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ABSTRACT

High-throughput cell proliferation assays to quantify
drug-response are becoming increasingly common
and powerful with the emergence of improved
automation and multi-time point analysis methods.
However, pipelines for analysis of these datasets
that provide reproducible, efficient, and interactive
visualization and interpretation are sorely lacking.
To address this need, we introduce Thunor, an open-
source software platform to manage, analyze, and
visualize large, dose-dependent cell proliferation
datasets. Thunor supports both end-point and time-
based proliferation assays as input. It provides a
simple, user-friendly interface with interactive plots
and publication-quality images of cell proliferation
time courses, dose–response curves, and derived
dose–response metrics, e.g. IC50, including across
datasets or grouped by tags. Tags are categorical
labels for cell lines and drugs, used for aggregation,
visualization, and statistical analysis, e.g. cell line
mutation or drug class/target pathway. A graphical
plate map tool is included to facilitate plate
annotation with cell lines, drugs, and concentrations
upon data upload. Datasets can be shared with
other users via point-and-click access control. We
demonstrate the utility of Thunor to examine and
gain insight from two large drug response datasets:
a large, publicly available cell viability database
and an in-house, high-throughput proliferation rate
dataset. Thunor is available from www.thunor.net.

INTRODUCTION

Understanding the effect of drugs and other perturbagens
on cell proliferation has relevance to several fields in
biomedicine, most notably in cancer (1)(2). Human cell
lines provide a widely available, relatively standardized, and
scalable in vitro system in which such effects can be quantified
and compared (3). High throughput screening (HTS) is a
framework in which cells can be imaged and counted at
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scale, across multiple cell lines, drugs and doses using large,
robotically automated facilities, and more recently using all-
in-one incubator and cell imaging devices e.g., IncuCyte S3
(Essen Bioscience Inc., Ann Arbor, Michigan, USA). In these
studies, in vitro drug response is traditionally quantified in
terms of cell viability, i.e., the cell count at a particular time
point (usually 72 hours) post drug addition as a fraction
of control (unperturbed) cells (4). Recently, we (5) and
others (6) introduced novel drug-effect metrics based on
cellular proliferation rates. These rate-based metrics avoid
biases inherent in traditional viability assays, which can
produce misleading interpretations, e.g., of cell line sensitivity
to drug (5). While estimating proliferation rates is more
demanding than performing traditional end-point assays, new
automated systems (including the IncuCyte) have greatly
reduced this burden. Therefore, for both end-point and time-
based measurements, the primary challenge is no longer
data generation but rather dataset management, analysis, and
visualization at scale. Unfortunately, these tasks often involve
a cumbersome and error-prone workflow involving processing
of multiple instrument-exported file types, manual aggregation
of spreadsheets, and analyses using (often costly) commercial
software packages or custom code written in languages such
as Matlab, R, or Python, which require time and computational
skill to set up. Existing graphical software is often either
specific to certain end-point only datasets (7) or lacks tools for
annotating, storing and sharing datasets as well as interactive,
multi-dataset visualization and statistics (8).

In this manuscript, we introduce Thunor (THOO-nor), a
free software platform to address the challenges of analyzing
and visualizing end-point and time-course cell proliferation
datasets. We provide a description of the software and its
web interface, inputs, and key features. We demonstrate
the utility of Thunor with two case studies. First, we
explore relationships between cell line drug sensitivity, drug
pathway/molecular target, and tissue site of origin in the
publicly-available GDSC dataset (9). Then, we demonstrate
the use of proliferation rate-based data using an in-house,
high-throughput proliferation rate screen, and show how
Thunor can help check for common quality control issues
and explore these data interactively. We then provide a
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Figure 1. Thunor Web user workflow. Thunor accepts cell count data from end-point or time course experiments on microtiter (multi-well) plates. Layout data
(describing cell line, drug, and drug concentration metadata) can be included or entered using a graphical interface. Data are automatically processed on upload
and stored in a database, where they can be shared with other users, labeled with categorical tags for analysis, or explored using an interactive plot interface.

brief discussion—methods and software implementation are
described at the end. The Thunor software, documentation,
and a read-only demonstration instance are available at
www.thunor.net.

