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Ariel Waisman a,b

Lucı́a Moro a,b

Gustavo Sevlever a

Carlos Luzzani a,b

Santiago Gabriel Miriuka a,b‡

aLaboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Ar-
gentina.
bConsejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Ciudad Autónoma de
Buenos Aires, Argentina.
∗ These authors contributed equally to this work
‡ Corresponding author: smiriuka@fleni.org.ar

Lead Contact
Santiago Gabriel Miriuka

Running title
Cell death detection by deep learning.

Competing interest
The authors declare no competing interest.

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2020.03.22.002253doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002253
http://creativecommons.org/licenses/by-nc-nd/4.0/


celldeath: a tool for detection of cell death in transmitted light microscopy
images by deep learning-based visual recognition
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Scarafı́a a, Alan Miqueas Möbbs a, Ariel Waisman a,b, Lucı́a Moro a,b, Gustavo Sevlever a, Carlos

Luzzani a,b, Santiago Gabriel Miriuka a,b‡

aLaboratorio de Investigación Aplicada a Neurociencias, FLENI-CONICET, Buenos Aires, Argentina.
bConsejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires,

Argentina.
∗ These authors contributed equally to this work
‡ Corresponding author: smiriuka@fleni.org.ar

Abstract

Cell death experiments are routinely done in many labs around the world, these experiments are the
backbone of many assays for drug development. Cell death detection is usually performed in many
ways, and requires time and reagents. However, cell death is preceded by slight morphological
changes in cell shape and texture. In this paper, we trained a neural network to classify cells
undergoing cell death. We found that the network was able to highly predict cell death after one
hour of exposure to camptothecin. Moreover, this prediction largely outperforms human ability.
Finally, we provide a simple python tool that can broadly be used to detect cell death.

Keywords: cell death, apoptosis, deep learning, machine learning, artificial intelligence,
computer vision, neural networks, microscopy

Introduction1

In the past few years there has been an in-2

creasing interest in artificial intelligence. The3

combination of newer algorithms for mod-4

elling biological data and increasing com-5

putational capacities have sparked an over-6

whelming amount of research for academic7

and biomedical purposes (Lee et al., 2017).8

In particular, deep learning (DL) models in-9

spired in neural networks (NN) have proved to10

be powerful. These models, called convolu-11

tional neural networks (CNN), employ back-12

propagation algorithms to reconfigure its pa-13

rameters in successive layers while attempt-14

ing to represent the input data (LeCun et al., 15

2015), allowing them to classify complex and 16

large sets of information, including digital im- 17

ages. Therefore, one of the most active fields 18

is image recognition (Camacho et al., 2018; 19

Voulodimos et al., 2018). 20

Cell death is a complex event found in nor- 21

mal and pathological contexts (D’Arcy, 2019). 22

For this reason, it is widely studied in biomed- 23

ical research and it is a hallmark of many ex- 24

periments, particularly in the context of drug 25

discovery (Kabore et al., 2004; Merino et al., 26

2018). Many different assays have been de- 27

veloped in the past decades in order to analyse 28

cell death. All of them involve the analysis of 29
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particular features of a dying cell, including30

