Title: The Goldilocks Effect: Female geladas in mid-sized groups have higher fitness

Running head: The Goldilocks Effect

Authors: Elizabeth Tinsley Johnson1*, Jacob A. Feder2*, Thore J. Bergman3,4, Amy Lu2,5, Noah Snyder-Mackler6,7**, Jacinta C. Beehner3,8**

Affiliations:
1Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.
2Interdepartmental Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
3Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043, USA.
4Department of Ecology & Evolution, University of Michigan, Ann Arbor, MI 48019-1085, USA.
5Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA.
6School of Life Sciences, Arizona State University, Tempe, AZ 85287-4701, USA.
7Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287-1701, USA.
8Department of Anthropology, University of Michigan, Ann Arbor, MI 48109-1107, USA.

* Co-first authors
** Co-senior authors

Corresponding authors: etinsley@msu.edu; nsnyderm@asu.edu; jbeehner@umich.edu
Abstract:

The cost-benefit ratio of group-living is thought to vary with group size: individuals in “optimally-sized”
groups should have higher fitness than individuals in groups that are either too large or too small.

However, the relationship between group size and individual fitness has been difficult to establish for
long-lived species where the number of groups studied is typically quite low. Here we present evidence
for optimal group size that maximizes female fitness in a population of geladas (*Theropithecus gelada)*.

Drawing on 14 years of demographic data, we found that females in small groups showed the highest
mortality risk, while females in mid-sized groups exhibited the highest reproductive performance. This
group-size effect on female reproductive performance was largely explained by variation in infant
mortality (and, in particular, by infanticide from immigrant males) but not by variation in reproductive
rates. Taken together, our results show that females in mid-sized groups appear to attain optimal fitness
due to the combination of social pressures and, potentially, predation. Our findings provide insight into
how and why group size shapes fitness in long-lived species.

Keywords: optimal group size, fitness, folivore paradox, infanticide, reproduction, survival
INTRODUCTION

Variability in group size within species reflects a balance between the costs and benefits of group living [1,2]. For example, individuals living in larger groups may experience increased intragroup foraging competition (a cost: e.g., [3–5]) but decreased predation risk (a benefit: e.g., [3,6–9]). Individuals living in optimally-sized groups, where (by definition) the benefits outweigh the costs, should have the highest lifetime reproductive success [i.e., fitness: 10] compared to others in the population [11]. Although the link between group size and fitness has long been the focus of socioecological theory, it has been challenging to demonstrate this relationship with empirical data. This is, in large part, because group size fluctuates over an individual’s lifespan, meaning it is difficult to align a specific group size with a clear fitness metric (especially in long-lived species). As a result, testing the effects of group size requires long-term data across multiple groups of variable size.

Ecological costs and benefits at both extremes of group size support the idea that mid-sized groups are optimal. For example, the feeding costs of living in large groups are well-documented: variables that lead to greater feeding competition, such as home range size, day range length, and feeding time are often positively correlated with group size [carnivores: 12, primates: 13,14], and those that reflect the consequences of competition, such as body condition, fertility, and survival are often negatively correlated with group size [15–20]. Despite the costs of living in large groups, individuals are often found in groups significantly larger than the theoretical species optimum [21,22], likely because splitting into two smaller groups is equally, if not more, costly. This may be particularly true if small groups are more susceptible to predation [23,24] or if competitively weaker groups are pressed into inferior home ranges (carnivores: [25], primates: [26,27]). Perhaps as a consequence of costs at both extremes, individuals in both large and small groups exhibit higher glucocorticoid levels, greater ranging disadvantages, and experience more extreme energetic conditions when compared to individuals in mid-sized groups (e.g., [14,28–30], reviewed in [5]).
However, many species do not exhibit group sizes that conform to predictions based on ecological factors like feeding competition alone [e.g., 31]. For example, although folivores are thought to experience low feeding competition, females in numerous folivorous taxa live in groups that are smaller than those found in frugivorous species (the "Folivore Paradox": [32], e.g. [33]). For some folivorous species, feeding competition may still be high, thus limiting group size (primates: [34], elephants: [35], deer: [36]). Alternatively (or additionally), in many folivorous primates, selective pressures may favor smaller groups because they are less attractive to immigrant males and thus less vulnerable to infanticide [37,38]. By contrast, in some species the risk of infanticide may favor larger groups that are better able to prevent male immigration or defend dependent offspring [39]. As a result, conspecific threat of infanticide has the potential to shape group size such that mid-sized groups are optimal, but isolating the effects of such social factors from environmental factors has proven challenging.