RESULTS

Software and web server description
Thunor is an open-source software platform that solves the
storage, sharing, analysis, and visualization challenges of
large-scale in vitro drug response datasets – both end-point

viability and cell proliferation time courses. The drug-induced
proliferation rate (DIP rate) (5) is a quantitative metric of
cell proliferation calculated from time-course data; a set of
values obtained from different drug concentrations can be fit
by models of dose–response relationships and analyzed in an
analogous manner to viability. To our knowledge, Thunor is
the only tool that provides an interactive graphical interface
for both types of data, combined with a database, group-based
dataset sharing, and graphical annotation tools. A comparison
to related software is provided in Supplementary Text S2 and
Supplementary Table S1.
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Figure 2. Thunor interactive plot interface. 1. Multi-column layout option.
2. Multi-dataset plot option. 3. Plot toolbar. 4. Download plot images (SVG,
PNG) or data (CSV, JSON). 5. Proliferation time course. 6. Automatic DIP
rate delay detection. 7. Click to show/hide plot traces. 8. Change plot panel.
9. Flexible data selection and aggregation; by cell line, drug, or user-defined
“tags.” 10. Zoom, pan, and rescale axes. 11. Hover mouse (tap on touch
devices) to view underlying data. 12. Comparison of two parameters (e.g.,
IC50 vs. EC50), or one parameter across two datasets. 13. Built in statistical
tests. 14. Box plot showing aggregation of cell lines.

Thunor’s central features include a web interface drag-
and-drop file upload with automatic dose–response metric
calculation; a powerful, multi-paneled, interactive plot system
with statistical analyses, inter-dataset comparisons, and a
”tag” system which allows aggregation of drug and cell
lines by categorical features of interest (e.g. drug molecular
target, cell line phenotype, cell line tissue of origin etc.) for
rapid, interactive, code-free analysis of large datasets (Fig. 1).
Visualizations can be used for both quality control checks
and analyses, and include automatic statistical tests where
appropriate. Datasets and tags can be easily shared with other
users by point-and-click.

Thunor is split into a core Python library for analysis
and visualization (Thunor Core) and a web application
(Thunor Web). Thunor Core performs DIP rate calculation,
curve fitting, and visualization capabilities. It can be used
with Jupyter Notebooks (jupyter.org) and the wider Python
ecosystem, enabling documented, reproducible analysis
workflows to be archived and extended as needed. The Thunor
Web interface accepts user data (cell count data; end-point

or time-course), processes it into viability scores, DIP rates,
and dose–response curves and their derived metrics using
Thunor Core, and stores it in a database. These data can
then be shared with other users, annotated with tags for
aggregated analysis and statistics, and viewed and interrogated
interactively (Fig. 2).

Inputs
Thunor accepts cell count data in tab-separated value (TSV),
HDF5, or IncuCyte Zoom (Essen Bioscience Inc., Ann Arbor,
Michigan, USA) file formats from fluorescence-based or cell
segmentation and counting platforms. Each contains a plate
identifier, well identifier, cell count, and time point. The
TSV format can be annotated (wells are already labeled
with cell line name, drug name, and drug concentration) or
unannotated. See Supplementary Text S1 for further details.

For unannotated cell count data, the dataset can be
annotated using a graphical plate map layout tool
(Supplementary Fig. S2), or by uploading the annotation
data in TSV or Javascript Object Notation (JSON) formats.
The plate map layout tool can also export layouts in these
formats for reuse on new datasets.

Tags are categorical data applied to cell lines or drugs, such
as cell line tissue of origin, or drug class/molecular target.
Tags can be uploaded as a TSV with columns ”tag name”,
”tag category”, and either ”drug” or ”cell line” for drug/cell
line tags respectively. Tags can also be entered and edited
using Thunor Web’s graphical tag interface (Supplementary
Fig. S3).

Availability and documentation
Thunor Core and Thunor Web are freely available under
the GNU General Public License version 3.0. An online,
open access, read-only demo of Thunor Web is available at
demo.thunor.net, which has been preloaded with the the case
study datasets from this manuscript. A chat room provides an
option to ask questions not addressed in the documentation
and to contact the authors. These resources are all linked from
the Thunor website, thunor.net.

Case Study: Genomics of Drug Sensitivity in Cancer
The Genomics of Drug Sensitivity in Cancer (GDSC) (1)
is a large dataset of cell viability and drug dose–response
relationships. As an example of the utility of Thunor, we
sought to identify drugs targeting cellular processes and
pathways that have an outsized effect on collections of
cell lines, grouped by their primary site/tissue of origin.
Traditional analysis would either examine cell lines and drugs
individually, or require custom code to group the data for
analysis (9). Thunor enables these analyses from the graphical
web interface.

