	

Sample	 identity	 was	 confirmed	 by	 comparing	 genotypes	 from	 the	 same	 samples	

generated	 with	 an	 alternative	 array	 (ImmunoChip,	 manuscript	 in	 preparation).	

Variants	 were	 removed	 for	 the	 following	 reasons:	 a)	 more	 than	 5%	 of	 genotypes	

were	missing,	b)	genotypes	were	inconsistent	across	duplicates	(discordant	in	>1%	of	

duplicate	 samples	 or	 MZ	 twins),	 c)	 genotype	 frequencies	 deviated	 from	 Hardy	

Weinberg	Equilibrium	(p	<	1x10
-6
),	c)	Mendelian	inconsistencies	in	more	than	1%	of	

trios	or	parent-offspring	pairs	or	d)	more	than	10%	of	homozygous	parent-offspring	

pairs	or	trios	with	heterozygous	offspring.	Samples	were	removed	if	more	than	5%	of	

genotypes	were	missing	or	genotypes	were	 inconsistent	with	reported	sex.	Sample	

pedigree	 information	 was	 confirmed	 or	 corrected	 using	 genotype-inferred	

relationships,	as	determined	using	the	software	KING	
42
.	After	QC,	there	were	3173	

affected-offspring	trios.	
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Subjects	with	European	ancestry	were	identified	for	analysis	using	KING.	Specifically,	

genetic	 principal	 components	 (PC)	 were	 generated	 for	 1000	 Genomes	 Phase	 3	

subjects	 and	 T1DGC	 subjects	 were	 projected	 onto	 this	 PC	 space.	 Then	 a	 Support	

Vector	 Machine	 was	 used	 to	 classify	 T1DGC	 subjects	 into	 one	 of	 five	 ancestral	

superpopulations,	as	described	here	http://people.virginia.edu/~wc9c/KING/	
kingpopulation.html.	 European	 individuals	 (N=10,406)	 were	 aligned	 to	 the	

Haplotype	 Reference	 Consortium	 (HRC)	 reference	 panel	 using	 available	 tools	

(https://www.well.ox.ac.uk/~wrayner/tools/index.html#Checking)	and	imputed	

to	the	HRC	using	the	Michigan	Imputation	Server.	Imputed	variants	were	filtered	for	

imputation	 quality	 (removed	 variants	 with	 imputation	 R-squared	 <	 0.3)	 and	

Mendelian	 errors	 (removed	 variants	 with	 errors	 in	 >	 1%	 of	 homozygous	 parent-

offspring	pairs	or	trios	with	heterozygous	offspring).	ORs	were	derived	as	OR=T/U,	
where	T	and	U	are	the	numbers	of	transmitted	and	non-transmitted	alleles,	and	
standard	 errors	 of	 log	 ORs	 for	 inverse-variance	 weighting	 were	 obtained	
following	Kazeem	and	Farrall43.	To	prevent	 extreme	ORs	 (e.g.	 zero	or	 infinity),	
we	added	0.5	to	both	T	and	U	for	SNPs	where	either	value	was	5	or	lower.		
	
		

UK	T1D	cohorts	QC	and	GWAS	analysis	

Type	 1	 diabetes	 summary	 statistics	 were	 generated	 using	 GWAS	 data	 from	 7977	

individuals	from	the	UK	genotyped	using	the	Illumina	Infinium	550K	platform	(3983	

cases	 and	 3994	 controls),	 5268	 individuals	 from	 the	 UK	 diagnosed	 using	 the	

Affymetrix	 GeneChip	 500K	 platform	 (1926	 cases	 and	 3342	 controls),	 analysed	 in	

previous	 publications
44,45

.	 We	 refer	 to	 these	 collections	 as	 'UK	 Illumina'	 and	 'UK	

Affymetrix'.	 Genotypes	 were	 imputed	 using	 the	 haplotype	 reference	 consortium	