DNA fragmentation, cell membrane protein31

flipping, protein modifications, etc (Elmore,32

2007; Majtnerová and Roušar, 2018; Kay and33

Fairn, 2019). In any case, there is need for time34

and money in order to perform these assays.35

An interesting approach by Chen and collab-36

orators using weakly supervised CNN models37

demonstrated that they could confidently de-38

tect and count dead cells in brightfield images39

of cell cultures (Chen et al., 2019).40

Recently, we published that NN can be41

used to classify transmitted light microscopy42

(TLM) images of differentiating pluripotent43

stem cells at one hour and even less, with an44

accuracy higher than 99% (Waisman et al.,45

2019). Hence, we demonstrated that apply-46

ing DL over TLM images can be a power-47

ful technology for specific purposes: we can48

identify the early stages of complex processes49

like differentiation or cell death, with nearly no50

money spent and with high precision. Exper-51

imental confirmation of these processes other-52

wise would require the use of an assay often53

involving time and money in several orders of54

magnitude. We are confident that our expe-55

rience and that of many others will radically56

change the way fields in biology are engaged57

(Webb, 2018; Moen et al., 2019).58

In the present work we aimed to develop a59

simple tool for easy, fast and accurate clas-60

sification of cell death in culture using TLM61

images. We believe that this tool can be used62

in any scientific lab running cell death experi-63

ments, particularly in those cases when mas-64

sive and repetitive experimental settings are65

needed such as drug screening in cancer re-66

search.67

Results68

We defined a cell death model in all cell69

lines used in this work -three pluripotent stem70

cell (PSC) lines and four cancer cell (CC) 71

lines- by incubating them with camptothecin 72

(CPT), a topoisomerase I inhibitor. We have 73

previously demonstrated that this molecule in- 74

duces a very rapid cell death signaling in hu- 75

man embryonic stem cells that derives in apop- 76

tosis Garcı́a et al. (2014). In each of the seven 77

cell lines we titrated drug concentration and 78

exposure time and took TLM images hourly in 79

both DMSO (vehicle) and CPT-treated cells. 80

To confirm that these cell lines were un- 81

dergoing apoptosis we performed different 82

assays. Inhibition of topoisomerase I re- 83

sults in replication-dependent DNA double 84

strand breaks (DBSs) Strumberg et al. (2000), 85

which lead to the phosphorylation of H2AX 86

(γH2AX) and activation of tumour suppres- 87

sor protein p53 Sedelnikova et al. (2003); Sor- 88

det et al. (2009). Consistently, iPS1 pluripo- 89

tent stem cells treated with CPT 1µM for 90

1.5h showed an increment in nuclear signal of 91

γH2AX as well as accumulation of p53 (Fig 92

1A). Compared to vehicle, the distributions of 93

nuclear signals were significantly different for 94

both marks (Fig 1B). We observed similar re- 95

sults in H9 embryonic stem cells and in iPS2 96

induced pluripotent stem cells. 97

Significant CPT-dependent activation and 98

nuclear localization of γH2AX and p53 (vs. 99

DMSO) were also found in MCF7 cancer cell 100

line at 6h of treatment (Fig 1C and D). All 101

CC lines showed similar results between 3 and 102

6h of treatment with CPT. Interestingly, al- 103

though CC lines generally evince high prolif- 104

eration rates, they were practically unaffected 105

by 1µM treatment with CPT and a concen- 106

tration of 10µM was necessary to induce the 107

apoptogenic signaling. 108

Longer treatments with CPT resulted in a 109

steady γH2AX and p53 nuclear signal in iPS1 110

and MCF7 cells compared to vehicle (S1 FigA 111

and B), indicating that CPT treatment effec- 112

tively triggers a sustained response to damaged 113
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DNA in both PSC and CC lines.114