Version 17a of the GDSC dataset (1) was downloaded
and converted for use with Thunor HDF5 format (script
included with Thunor Core). The converted dataset includes
72 hour luminescence-based cell viability assays for 1074
cell lines and 250 drugs over 9 concentrations. Annotation
details, including cell lines’ primary site (tissue of origin)
and drugs’ molecular targets and pathways, were similarly
obtained, converted into a TSV file and loaded as Thunor tags.
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Figure 3. Thunor-generated plots for GDSC viability data. (A)
Comparison of drug sensitivities between cell lines of tumors from different
primary sites (lung, breast, aerodigestive tract (aerodig), and skin and treated
with drugs of various classes, indicated by colors. The number of cell lines
and drugs within each group are shown in parentheses and. Drug response
is quantified by observed activity area (Activity area observed) and plotted
as boxplots. (B) Only the data from (A) of EGFR-family-specific drugs are
shown. (C) Only the skin and aerodigestive tract cell lines from (B) with
responses to the individual drugs in the EGFR tag are shown. (D) Bar plot
of sensitivity (AA observed) of cell lines from skin and aerodigestive tract
cancers to EGFR-family-specific drugs. Colors correspond to cell line tags.
Most sensitive cell lines have been expanded for easier visualization in the plot
on right. (E) Dose–response curves of TE4 cells response to EGFR, ERBB2,
and dual-targeting drugs respectively.

Our GDSC analysis is summarized in Fig. 3. We examined
a subset of cell lines from four primary sites (lung, breast,
skin and aerodigestive tract; epithelial tissues known to
be regulated by epidermal growth factor receptor (EGFR)
family members (10)) for their sensitivity to drugs annotated
by any of six cellular processes and pathways relevant to
cancer (apoptosis regulation, cell cycle, EGFR signaling,
ERK MAPK signaling, PI3K/MTOR signaling, and RTK
signaling) using the activity area metric—the area above the
dose response curve that increases with both drug efficacy
and potency (Fig. 3A). As a group, cell lines from the
aerodigestive tract had greater activity areas in response to
inhibitors of EGFR signaling (Fig. 3B) and the drug afatinib
appears to be driving the differences between cell lines from
skin and the aerodigestive tract (Fig. 3C) and is further
confirmed when examining the activity areas obtained from
individual cell lines which identified TE-4, an aerodigestive
tract cell line, as the cell line with the greatest response to
afatinib (Fig. 3D). Afatinib and gefitinib, drugs that alter
the activity of both EGFR and the related ERBB2, resulted
in dose–response curves with relatively greater potency and
efficacy compared to the other EGFR inhibitors (EGFRi)
when applied to the TE-4 cell line (Fig. 3E). Investigation
of the genetic alterations of TE-4 provided by the Broad
Institute (11) uncovered genomic amplifications of both EGFR
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Figure 4. Thunor-generated plots for high-throughput time-course
dataset HTS007. (A) DMSO control drug-induced proliferation (DIP) rates
by plate, showing cell line growth reproducibility. (B) DIP rate by well
(blue is negative growth, orange is positive, gray is no data). (C) MCF10A
cell line relative DIP rates for four drugs. One of each color pair of lines
shows data for MCF10A cultured at Vanderbilt (-VU); the other from cells
cultured at Harvard Medical School (-HMS). (D) Cell proliferation time
course (dotted lines) with DIP rate fit (solid lines) for each concentration
replicated twice. The interactive interface allows trace hiding for added clarity.
(E) Dose–response curve for MCF10A-VU cells in abemaciclib. Black dots
show proliferation rate without drug (concentration for graphing purposes is
set relative to lowest tested dose). Red dots show experimental replicates.
Solid line shows model fit. (F) Potency (IC50) versus efficacy (maximum
effect observed) for entire dataset, colored by cell line. + symbol indicates
potency estimate truncated at edge of observed concentration range.

and ERBB2 (6 and 14 copies, respectively), suggesting
a mechanism for its enhanced sensitivity. This analysis
demonstrates how Thunor can be used to navigate a large
dataset and focus down into a specific line of enquiry by
following the data. Each plot can be produced in a matter of
seconds, which enables rapid exploration of datasets with no
programming needed.