Geladas are folivorous monkeys that feed on widely-dispersed food resources, that comprise primarily graminoid (grass and sedge) leaves [40,41]. Due to this resource base, geladas should face low feeding competition and should, correspondingly, live in large groups for predator protection [32]. However, gelada social organization is not so simple: individuals form small reproductive groups (hereafter, "units", varying in size from 1-12 adult females: [42]) that, in turn, unite to form large bands (100+ individuals) that travel and forage together in the same home range (forming a ‘multi-level’ society: [43]). The large foraging band likely represents the ecological unit (i.e., by offering some degree of protection from predation, [44]) and conforms to the predictions of standard socioecological theory [32]. In contrast, the small reproductive unit represents the social unit and, as such, is likely shaped by social factors. Specifically, in this population, male immigrations (called “takeovers” because the new male replaces the dominant group male) dramatically alter female reproductive patterns via infanticide and the Bruce effect [45,46]. Infanticide is the leading cause of infant mortality: immigrant males can kill up
to half of the dependent infants in a unit [47]. Moreover, larger units experience more takeovers than
smaller units [48].

Ecological factors like habitat quality are unlikely to vary significantly among units in the same band;
therefore, we predict that females in larger units incur disproportionately higher fitness costs due to
social factors like male takeovers compared to females in smaller units. Alternatively (or additionally),
when a takeover occurs, infants in small groups may have a higher chance of being killed: new dominant
males are faced with fewer fertile females as groups get smaller and may, as a result, be more likely to
commit infanticide. If both large and small units incur fitness costs due to social factors, then we predict
that females in mid-sized units will exhibit the highest fitness. Finally, adult female survival may also be
affected by unit size: females in small units may be more vulnerable to predation (e.g. [23]), while
females in larger units may be more vulnerable to disease (e.g. [49]). If both factors affect female
longevity in geladas, then we predict the lowest adult female mortality in mid-sized units.

To test these predictions, we first examined the evidence for an optimal unit size for gelada females.
Specifically, we tested if unit size predicted female mortality rates and/or reproductive performance (the
production of surviving infants). Second, because reproductive performance could be a product of both
female fertility and/or infant survival, we explored the effect of unit size on these two components.
Specifically, we assessed variation in both interbirth intervals, which should track both female energetic
condition (e.g., [50,51], reviewed in [7]) and takeover-related pregnancy loss [45,52], and in infant
mortality, which presumably is driven by infanticide. Third, we examined how the cause of infant deaths
varied by unit size, specifically considering the extent to which maternal mortality and/or infanticide
explained these patterns. Taken together, our results show that females in mid-sized units appear to
display optimal fitness, resulting from the combination of survival and social pressures.
MATERIALS AND METHODS

Study site and subjects

The data for this study derive from 14 years of observation (Jan 2006-Jul 2020) on a population of wild geladas living in the Simien Mountains National Park, in northern Ethiopia (13°13.5’ N latitude). The Simien Mountains Gelada Research Project (SMGRP, formerly the University of Michigan Gelada Research Project) has collected behavioral, demographic, genetic, and hormonal data from individuals since Jan 2006. All gelada subjects are habituated to human observers on foot and are individually recognizable. We used longitudinal data from 200 adult females in 46 reproductive units (20 original “founding” units that later became 26 “daughter” units due to fissions).

Unit size

The identities of all individuals in a unit were recorded each day the unit was seen. For each month of the study period, we recorded the total number of adult females in each unit; where changes in unit size occurred (i.e., due to adult female deaths or subadult female maturations), we used the maximum number of adult females in a unit in a given month. We focus on adult females because we have longitudinal records of the number of adults in each unit for the entire study period but only started recording the total number of individuals (including juveniles and infants) in 2012. However, when we compared the number of adult females in a unit to the total number of individuals in a unit for the subset of data where we have both (2012-2020), we found that both values were highly correlated (Pearson correlation coefficient = 0.76, p-value = 2.2 x 10^{-16}).