Apoptosis is a complex process and one115

of its earliest characteristic features is phos-116

phatidylserine (PS) exposure on the outer side117

of the cell membrane Nagata et al. (2016).118

Identification of PS residues on the surface of119

intact cells through its interaction with An-120

nexin V protein enables detection of early121

stages of apoptosis by flow cytometry analy-122

sis. Treatment with CPT between 3 and 6h sig-123

nificantly increased the percentage of PS+/7-124

AAD− cells (Q3) compared to vehicle in both125

iPS1 and MCF7 cells (Fig 1E and F, respec-126

tively). Positive values for each quadrant were127

determined using single stained and double128

stained untreated samples (S1 FigC and D).129

Taken together, these results indicate that130

CPT treatment induced damage to DNA which131

eventually resulted in cell death by apoptosis132

in PSC and CC lines.133

CNN training and overall performance134

Transmitted light microscopy images from135

all cell lines were taken at 1, 2 and 3h post136

induction of cell death with CPT. Minor mor-137

phological changes, if any, are observed by the138

first hour for all cell lines (Fig 2). In fact,139

deep and thorough observation is needed to140

capture subtle alterations in a few cell lines.141

For example, some degree of cell-to-cell de-142

tachment was registered in PSC lines as well as143

in T47D cells, and in PC3 cells, increased cell144

volume was observed in a portion of the im-145

ages. However, none of these were markedly146

noticeable features and they were only present147

in a fraction of the images. Although later148

timepoints evinced more pronounced morpho-149

logical changes (cell shrinkage, further de-150

tachment, nuclear condensation), they were151

not easily or readily detected without proper152

preparation.153

Considering these minor morphological154

changes, we challenged 5 experienced re-155

searchers (who had never seen the images be- 156

fore) to correctly classify a randomly-picked 157

set of 50 1h images (pre-training) as CPT or 158

DMSO (vehicle). After the initial trial (with- 159

out revealing performance), we “trained” the 160

researchers by showing them 500 labelled im- 161

ages (CPT or DMSO) and then asked them to 162

classify a new set of 50 images (post-training). 163

Selection of images for trials and trainings 164

was performed regardless of cell line or treat- 165

ment. Classification performance by investiga- 166

tors before and after training was completely 167

random (close to 50% correct answers), indi- 168

cating that they failed to retrieve specific fea- 169

tures which unequivocally identified each la- 170

bel (Fig 3A, grey bars). Moreover, decision 171

making was mostly independent of image- 172

related biases as very few “all incorrect” an- 173

swers were registered for any given image (S2 174

Fig). 175

To assess whether deep learning-based 176

models could outdo human performance in 177

the early assay-free detection of cell death 178

features, we trained a Convolutional Neural 179

Network (CNN) using 1h CPT- and DMSO- 180

treated images from all cell lines. The trained 181

CNN was able to correctly classify between 9 182

and 10 out of 10 images in the validation and 183

test sets (98.18pm0.33% and 96.56pm0.24% 184

accuracy, respectively; see Methods for def- 185

inition on validation and test sets) (Fig 3A, 186

blue bars). Results presented here are based 187

on ResNet50 NN architecture, though other ar- 188

chitectures showed similar results (ResNet34: 189

98% accuracy during validation and 95% in 190

test) (S3 FigA). While CNN robustness has 191

been extensively tested in many situations 192

Anzanello and Fogliatto (2011), learning is- 193

sues due to model set up -namely underfitting 194

and overfitting Pérez-Enciso and Zingaretti 195

(2019)- are not uncommon and they are of- 196

ten associated to an unsuitable number of user- 197

defined parameters for representing input data 198
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(too few or too many). Incremental learn-199