(HRC)	haplotypes	 for	 the	UK	 collections	using	 the	Michigan	 Imputation	 server,	 pre	

phasing	using	SHAPEIT2	and	imputation	using	Minimac3
46
.	Variants	failing	either	of	

two	 imputation	 quality	 criteria	 in	 either	 UK	 cohort	 were	 removed:	 a)	 imputation	

information	score	of	<60%	in	either	cases	or	controls,	or	b)	difference	in	imputation	

information	 score	 between	 cases	 and	 controls	 >	 1%	 together	with	MAF	 <	 5%.	 An	

exception	 was	made	 for	 two	well-established	 T1D	 variants	 in	 the	 INS-IGF2	 region	
(rs689	and	rs3842753),	which	were	poorly	imputed	in	the	Affymetrix	cohort	but	well	

imputed	 in	the	 Illumina	cohort.	GWAS	summary	statistics	were	produced	using	the	

‘newml’	method	 from	SNPTEST,	 including	 the	 three	 largest	 PC	 covariates.	Variants	

were	LD	pruned	(r2<0.3)	and	low	(<1%)	MAF	SNPs	removed	during	calculation	of	PCs.	

PCs	were	calculated	within	UK	Affymetrix	and	Illumina	collections	separately.		
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GWAS	meta-analysis	of	five	type	1	diabetes	cohorts	
Summary	 statistics	 for	 the	 two	 UK	 cohorts	 and	 T1DGC	 were	 meta-analysed,	
together	with	a	Sardinian	cohort	 (1558	cases	and	2882	controls,	genotyped	on	
Affymetrix	 6.0	 and	 Illumina	Omni),	 imputed	 from	 a	 custom	 reference	 panel	 of	
3,514	Sardinians44,	and	samples	from	the	FinnGen	biobank	resource	(data	freeze	
4,	phenotype	code	E4_DM1,	n=4933	cases	and	148,190	controls).	Variants	with	
MAF<0.5%	in	either	UK	cohort	or	 in	 the	Sardinian	cohort	were	removed.	SNPs	
not	present	in	at	least	one	of	the	UK	cohorts	were	removed,	as	statistical	power	
was	 likely	 to	 be	 low,	 and	 it	 is	 possible	 BFDR	 is	 unreliable	 for	 effect	 estimates	
with	low	precision.	As	the	HLA	region	is	already	well	established	T1D-associated	
and	has	extensive	linkage	disequilibrium,	which	may	interfere	with	downstream	
analysis,	we	removed	this	as	standard	(40,656	SNPs	with	build	37	positions	25-
35	Mb	on	chromosome	6),	leaving	6,254,180	SNPs.	
	
	
Combined	 estimates	 of	 effect	 size	 from	 the	 five	 cohorts	 were	 obtained	 using	
inverse-variance	weighting,	in	R:	
	

	

		
θ̂meta =

θ̂i /σ̂ i
2

i=1
5∑
1/σ̂ i

2
i=1
5∑

	,	

	

where			θ̂i 	is	 the	 estimate	 of	 the	 log	 OR	 for	 the	 ith	 cohort	 and			σ̂ i
2 	its	 estimated	

standard	error,	which	are	set	 to	zero	and	 infinity	respectively	when	the	SNP	 is	
missing	in	cohort	 i.	P	values	were	computed	from	the	meta-analysis	Chi-square	

statistics		θ̂meta
2 /σ̂meta

2 	(1	degree	of	freedom),	where		σ̂meta
2

	
is	the	variance	of		θ̂meta 	:	

	

		
σ̂meta

2 = 1
1/σ̂ i

2
i=1
5∑

	.			

	
FDRs	 were	 calculated	 according	 to	 the	 Bejamini-Hochberg	 procedure47.	 Meta-
analysis	of	dominant	and	recessive	models	was	restricted	to	available	SNPTEST	
results	 from	 the	 two	 UK	 cohorts,	 using	 the	 same	 SNPs	 in	 the	 additive	 meta-
analysis.	As	the	additive	results	derive	from	the	larger	five-cohort	meta-analysis,	
the	number	of	signals	we	determined	to	be	dominant	or	recessive	by	comparing	
the	P	values	of	the	three	inheritance	models	is	likely	to	be	conservative.	
	