Gelada units contain one reproductively dominant leader male as well as 0-3 follower males that receive few reproductive opportunities but can deter male takeovers [42]. Thus, we did not include males when calculating group size, as the number of females and the number of males could have contrasting impacts on female fitness components. Furthermore, the number of males was weakly correlated with
the number of females (Pearson correlation coefficient $= 0.18$, p-value $= 2.2 \times 10^{-16}$). For these reasons, we consider males separately in all relevant analyses.

Changes in the number of adult females in a unit were primarily due to female maturations and deaths. Maturations were recorded as the first observation of a sex skin swelling (details are outlined in [53]). Deaths were recorded as the first day an adult female was no longer observed with a unit for more than three consecutive encounters with that unit (and not observed in a different unit, as in the case of transfers or fissions).

Dates of fissions, fusions, and female transfers were calculated as the first day the unit females were no longer observed together and subsequently observed either in a separate daughter unit with a new leader male (for fissions), together with non-unit females and a new leader male (for fusions), or associating with a different unit and new leader male (for the rare cases of female dispersal). In all cases, we immediately identified known females in daughter units or new units following their disappearance from their natal unit.

All models included female unit size as a continuous predictor variable. However, for visualization purposes, we also categorized units into small, medium (i.e., mid-sized), and large units based on the observed range in variation in sizes. Specifically, cut-offs were determined by calculating the tertiles of the observed monthly distribution of sizes: “small” indicates units of less than or equal to 4 adult females; “mid-sized” indicates units from 5-7 adult females; and “large” indicates units of 8 or more adult females.

Adult female mortality
For this analysis, we included data on 200 adult female geladas. All adult females had known or estimated birth dates from which we calculated age. Dates of birth were known for 56 adult females born during the study, while the remaining females’ birth dates were estimated using their size at the start of observation (n=44), back-calculated using life history milestones (i.e., maturation or first birth, n=40), or extrapolated from their total number of infants (n=60). The mean age at the mid-point of the study (2013) for all females was 11.86 +/- 5.14 SD years (range = 3.54 - 28.90 years). There was no association between unit size and female age (estimated or known; females estimate = -2.01 +/- 2.35 SE, p-value = 0.394).

To assess whether the rate at which adult females died varied by unit size, we calculated each females’ average unit size during each year of observation. Here, the unit of observation was the female-year. From this, we constructed a binomial generalized linear mixed model (GLMM) using the lme4 package (version 1.1.20: [54]) in R (version 3.6.0: [55]). The dependent binary variable indicated whether the female died during the study year, which was modeled as a function of the following predictors: unit size (the average number of females in the unit, including both the linear and the quadratic term), the females’ age at the start of the year (linear and quadratic), and the number of males (i.e., the total number of adult follower males plus one leader male). We controlled for the repeated measures of female, unit, and year as random effects.

Reproductive performance

For the majority of infants born during the study period (n = 352 out of 394 total), the date of birth was known within a day or two. For those infants where exact date of births were unavailable (n = 42), we were able to assign a birth date within 1 month of the actual birth date based on established morphological and behavioral criteria (i.e., the size of the infant, infant motor skills, presence/absence of the umbilical cord; for more details, see [53]). Conception dates were retrospectively assigned by
subtracting the mean gestation length (n = 183 days; see [53]) in the population from the observed or
estimated date of birth.

We used a binary scoring system to assign female reproductive performance on a monthly basis.
Females were “successful” in a given month if they conceived an infant that survived to 1.5 years of age,
which is the mean age of weaning in this population (regardless of actual weaning date). Females were
considered “unsuccessful” if they conceived an offspring that died before reaching 1.5 years of age or if
they did not conceive during the calendar month. We excluded all months and births after 2018, as the
survival outcomes of these infants were not resolved by the end of the study period.

To assess the effects of unit size on female reproductive performance, we constructed a binomial
GLMM. The dependent binary variable was the monthly success variable for each female-month (273
successful female-months, 996.5 female-years total, 188 females). We modeled this outcome variable as
a function of the following predictors: female age (both the linear and quadratic term, to control for the
known effects of female age on reproductive output, reviewed in [56]), number of females, and the
number of males. We controlled for the repeated measures of individual identity, unit, and year as
random effects. We additionally modeled reproductive performance using 6-month bins (i.e., Jan-Jun,
Jul-Dec), using the same binary outcome listed above and including the average number of females and
males as fixed effects. The results from this separate analysis (Supplementary Table S6) were congruent
with those generated from the models using monthly data.