ing of our CNN through each epoch (iterative200

process by which all samples in dataset took201

part in updating weights and parameters of the202

model) was diagnosed by simultaneously as-203

sessing the Loss function in the training and204

validation sets (Fig 3B). A minimum value in205

Loss function was achieved within 50 epochs,206

when both the training and validation sets con-207

verged at a loss value close to zero (stabi-208

lization). Extended training periods (over 200209

epochs) did not dramatically improve accuracy210

values (S3 FigA) or loss function outcome (S3211

FigB).212

Learning curves (loss function) clearly213

showed that our model was not only suitable,214

but also capable of learning from input data215

(i.e. non-flat training curves) which is not the216

case in underfitted models. However, reduced217

generalization capabilities of the model (over-218

fitting) are sometimes more difficult to detect219

considering that in fact the model is learning220

too well from training set. To test for this221

possibility we trained our model for over 100222

epochs and found a potential inflection point223

(validation curve starts to increase over train-224

ing curve) around 280 (S3 FigB), which sug-225

gests that our model was well-fitted and only226

exhibited overfitting if trained for excessive227

periods of time.228

CNN identifies very early features of cell death229

Grouping all cell lines and training the NN230

with only two classes (or labels), reduced po-231

tential outcomes to a binary choice between232

CPT or DMSO (vehicle). The final goal in this233

scenario was to train a model where, irrespec-234

tive of cell basal morphology, the CNN was235

able to identify cell death. As pointed out be-236

fore (CNN vs. human), successful classifica-237

tion at 1h was very high (average accuracy of238

five runs in the validation set of 98.18±0.33%239

and 96.58±0.24% in the test set), reaching240

maximum accuracy values for validation and 241

test sets of 98.67% and 97.23%, respectively, 242

when we compared all non-exposed (DMSO) 243

images versus all exposed ones (CPT) (Table 244

1). Moreover, employing a pretrained model, 245

in which starting weights are defined before- 246

hand rather than randomly initialized, on the 247

same setting (imagenet CsvD) did not improve 248

accuracy. Appropriate visual description for 249

classification performance of our model was 250

rendered as a confusion matrix, in which pre- 251

dictions on each image were contrasted to ac- 252

tual labels (true value). In coherence with 253

accuracy values, the matrix showed very few 254

misclassification events for the total 4,188 im- 255

ages consisting of 65 false positives (predicted 256

CPT, but actually DMSO) and 52 false nega- 257

tives (predicted DMSO, but actually CPT) (Fig 258

3C). Furthermore, we found that employing 259

the same model on longer exposure times to 260

CPT (2 and 3h) slightly favoured an increase 261

in validation accuracy and attenuated false de- 262

tection, probably because drug-associated ef- 263

fects became more pronounced (S3 FigC and 264

D). 265

To further test our model, we trained the 266

NN to classify each cell line in each treatment 267

(ALL vs. ALL) demonstrating a good per- 268

formance as well (Fig 3D). In this case, clas- 269

sification was considerably improved by us- 270

ing a pretrained model (imagenet AvsA), with 271

a final highest accuracy of 87% in the test 272

set (Table 1). Although the matrix showed 273

very few misclassification events in general, 274

the model frequently confused DMSO-treated 275

iPS1 for DMSO-treated iPS2 and CPT-treated 276

iPS1 for CPT-treated iPS2 (Fig 3E), probably 277

due to their induced-pluripotent nature. Impor- 278

tantly, it rarely failed to discriminate CPT from 279

DMSO. This diagonally-populated matrix in- 280

dicates that the CNN was capable of identi- 281

fying cell-specific death features to correctly 282

discriminate all labels (predicted=actual). We 283
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corroborated this finding by training, validat-284