	
We	saw	an	inflation	of	meta-analysed	Chi-square	statistics	(ratio	of	the	observed	

median	statistic	over	the	null	median	of	0.456,		λGC 	=	1.12,	quantile-quantile	plot	
in	 Fig	 S2).	 Analysis	 of	 the	 T1DGC	 cohort,	 using	 TDT,	 is	 immune	 to	 population	
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stratification.	 Inflation	 was	 comparable	 within	 this	 cohort	 alone	 (	λGC 	=	 1.09),	

consistent	with	polygenicity	of	T1D,	rather	than	population	stratification,	being	
the	major	cause	of	test	statistic	inflation	observed	in	the	meta-analysis.	Using	LD-
Score	 regression	 gave	 an	 estimate	 of	 0.99	 for	 the	 inflation	 factor	 due	 to	
population	 stratification,	 unbiased	 by	 the	 effects	 of	 polygenic	 association	
signals48.		
	
To	 assess	 the	 replicability	 of	 variants,	 discovery	meta-analysis	was	 performed	
without	 the	 inclusion	 of	 the	 FinnGen	 cohort,	 and	 replication	 of	 lead	 variants	
satisfying	 BFDR<5%,	 or	 FDR<1%	 significance	 criteria	 was	 performed	 within	
FinnGen.	 Definition	 of	 signals	 was	 performed	 as	 for	 the	 full	 five-cohort	 meta-
analysis.	When	 lead	 variants	were	 not	 available	 in	 the	 replication	 sample,	 the	
closest	 LD	 proxy	was	 selected	 using	 white-European	 LD	 data	 from	 UKBB.	We	
found	 184	 signals	 in	 the	 discovery	 phase,	 of	 which	 67	 passed	 P<5%	 in	 the	
replication	 phase	 (Table	 S4).	 Replication	 power	 at	 P<5%	 was	 35%	 for	 either	
common	 variants	 with	 OR=1.05	 (MAF=20%)	 or	 low-frequency	 variants	 with	
OR=1.2	 (MAF=1%)49,	 assuming	 D'=0.8	 and	 1%	 T1D	 prevalence.	 Of	 the	 184	
signals,	96	were	not	reported	in	previous	publications,	of	which	17	had	lower	P	
values	 after	meta-analysis	with	 the	 Finnish	 replication	 sample,	 suggesting	 that	
they	are	true	associations.	Of	these,	RAD51D,	PRF1,	TACR1,	CAMK4,	AGPAT9	and	
RPH3A	 did	 not	 satisfy	 FDR<1%	 in	 the	 discovery	 phase,	 but	 were	 selected	 as	
discovery	 associations	 due	 to	 having	 BFDR<5%.	 PRF1	had	 a	 larger	 risk	 effect	
(ORrisk=1.26	and	BFDR=1.58x10-3	including	FinnGen),	and	the	lead	SNP	was	in	a	
regulatory	 region	 upstream	 of	 the	 gene,	 but	 fine-mapping	 could	 not	 provide	
evidence	for	any	candidate	causal	variants	within	close	vicinity	(Figure	S4b).	
	
	
Autoimmune	thyroid	disease	GWAS	in	UKBB	
Imputed	 genotype	 data	 was	 available	 for	 487,409	 individuals	 and	 93,095,623	
autosomal	variants	from	the	UKBB,	already	subjected	to	QC.	Phenotype	data	was	
available	 for	 487,320	 individuals	 for	 whom	 genotype	 was	 also	 available,	 and	
used	to	designate	29,045	individuals	(5.96%)	as	ATD	cases.	The	majority	of	these	
possessed	hypothyroidism/myxedema	as	a	non-cancer	 illness	code	(n=24,403),	
and	 4642	 additional	 cases	 were	 found	 using	 'other	 hypothyroidism'	 (as	
distinguished	 from	 'subclinical	 iodine-deficiency	 hypothyroidism')	 ICD10	main	
(n=67)	 and	 secondary	 (n=4575)	 codes.	 The	 various	 forms	 of	 hyperthyroidism	
were	 excluded	 from	 our	 definition	 of	 ATD	 as	 it	 is	 likely	 that	 many	 genetic	
variants	 have	 heterogeneous,	 possibly	 opposite,	 effects	 to	 those	 on	
hypothyroidism.	
	
We	 restricted	 analysis	 to	 77,675,727	 autosomal	 SNPs	 with	 imputation	
information	 scores	 >	 0.3.	 Although	 the	 UKBB	 genotype	 data	 has	 already	 been	
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subjected	to	QC,	we	removed	153,773	SNPs	showing	significant	departure	from	
Hardy-Weinberg	 Equilibrium	 at	 P<10-12,	 as	 these	 probably	 result	 from	 poor	
genotype	calling,	and	were	not	previously	removed	due	via	the	original	within-
batch	filtering	approach50.			
	