Case Study: In-house cell proliferation dataset
The use of time-dependent measurements of cell proliferation
instead of end-point viability can mitigate experimental biases
found in the latter and has been shown to relate drug-response
to cell phenotype (5, 12). Here, we demonstrate that Thunor
can examine these data for common quality control issues and
can visualize and analyze these data with the same ease as
end-point data.
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The HTS007 dataset contains a panel of eight breast cancer
cell lines treated with 27 drugs at multiple concentrations
generated in the High Throughput Screening Core of
Vanderbilt University. Cell proliferation was quantified over
five days. The dataset was uploaded to Thunor Web for
analysis and visualization (Fig. 4). Thunor Web calculates
the DIP rate and dose–response curves automatically, but it
is useful to perform quality control (QC) checks to look for
common experimental anomalies before proceeding. HTS007
used two plates for each cell line, thus we can check the
reproducibility of cell growth rates in undrugged conditions
across replicate plates for each cell line (Fig. 4A). We can also
determine whether any spatial bias exists across the plate by
visualizing the proliferation rate of each well overlaid onto the
plate layout (Fig. 4B). This helps to identify, for example, if
drugs were misapplied or the presence of ”edge effects.”

The HTS007 dataset contains two variants of the MCF10A
cell line—one modified to express histone 2B conjugated to
monomeric red fluorescent protein (H2B-mRFP) at Vanderbilt
University (MCF10A-VU) and one expressing mCherry-
conjugated H2B (H2B-mCherry) at Harvard Medical School
(MCF10A-HMS). Data generation to evaluate the dose-
dependent effects of drugs on cell proliferation rates was
performed at Vanderbilt in both cases. The dose–response
characteristics of the two cell line variants demonstrates
high reproducibility, with similar dose–response curves
obtained from four selected drugs (abemaciclib, ceritinib,
doxorubicin, etoposide) (Fig. 4C). We confirmed that the
dose–response curves are representative of the underlying cell
growth characteristics at the various drug concentrations by
visualizing the cell proliferation data (dash-dotted lines) and
calculated DIP rate (solid lines, where the gradient is the DIP
rate) for MCF10A-VU in abemaciclib at each concentration
and well replicate (Fig. 4D). This view is useful for checking
that any delay in drug response is correctly detected by the
automated algorithm and the DIP rate quality of fit. Traces can
be toggled on and off for clarity, where many concentrations
are present. The DIP rate can also be viewed overlaid on the
dose–response curve (fig. 4E), where each data point shows
the DIP rate for each well replicate (corresponding to the
gradients in fig. 4D). Black dots show undrugged/control data
points, where the x-axis value is set one order or magnitude
below the lowest measured dose due to the log scale. Thus,
the quality of dose–response curves fits can be examined
individually based on underlying data. Finally, as an example
dataset-wide visualization, we show the maximum drug effect
observed (efficacy) versus the IC50 (potency) for all cell
line/drug combinations in the dataset, colored by cell line
(fig. 4F). This shows how multiple metrics can be compared
in Thunor; for example, one may wish to screen for drugs
which are highly efficacious and potent. These plots are all
interactive; one can hover the cursor (or tap on touch devices)
to see information on data points and traces. Plots can be easily
refined and altered in the interactive interface in a few seconds.

DISCUSSION

High-throughput in vitro screens of large panels of chemical
compounds against hundreds to thousands of cultured cell
lines is a powerful and increasingly popular tool for probing
complex intracellular networks and identifying druggable

targets in hypothesis-driven biomedical research (13). There
is a need for easy-to-use tools to rapid explore large cell
proliferation datasets, including public datasets of end-point
measurements and time-series cell count data, which are
being generated in significant volumes by ourselves and other
groups.

Although end-point data currently predominate over time-
series data, a major Thunor feature is its ability to visualize
and interpret both data types. We have been assessing the
effects of drugs on cell proliferation over time for several
years (5, 14, 15) and have promoted the use of the drug-
induced proliferation (DIP) rate as a metric of drug effect
(5). Another group has also promoted a rate-based metric of
drug effect, the growth rate (GR; (6)), which utilizes a similar
quantification approach. Although there is a GR web interface,
GRcalculator (8), it lacks a database for storing and sharing
datasets with granular permissions, does not have the variety
of plot types available with Thunor, and lacks the ability
to add and analyze additional annotation as with Thunor’s
tagging system. Few other software packages have the ability
to utilize time-series cell proliferation data. We provide an
extended comparison of Thunor with this and other software
in the supplementary information (Text S2, Table S1), but we
believe Thunor adds significant value over the alternatives.
Its interactive nature facilitates rapid exploration of any size
dataset, and allows follow-up questions and hypotheses to be
formed and investigated with a few clicks.