Although we do not have the data necessary to calculate lifetime reproductive success, we coarsely
estimated this value by using annual mortality rates and successful reproductive rates at the three unit
size categories (i.e., small, medium, large). Specifically, we summed the total number of deaths and
successful offspring within each unit size category and divided by the total number of female-years
respectively. Using these annual mortality rates, we then calculated median reproductive lifespans, which were then multiplied with corresponding reproductive rates to approximate lifetime reproductive success at each unit size category.

Interbirth intervals

Using the birth dates of all infants in this population, we calculated interbirth intervals (IBIs) between females’ successive offspring. We constructed two linear mixed models (LMM) using the lme4 package. For both models, the dependent variable was the length of the IBI in days, which was modeled as a function of unit size at the first infant’s birth (both linear and quadratic), the mother’s age, and the infant’s sex. In the first model, we utilized only IBIs following surviving offspring (n = 187), as infant mortality substantially shortens IBIs in this population and elsewhere [47]. However, because IBIs may capture instances of takeover-related fetal loss (i.e., the ‘Bruce effect:’ [45]), which can lengthen IBIs [52], in the second model we only included the subset of IBIs that did not contain takeovers or infant deaths (n = 82). Rather than reflecting pregnancy loss, variation in these “takeover-independent” IBIs should reflect the ecological advantages (e.g., higher food intake) that some females have over others in their ability to wean offspring and conceive again.

Infant mortality

The disappearance of any infant prior to the average age at weaning in this population (1.5 years of age: [53]) was assumed to be a case of infant mortality. To assess infant mortality and its causes across unit sizes, we constructed a mixed-effects Cox proportional hazards model using the R package coxme [57]. For this model, we used all 394 infants born during the study period. Infants entered the dataset at birth and were censored at death (n = 90) or if their social units stopped being observed (n = 17) and exited the dataset when they survived to 1.5 years of age (n = 287). We used the number of females present during the month of the infant’s birth as a fixed effect, including both linear and quadratic terms. We
included birth-year, unit, and maternal ID as random effects. Schoenfeld residuals showed no significant deviations from the assumption of proportional hazards.

Takeover rates

We recorded the dates of all observed male takeovers \((n = 80)\) of known reproductive units (following [46]) as well as the number of mature females in the unit at the time of takeover. We calculated the length of time each unit was seen at a given size for each year the unit was observed (244 total unit-years) and counted the number of takeovers that occurred during these periods. To calculate the influence of unit size (i.e., number of adult females) on the likelihood of takeover, we modeled the number of takeovers a unit experienced as the dependent variable in a Poisson GLMM, offset by the total observation time the unit was seen at a given size. To control for repeated measures across units and time, we included unit and year as random intercepts. Finally, we included two fixed effect variables: the number of adult females in the unit and the average number of males.

Causes of infant mortality

To examine whether the probable causes of infant mortality varied with unit size, we assigned the cause of mortality based on the following characteristics: if the infant’s death occurred within 6 months of a takeover, the cause of death was recorded as “infanticide” \((n = 31)\) [46,47]. If the infant died within 3 months of their mother’s death or disappearance, the cause of death was recorded as “maternal death” \((n = 27)\). If maternal and infant disappearances co-occurred within the 6 months following a male takeover, however, the cause of death was still flagged as “maternal death” \((n = 4)\). All other causes of infant deaths were recorded as “unknown” \((n = 32)\). For each of these mortality outcomes, we constructed a binomial GLMM using the *lme4* package. Here, we modeled whether the infant died of each respective mortality cause (i.e., maternal death, infanticide, and unknown) as a binary variable, using unit size (both linear and quadratic) as a fixed effect and unit as a random effect. For these three analyses, we
used only infants whose survival outcomes were known (i.e., no right-censored offspring; n = 377). All figures were constructed using *ggplot2* [58], and prediction intervals were extracted from mixed-models using the *effects* package [59].