We	 detected	 first	 and	 second	 degree	 relatives	 via	 IBD	 sharing	 >	 25%	 using	
PLINK	 2's	 King-robust	 estimator42,51,52	 and	 removed	 one	 random	 individual	
(n=31,190)	from	each	pair,	leaving	456,130	(28,742	cases	and	427,388	controls).	
Relatedness	was	 calculated	using	12,788	 independent	 autosomal	 variants	with	
MAF>5%	(pairwise	r2<0.01,	pruned	using	PLINK).	
		
Logistic	regression	models	for	additive	risk	of	allele	dosage	on	ATD	were	fitted	
for	 all	 remaining	 11,261,140	 autosomal	 SNPs	 outside	 of	 the	 HLA	 region	 with	
MAF>0.5%,	 using	 PLINK2.	 Firth	 regression	 was	 used	 instead	 of	 logistic	
regression	 for	 SNPs	 with	 empty	 contingency	 table	 cells,	 or	 when	 logistic	
regression	 otherwise	 failed	 to	 converge,	 as	 implemented	 in	 PLINK2's	 firth-
fallback	option.	We	controlled	 for	population	stratification	using	 the	20	 largest	
genetic	 principal	 components,	 available	 from	 UKBB,	 as	 covariates.	 These	 have	
been	 shown	 to	 reflect	 the	 broad	 range	 of	 ethnic	 backgrounds	 from	which	 the	
participants	 are	 drawn10,	 though	 the	 majority	 of	 participants	 are	 white	
Europeans.	We	also	controlled	for	age	(at	initial	assessment)	and	genotypic	sex.		
	

Chi-square	 statistics	were	 inflated	with		λGC =	1.19,	but	 this	did	not	differ	when	

controlling	for	the	40	largest	PCs	on	chromosome	22.	The	analysis	was	repeated	
for	 381,380	 white	 European	 individuals	 (24,332	 cases	 and	 357,048	 controls),	
identified	by	UKBB	using	 a	 combination	of	 self	 identified	 ethnicity	 and	genetic	

ancestry	 PCs,	 giving			λGC =1.18 ,	 suggesting	 that	 inflation	 was	 primarily	 due	 to	
polygenic	 association	 signal	 rather	 than	 population	 stratification.	 LD-score	
regression	 suggested	minor	 inflation	 due	 to	 population	 stratification,	 with	 the	
intercept	of	1.06	suggesting	that	a	large	majority	of	inflation	is	due	to	polygenic	
signals	 of	 association,	 and	 this	 was	 similar	 (1.05)	 when	 using	 GWAS	 results	
derived	from	Europeans	only.		
	