We anticipate that Thunor will stimulate collaboration
between researchers, ease the exchange of drug-response
data, and improve analysis reproducibility and transparency.
Thunor is an active project and we encourage input and
contributions from the research community. Extensions under
consideration include drug combination response modeling,
additional statistical analyses, improved quality control checks
on data upload, and integration of -omics datasets (e.g.,
RNA-seq) to explore molecular correlates of drug sensitivity.

METHODS AND IMPLEMENTATION

HTS007 dataset
The HTS007 dataset (Data file S2) contains a panel of
eight breast cancer cell lines treated with 27 drugs at
multiple concentrations (four-fold dilutions). Each cell line
was modified to express fluorescent histone 2B (H2BmRFP)
to enable detection of nuclei via fluorescence microscopy.
Cells were imaged by automated fluorescence microscopy
approximately every four hours over five days in the
Vanderbilt University High Throughput Screening Core.
Nuclei were quantified by automatic image segmentation. The
dataset is included in the online demo (demo.thunor.net).

DIP rate calculation
The DIP rate is defined (5) as the gradient of the log2 cell
count over time, after any initial stabilization period. The
stabilization period is determined by iteratively excluding
more time points from the beginning of the time course,
evaluating goodness of fit at each step using linear regression,
the root-mean-square error (RMSE) and adjusted R squared
(ARSQ) are calculated. The final time point set is selected as
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follows:

argmax
m∈1..(N−1)

m ARSQ(X)·(1−RMSE(X))2 ·(n−3)0.25

where X is the model fit, N is the number of time points
available for the well, m is the index of first time point used
for the fit, n=N−m+1 is the number of time points used
for the DIP fit on the current iteration, and fit is a linear
regression fit to the data pointsm..N . A minimum of two time
points is required for a DIP rate fit (five or more is strongly
recommended). When exactly two time points are present, the
iterative procedure is skipped and the linear regression fit is
used.

Viability calculation
For viability calculations on multi-time point datasets, the
closest time point to 72 hours is used. In the Thunor plot
interface, the time point used can be verified by hovering the
cursor over a viability data point in a dose–response curve.
Viability is calculated as the ratio of the cell count in a well
to the mean of the matched control wells’ cell counts at the
same time point. Control wells are defined as wells on the
same plate, using the same cell line, but with no drugs added
to the well.

Dose–response curves
Dose–response curves are fitted using a log-logistic function
with three (viability) or four (DIP rate) parameters,

f(X,b,c,d,e)=c+
d−c

1+eb(lnX−lne)
.

where X is a vector of concentration values and b (Hill slope),
c (Emax), d (E0), and e (EC50) are fit parameters. In the
three-parameter case, d is set to 1 because viability is relative
to control, i.e., the effect at zero drug concentration is, by
definition, the control viability. The curve fitting is performed
using the curve fit function in SciPy (https://scipy.org/).
Initial values for the fit parameters are estimated from the data
using the same approach as the four-parameter log-logistic
(LL.4) function in the drc R package (16).

In the DIP rate case, the curve fit function selects a least
squares fit using the Levenberg-Marquadt algorithm (17). The
fit residuals are defined as

R=Y −f(X,P ),

where Y is a vector of response values (i.e., DIP rate), X is
a vector of drug concentrations, P is the set of fit parameters,
and f is the log-logistic fit function defined previously. The
standard error of DIP rate data points is incorporated into the
fit by minimizing

χ2=
∑
r∈R

( r
σ

)2
,

where σ is the standard error of a response value. Both control
and experiment DIP rate values are used in the curve fit. Since

the fit takes place in log2(concentration) space, a non-zero
dose must be assigned to controls (log(0) is undefined). We set
the concentration of controls to ten-fold less than the lowest
concentration inX . The curve fit is replaced with a “no effect”
model (shown as a horizontal dashed line in plots) if the dose–
response curve is not significantly different from that no effect
model (F-test, p<0.05). The fit is rejected (no dose–response
curve shown) if any of the following occur: a numerical error
occurs in the curve fit function, the fit EC50 is less than
the minimum concentration observed, or the fit E0 is greater
than the mean plus one standard deviation of the control data
points’ DIP rate values (where at least five control data points
are used in the fit) or greater than 1.2× the mean of the control
data points’ DIP rates (otherwise).