RESULTS

Adult female death rates

Of the 200 adult females included, 90 died before the end of the study period (median age at death = 15.99 years). Unsurprisingly, the odds of dying increased substantially with age (age estimate = 26.69 +/- 4.41 SE, *p*-value = 1.4 x 10^{-9}). Females in small units had the highest mortality rates (females estimate = -8.33 +/- 4.41 SE, *p*-value = 0.043, figure 1a). Specifically, females in small units had an annual mortality rate of 9.8%, while females in medium and large units had an annual mortality rate of 6.8% (figure 1b). Using these annual mortality odds, we estimated that the median reproductive lifespan in small units would last 7.18 years, while the reproductive lifespan in mid-sized and large units would last 10.83 years.

Reproductive performance

Although units in this population can range in size from 1-12 adult females, females in units in the middle of this range (i.e., between 5-7 adult females, hereafter “mid-sized” units) had the highest reproductive performance. Females in mid-sized units were most likely to conceive successful offspring (females^2 estimate = -17.86 +/- 6.95 SE, *p*-value = 0.0102, figure 1c) and were 17.6% more successful than females in small units and 39.8% more successful than females in large units (figure 1d). Given the reproductive lifespans estimated above, females are expected to produce approximately 3.46 infants in mid-sized units, compared to 1.94 infants in small units, and 2.47 infants in large units.
Figure 1. Female fitness is optimal in mid-sized units. (a) The association between unit size (number of females in a unit) on the annual probability of death, calculated as the number of deaths observed at each unit size divided by the total number of female-years. Confidence bands show the lower and upper limits of the model predictions, with colors following the unit size categories described in Methods. The size of each point is proportional to the number of female-years observed at each unit size. (b) The annual death-rate by unit size category. The dotted horizontal line = 0.08 (the population mean). Unit size categories were used for visualization purposes only (see Methods). (c) The effect of unit size on the annual likelihood that females conceived an infant that survived to weaning. Points indicate successful conception rates at each unit size, generated from raw data. The size of each point is proportional to the number of female-years observed at each unit size. Confidence bands show the lower and upper limits of the model predictions. Although the model output specified monthly probabilities, we converted these to annual probabilities for the sake of visualization. (d) The rate of producing surviving offspring by unit size category. The dotted horizontal line represents the population mean (0.274). Unit size categories were used for visualization purposes only (see Methods).
Interbirth intervals

IBIs tended to be longer in larger units (females estimate = 493.9 +/- 242.6 SE, \(p \)-value = 0.043; females\(^2 \) estimate = 388.7 +/- 226.4 SE, \(p \)-value = 0.087; figure 2a). However, this effect was no longer significant when only IBIs that were uninterrupted by takeovers were included for analysis (females estimate = 39.18 +/- 230.7 SE, \(p \)-value = 0.868; females\(^2 \) estimate = 377.7 +/- 225.1 SE, \(p \)-value = 0.107; figure 2b).

Infant mortality

Out of 394 infants, 90 (22.8%) died before reaching 1.5 years. Infants born into small and large units were more likely to die before this age than infants born into medium-sized units (HR=1.06 +/- 0.017 SE, \(p \)-value = 0.0018; figure 2c). Specifically, 28.1% and 33.8% of infants born into small and large units died before weaning, while only 10.4% of infants born into mid-sized units died before reaching this age.
Figure 2. Unit size does not influence interbirth intervals, but does impact infant survival. (a) Interbirth intervals across unit size categories, including intervals where takeovers occurred. (b) Interbirth intervals across unit size categories, excluding cases where takeovers occurred. Each red, orange, and yellow point represents an interbirth interval at each unit size category. Black points and error bars indicate means and 95% confidence intervals across the three categories (c) The effect of unit size at birth on infant survival, as indicated through survival curves to 1.5 years of age. Unit size categories were used for visualization purposes only.

Takeover rates

Takeover frequency increased with unit size (females estimate = 7.33 +/- 2.48 SE, \(p \)-value = 0.003, figure 3a). On average, small units experienced male takeovers once every 4.15 years, mid-sized units once every 3.17 years, and large units once every 1.61 years. However, the number of males did not influence the frequency of takeovers (males estimate = -0.08 +/- 0.113 SE, \(p \)-value = 0.458).