Analysis	 of	 dominant	 and	 recessive	 effects	 was	 performed	 with	 the	 same	
covariates.	 To	 surmount	 computational	 limitations,	 we	 used	 PLINK2's	 firth-
residualize	 approximation	 to	 firth	 regression53	 for	 analysing	 dominant	 and	
recessive	 effects	 across	 all	 SNPs,	 though	 firth-fallback	 was	 used	 to	 re-test	 the	
additive	lead	variants	under	recessive	and	dominant	models.	
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Definition	of	signals	
SNPs	passed	our	significance	criteria	if	they	had	FDR<0.01	and	BFDR<0.05	(see	
SI	 Appendix	 for	 details	 on	 BFDR	 estimation).	 To	 define	 independent	 signals	
among	 this	 set,	we	 selected	 the	most	 significant	 SNP	 (lowest	 P	 value)	 on	 each	
chromosome,	 designating	 this	 as	 the	 lead	 SNP	 for	 the	 signal,	 before	 removing	
any	 significant	 variant	 in	 LD	 (r2>0.01,	 up	 to	 maximum	 1	 MB	 distance),	 then	
choosing	the	next	most	significant	SNP	remaining	as	the	lead	variant	for	the	next	
signal.	 This	 process	 ('LD	 clumping')	 was	 repeated	 until	 no	 SNPs	 passing	 our	
significance	criteria	remained.	Due	to	the	ubiquity	of	LD,	single-SNP	associations,	
i.e.	 those	that	have	no	disease-associated	LD	partners,	are	 likely	to	be	spurious	
due	to	problems	with	genotyping	or	imputation,	especially	when	MAF	is	low.	At	
each	step	we	therefore	excluded	the	most	significant	SNP	from	the	process	 if	 it	
had	no	LD	partners	(r2>0.1)	with	log10	P	values	lower	than	log10(P)/3-1	,	where	
P	 is	 the	 lead	 SNP	 P	 value.	 LD	 calculations	 were	 performed	 in	 plink54	 using	
381,380	 individuals	 from	 the	 UKBB,	 after	 restricting	 to	 white-Europeans	 and	
removing	 first	 and	 second-degree	 relatives	 (using	UKBB	 data	 field	 22006).	 LD	
comparisons	were	restricted	to	a	sliding	window	of	1	MB.	The	signal	definition	
procedure	 was	 performed	 for	 each	 set	 of	 GWAS	 results	 separately	 (e.g.	 ATD	
additive,	 T1D	 additive,	 ATD	 dominant,	 T1D	 additive	 within	 ATD	 signals,	 etc).	
There	 are	 47	 unique	 previously	 reported	 T1D	 regions	 catalogued	 in	 Open	
Targets1,	plus	another	96	in	a	recent	ImmunoChip	analysis20.	We	designated	T1D	
signals	 as	 'new'	 if	 they	 had	 r2<0.05	 (using	 the	 UKBB	 LD	 data)	with,	 and	were	
physically	 located	 at	 least	 250kb	 from,	 the	 lead	 variants	 from	 any	 established	
regions.	We	used	the	same	criteria	to	identify	new	signals	for	ATD,	establishing	
lead	variants'	independence	from	175	which	were	found	by	Kichaev	et	al.23	using	
integration	 of	 functional	 enrichment	 information	 and	 GWAS	 data	 from	 UKBB	
hypothyroidism	cases	(white	Europeans	only),	plus	additional	data	sources23.		
	
Annotation	of	lead	variants	
Functional	annotations	for	each	lead	variant	were	obtained	using	the	biomaRt	R	
package	(Ensembl	build	38	human	SNP	database).	We	also	wrote	command-line	
GraphQL	 and	 R	 scripts	 to	 automatically	 download	 and	 filter	 lists	 of	 immune	
disease	pheWAS	associations	(P<5x10-5)	from	the	Open	Targets	genetics	portal,	
for	 each	 lead	 variant.	 The	 diseases	 we	 filtered	 for	 were	 Addison's	 disease,	
asthma,	 celiac	 disease,	 Crohn's	 disease,	 eczema,	 hayfever,	 lupus,	 multiple	
sclerosis,	psoriasis,	rheumatoid	arthritis,	ulcerative	colitis	and	vitiligo.	
	
Colocalisation	 of	 genetic	 signals	 between	 type	 1	 diabetes	 and	 autoimmune	
thyroiditis		
Colocalisation	between	ATD	and	T1D	GWAS	signals	was	performed	 for	500	Kb	
physical	 signals	 around	 each	 lead	 variant	 using	 the	 coloc	 package26,	 after	
excluding	 variants	 not	 present	 in	 both	ATD	 and	T1D	datasets.	 Variants	 having	
r2>0.01	with	a	lead	variant	a	more	significant	(lower	P	value)	lead	variant	were	
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removed,	 as	 these	 probably	 constitute	 separate	 signals,	 and	 single-SNP	
associations	were	 removed	 as	 previously	 described.	 Analysis	was	 not	 possible	
for	eight	ATD-discovered	signals	 that	contained	no	variants	present	 in	 the	T1D	
data.	LD	data	for	coloc	plots,	and	MAFs	for	coloc	analysis,	were	computed	using	
UKBB	(white	Europeans	only).	When	 lead	variants	 in	T1D	and	ATD	discovered	
signals	were	within	100	Kb,	the	signal	for	the	least	significant	disease	(largest	P	
value)	was	removed	from	subsequent	analysis,	to	avoid	repeating	analysis	of	the	
same	signals.	For	comparing	effect	sizes	between	each	disease,	we	used	the	lead	
variant	when	this	was	present	in	both	T1D	and	ATD	datasets.	Otherwise,	effects	
were	compared	at	the	variant	with	the	lowest	P	value	in	either	disease,	from	all	
SNPs	in	the	physical	region	that	were	present	in	both	datasets.		
	