In the viability case, the sum-of-squared-residuals R
is minimized directly. Dose–response curves are fitted
with parameter constraints by the Trust Region Reflective
algorithm (18). The parameter constraints are that Hill slope
b must must positive, and Emax must be between 0 and 1 since
viability cannot be negative.

The calculation of derived dose–response curve parameters
like IC50 and activity area, and the available statistical analysis
for different plot types, are covered in Supplementary Text S1.
The difference between activity area based on the dose–
response curve and activity area ”observed” is shown in
Supplementary Fig. S4.

Thunor implementation
Thunor Core is a Python library, which provides core
functionality, including structuring dose–response data and
curve fit parameters using the Pandas library, automatically
calculating DIP rate, fitting dose–response curve models, and
plotting. Thunor Core can be used standalone, integrated
into other processing pipelines, or utilized within Jupyter
notebooks (https://jupyter.org), as shown in the Thunor Core
online tutorial (part of the Thunor Core documentation,
https://core.thunor.net). Thunor Web is built on Thunor Core,
and is also written in Python using the Django web framework.
It is deployed using Docker Compose, together with a
PostgreSQL database, Redis database, and nginx web server.
A script is included for easy deployment. An extended
description of the software implementation and links to
software dependencies are given in Supplementary Text S1;
the architecture is shown in Supplementary Fig. S1.

Software installation
Thunor Core is available from the Python Package Index
(PyPI) with the command pip install thunor on
Python ≥3.6.

Thunor Web is installed using Git (git-scm.com)
and Docker Compose (docs.docker.com/compose). For
convenience, a Python script is provided which automates
the deployment process, including database initialization,
creating an admin user, and adding transport layer security
(TLS) encrypted connections, if desired, using Certbot
(certbot.eff.org). Installation instructions are provided in
Supplementary Text S3.

Both tools are compatible with Windows, Mac, and Linux.
Smaller datasets (e.g., HTS007) require minimal resources;
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however for larger datasets like GDSC, a modern processor
and 16GB RAM or more are recommended.

ACKNOWLEDGEMENTS

We gratefully acknowledge technical assistance from
J. A. Bauer at the Vanderbilt High Throughput Screening
Core; M. Hafner and P. K. Sorger at Harvard Medical School
for providing cell lines and drugs; C. M. Lovly for access to
IncuCyte instrument and data; and C. E. Hayford, C. Meyer,
and D. Westover for useful discussions. Funding was provided
by the National Science Foundation (1411482 and 1942255
to C.F.L.), National Cancer Institute (U01CA215845 and
U54CA217450, to V.Q. and C.F.L.), and Defense Advanced
Research Projects Agency (Cooperative Agreement no. W911
NF-14-2-0022 to C.F.L.).

Conflict of interest statement. None declared.

REFERENCES

1. Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes,
S., Bindal, N., Beare, D., Smith, J. A., Thompson, I. R., Ramaswamy,
S., Futreal, P. A., Haber, D. A., Stratton, M. R., Benes, C., McDermott,
U., and Garnett, M. J. (2013) Genomics of Drug Sensitivity in Cancer
(GDSC): a resource for therapeutic biomarker discovery in cancer cells.
Nucleic Acids Res., 41, D955–D961.

2. Basu, A., Bodycombe, N. E., Cheah, J. H., Price, E. V., Liu, K., Schaefer,
G. I., Ebright, R. Y., Stewart, M. L., Ito, D., Wang, S., Bracha, A. L.,
Liefeld, T., Wawer, M., Gilbert, J. C., Wilson, A. J., Stransky, N.,
Kryukov, G. V., Dancik, V., Barretina, J., Garraway, L. A., Hon, C. S.-
Y., Muñoz, B., Bittker, J. A., Stockwell, B. R., Khabele, D., Stern, A. M.,
Clemons, P. A., Shamji, A. F., and Schreiber, S. L. (2013) An interactive
resource to identify cancer genetic and lineage dependencies targeted by
small molecules. Cell, 154, 1151–1161.
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