Causes of infant mortality

Infanticides and maternal death accounted for 38.9% and 25.6% of all dependent infant deaths respectively. Despite the fact that small units experienced the lowest takeover rates, females in mid-
sized units experienced the lowest infanticide rates (females^2 estimate = 10.81 +/- 3.72 SE, p-value = 0.004, figure 3b); 9.1% and 12.8% of infants born into small and large units experienced infanticide respectively, while only 3.0% of infants in mid-sized units experienced infanticide.

Second, infants in mid-sized units were about half as likely to die as a result of maternal death as females in small and large units (females^2 estimate = 5.25 +/- 3.38 SE, p-value = 0.12, figure 3b), though this effect was not significant. Specifically, 9.1% and 8.3% of infants born into small and large units died following their mothers’ deaths, while only 4.5% of infants in mid-sized groups died under these circumstances. Lastly, there was no association between unit size and mortalities of unknown cause.

Fig. 3. Takeovers and the causes of infant mortality vary with unit size. (a) The annual takeover-rate by unit size category. The dotted line represents the population mean (0.341 takeovers per unit-year). (b) The proportion of infants that died before 1.5 years of age, partitioned by likely causes across unit size categories. For the plots above, unit size categories are used solely for visualization purposes.
DISCUSSION

Taken together, our results show that females in mid-sized units exhibit the highest fitness. Females in smaller units have the highest mortality rate and females in both smaller and larger units have lower reproductive performance, primarily as a result of social pressures. Specifically, male takeovers are more frequent in larger units and are more likely to lead to infanticide when they do occur in smaller units. We also show that infant death rates, but not takeover-independent female fertility (i.e., uninterrupted interbirth intervals), vary by unit size, with the lowest infant death rates occurring in mid-sized units. As a result, females in mid-sized units demonstrate the highest reproductive performance and, when factoring in variation in adult female death rates, are expected to produce more offspring over the course of their reproductive lifespan than are females in small or large units.

Social factors – specifically, conspecific threat of infanticide – have been proposed as one potential solution to the “folivore paradox” [37], where folivorous species tend to form smaller groups than would be expected based on resource availability (which we do not expect to vary significantly across gelada units, as units within the same band share a homerange). However, larger groups have also been suggested to act as a deterrent to male takeover and infanticide [39]. Here we show that both forces may work in conjunction in gelada society to result in optimal mid-sized groups. Infanticide in large units was driven by high rates of male takeovers. By contrast, we are less certain why infanticide in small units was also high, despite infrequent takeovers. One possibility is that small units have poorer infant defense (e.g. as suggested in langurs: [39]). Another possibility is that new males may be more likely to commit infanticide in smaller units because smaller units present fewer immediate reproductive opportunities (i.e., receptive, cycling females) than larger units. A third possibility is that infanticide risk (similar to predation risk) may also follow a “dilution effect” [60], where infants in large units are buffered by an increased number of potential targets. By contrast, our proxy for ecological factors, IBI ([7]), did not appear to explain variation in reproductive performance across units and did not differ
across unit sizes (after removing cases where male-mediated pregnancy loss may have occurred). In sum, variation in gelada reproductive performance was largely explained by social factors.

Adult female mortality, which contributes to low lifetime reproductive success, was highest in small units. Although female deaths could be triggered by takeover-related injuries [52], smaller units experienced less frequent takeovers than mid-sized or large units; and, we did not observe an increase in female deaths after takeovers (in contrast to infant deaths, which do increase following takeovers: [52]). Females in small units may be more likely to die because females in larger units can monopolize food resources. Although folivores are thought to experience less feeding competition (due to the dispersed nature of their resources: [32]), research suggests that both within-group and between-group competition over resources can still influence female nutrition and energetics (e.g., [61,62]). Female geladas form strict dominance hierarchies within units [63], but our understanding of between-unit dominance is lacking. However, given that feeding-related aggression between units is relatively rare and low-intensity [64], we consider it more likely that females in small units may be more vulnerable to predation. Although the large foraging bands characteristic of gelada social structure likely act as a deterrence to predators [44], females in larger units may monopolize locations within the band during the day or sleeping position on the cliffs at night, thus leaving small units vulnerable at the periphery. This question will require simultaneous targeted data collection on relative group position - a focus of future research.