Rescaling	of	 posterior	probabilities	 to	be	 consistent	with	FDRs	was	performed	
using	the	 local	FDR	(fdr)	of	 the	signal's	 lead	variant,	 for	the	disease	that	 it	was	
originally	discovered	with.	Then,	taking	a	T1D	signal	as	an	example,	the	rescaled	
posterior	probabilities	(rsPPs)	are:	
	
rsPPshared	=	(1-fdrT1D)	x	PPshared	/	(PPshared+PPseparate+PPT1D)	,	
rsPPseparate=	(1-fdrT1D)	x	PPseparate	/	(PPshared+PPseparate+PPT1D)	,	
rsPPT1D=	(1-fdrT1D)	x	PPT1D/	(PPshared+PPseparate+PPT1D)	,	
rsPPATD=	fdrT1D	x	PPATD/	(PPATD+PPnull)	,	
rsPPnull=	fdrT1D	x	PPnull/	(PPATD+PPnull)	.	
	
This	makes	use	of	 the	fact	 that	the	fdr	can	be	 interpreted	as	an	estimate	of	 the	
posterior	 probability	 of	 no	 association	 for	 a	 given	 P	 value,	 and	 so	 1-fdr	 is	 the	
equivalent	estimate	of	probability	of	association	(i.e.	either	a	shared	signal,	two	
separate	 signals	 or	 a	 signal	 only	 at	 the	 disease	 in	 question).	 Local	 FDRs	were	
computed	following	Efron	&	Hastie27,	using	maximum	likelihood	estimation	to	fit	
a	two-group	(null	and	non-null)	distribution	to	the	observed	Z-statistics	(see	SI	
for	 information	 about	 how	 this	 same	 process	 is	 performed	 as	 part	 of	 BFDR	
estimation).	
	
		
Stepwise	regression	and	Fine-mapping		
Stepwise	model	 selection	was	 performed	 on	GWAS	 summary	 statistics	 and	 LD	
data	from	UKBB	white	Europeans	(n=381,380),	before	joint	regression	analysis	
of	the	selected	SNPs,	using	COJO55.	SNPs	were	incorporated	into	the	model	if	they	
had	a	stepwise	P	value	either	a)lower	than	genome-wide	significance	(P<5x10-8)	
for	signals	where	the	lead	variant	was	genome-wide	significant	or	b)lower	than	
the	GWAS	P	 value	 for	 the	 lead	 variant	 for	 signals	where	 this	was	 greater	 than	
5x10-8.	Signals	were	defined	as	SNPs	within	250	Kb	of	each	lead	variant,	but	not	
in	 LD	 with	 any	 more	 significant	 lead	 variants	 (r2>0.01).	 Variants	 previously	
determined	to	be	single-SNP	associations	were	omitted,	as	described	above.	The	
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meta-analysis	 sample	 size,	 for	 each	 variant,	 was	 calculated	 as	 the	 summed	
sample	sizes	of	the	four	case-control	cohorts	plus	half	the	number	of	informative	
allele	transmissions	in	the	T1DGC	TDT	test.	Fine-mapping	for	ATD	and	T1D	was	
performed	using	FINEMAP	version	1.456,	using	the	GWAS	summary	statistics	and	
LD	 data	 from	 UKBB	 (381,380	 white	 Europeans).	 For	 T1D,	 fine-mapping	 was	
performed	using	the	largest	non-Finnish	meta-analysis	cohort	only	(UK	Illumina	
550K,	 3983	 cases	 and	 3994	 controls),	 to	 ensure	 homogeneity	 of	 genotyping	
coverage.	Fine-mapping	for	each	signal	was	performed	using	all	SNPs	within	500	
Kb	windows	around	the	lead	SNP.	Due	to	limited	statistical	power,	fine-mapping	
was	 not	 performed	 on	 the	 59	 additional	 T1D	 signals	 detected	 via	 pleiotropic	
effects	on	ATD,	which	have	modest	effects	on	T1D	risk.			
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