What (if anything) can females in suboptimal groups do? Units consist of close maternal kin and females tend to remain in the same unit they were born into [65]; in this population, individual female dispersal is rare (n = 2; 0.008 per unit-year). Small units, with their lower reproductive performance, require more time to grow in size via juvenile maturation. Preliminary observations from our study population suggest that small units can sometimes fuse together into one larger unit, but such occurrences are also rare (n =
3; 0.012 per unit-year) and involve a number of potential hurdles (e.g., resistance of leader males and/or unrelated females). In contrast, gelada social organization may offer a unique opportunity for fissions to occur, as bands may buffer the ecological costs of fissions, but fissions resulting in too-small units may be more costly than remaining in a too-large unit (and again, females might be limited by the presence of a resident leader male). In our population, large units have been observed to fission (n = 11; 0.045 per unit-year), however, more long-term data (particularly focused on social network metrics among females) are needed to understand the factors that lead up to both fissions (and subsequent group membership decisions) and fusions.

As previously reported in this gelada population [48], takeover frequency was positively correlated with the number of females (but not males) in a unit. This stands in contrast to our previous research showing that multimale units (consisting of a leader male and 1+ “follower” males) experienced fewer takeovers per unit-year than units with only one adult leader male across all unit sizes [42]. Indeed, in a number of primates, group composition (e.g., the ratio of males to females) has been shown to reduce the risk of takeovers and/or infanticide (e.g. [66], reviewed in [67]). For example, reproductive success of female white-faced capuchins (*Cebus capucinus*) was both negatively correlated with group size and positively correlated with the ratio of males to females in the group [68]. In contrast, multimale groups of ursine colobus monkeys (*Colobus vellerosus*) had higher rates of male immigration and infanticide, perhaps because these dominant males were ineffective at deterring immigrants [38]. Thus, the consequences of follower males in geladas may rather depend on their individual reproductive tactics and the ability of leader males to regulate group membership, which require further data and analysis; whether females in small or large *multimale* units demonstrate higher reproductive performance than females in small or large *single-male* units remains to be seen.
The link between group size and individual fitness has long been the focus of socioecological theory, yet it has been difficult to demonstrate this relationship for long-lived species with empirical data. Here, we were able to leverage long-term data from a population of wild geladas comprising multiple groups of variable size to test the extent to which social and ecological factors shape optimal group size. Our findings provide insight into how and why group size shapes female fitness – specifically, adult female mortality and conspecific infanticide.
ACKNOWLEDGEMENTS

We would like to thank the Ethiopian Wildlife Conservation Authority (EWCA) and the wardens and staff of the Simien Mountain National Park for their permission and ongoing support for our long-term research project. Additionally, we are grateful to our excellent field team across the years, most especially E. Jejaw, A. Fanta, S. Girmay, J. Jarvey, and M. Gomery for their assistance with field data collection. We also owe thanks to A. Marshall, B. Dantzer, and J. Mitani for providing valuable feedback on data analyses. Funding: This work was supported by: National Science Foundation (grant numbers BCS-0715179, IOS-1255974, BCS-1340911, IOS-1854359; BCS-1723237; BCS-17123228; BCS-2010309); Leakey Foundation (multiple grants); National Institutes of Health (grant number R00-AG051764); National Geographic Society (grant numbers 8100-06, 8989-11, 50409R-18; the Fulbright Scholar Program; Sigma Xi; American Society of Primatologists; Wildlife Conservation Society; and the University of Michigan. Author contributions: ETJ, TJB, NSM, and JCB designed the study. ETJ, AL, TJB, NSM, and JCB collected the data. ETJ, JAF, AL, TJB, NSM, and JCB analyzed the data. ETJ, JAF, and NSM wrote the paper, with contributions and edits from all authors. ETJ, JAF, AL, TJB, NSM, and JCB provided funding support. Competing interests: Authors declare no competing interests. Data and materials availability: All data and code used in this analysis are available at: https://github.com/GeladaResearchProject/TinsleyJohnson_Feder_et_al_Goldilocks_2021.
REFERENCES:

35. Archie EA, Morrison TA, Foley CAH, Moss CJ, Alberts SC. 2006 Dominance rank relationships

55. R Core Team. 2020 R: A language and environment for statistical computing. R Core Team, Vienna, Austria.