ing and testing the CNN with each cell line285

individually (Table 1), and again classification286

performance was excellent, indicating that the287

model can be confidently and easily applied to288

single or multicellular experimental layouts.289

However, we discovered that if we pur-290

posely set aside all images of one cell line dur-291

ing training, in some cases our model showed292

reduced capacity to discriminate CPT from293

DMSO images of that cell line during test-294

ing (Valid. accuracy >> Test accuracy). Even295

though validation accuracies were remarkably296

high for all training sets (Fig 3F), the model297

failed to accurately discriminate labels during298

testing with PC3 (53%) and U2OS (64%) can-299

cer cell lines (Table 2). In contrast, testing on300

the other cell lines resulted in accuracy val-301

ues over 75%, particularly in PSC lines, which302

means that the CNN was partially able to clas-303

sify images from “unknown” cells. Thus we304

believe that some features found useful for305

classification during validation might be ex-306

trapolated to unseen cell lines, but that highly307

cell-specific facets may interfere with pattern308

matching. Therefore, it is preferable that train-309

ing of our model includes the cell line on310

which cell death prediction is intended.311

Finally, we analysed the images in search312

of the features which potentially contributed313

the most to classification. To do so we em-314

ployed class activation maps (CAM) that re-315

construct heatmap-like visualizations merging316

the information provided by the last convolu-317

tional layer and the model predictions Zhou318

et al. (2015). In other words, these heatmaps319

represent the score of each feature used dur-320

ing the decision making process as a colour-321

guided graphic which may facilitate human322

interpretation. Even though it was not clear323

which characteristics were in fact supporting324

the decision, our results demonstrate that clas-325

sification was based upon features present in326

cell-occupied regions of the images (high acti- 327

vation areas) (Fig 4). 328

Discussion 329

Deep learning techniques are being increas- 330

ingly used in the biomedical field (Cao et al., 331

2018; Moen et al., 2019). Specifically for de- 332

tection of morphological changes, we (Wais- 333

man et al., 2019) and others (Chen et al., 2016; 334

Ounkomol et al., 2018; Richmond et al., 2017; 335

Jimenez-Carretero et al., 2018) have previ- 336

ously applied deep learning for different ex- 337

perimental approaches using TLM. For exam- 338

ple, Ounkomol et al provided evidence that a 339

DL model can predict immunofluorescence in 340

TLM cells (Ounkomol et al., 2018). Jimenez- 341

Carretero et al predicted fluorescent toxic- 342

ity looking at changes in stained cell nuclei 343

(Jimenez-Carretero et al., 2018). In a simi- 344

lar paper than ours, Richmond et al applied 345

a CNN on TLM images in order to predict 346

phototoxicity, but their accuracy was approx- 347

imately 94.5%, probably related to the shal- 348

low network they used. Moreover, it took them 349

16h of training to reach this level, whereas our 350

model gets u99% accuracy in approximately 351

3-4h using a similar hardware. Finally, they 352

did not provide any easy way to reproduce and 353

apply their findings. 354

In this work we showed that convolutional 355

neural networks can be trained to recognize 356

very early features of cell death. We trained 357

the NN with images taken just after one hour 358

of starting cell death induction, at which point 359

the human eye was unable to identify mor- 360

phological changes to correctly classify a set 361

of images. We conducted a standard “single- 362

blind” test in which several trained investi- 363

gators from our institution assessed a set of 364

images and attempted to classify them into 365

treated (CPT) or vehicle (DMSO). Although 366

we allowed them to train after the initial trial, 367
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investigators were unable to properly identify368

the very early changes in cell death. In fact,369

their results were practically random. How-370

ever, their low performance may be related to371

the fact that any regular cell culture exhibits372

some degree of cell death, and actually our373

experiments showed that a few cells in the374

control group displayed translocation of an-375

nexin V (Fig 1E and F). While this might con-376

stitute a potential confounding factor for the377

researcher, it does not apparently impact on378

CNN learning. As usual with whole-image-379

recognition approaches, it is not always pos-380

sible to clearly identify which image features381

shift the balance towards an accurate classifi-382

cation, though the model is probably recogniz-383

ing subtle alterations in cell membrane, cyto-384

plasmic vesicles and/or changes in the nuclear385

morphology proper of the ongoing cell death386

process.387

In our experiments we found that DL al-388

gorithms can reach high accuracy values for389

detection of morphological changes in TLM390

images. Particularly, PSC lines produced bet-391

ter test results than CC lines in all conditions,392

indicating that CPT-induced features are per-393

haps more easily recognizable in the former.394

Consistently, the effects of CPT treatment col-395

lected by flow cytometry and immunofluores-396

cence were already visible by 1h in PSC lines,397

while it took no less than 3h and higher CPT398

concentrations to achieve similar results in CC399

lines. In line with our observations, previ-400

ous results demonstrated that pluripotent cells401

were in fact more sensitive to CPT treatment402

compared to differentiated cells (Liu et al.,403

2013; Garcı́a et al., 2016) and it is also pos-404

sible that the accumulation of mutations asso-405

ciated with cancer cell lines could have con-406

ferred some degree of tolerance against DNA407

damage.408

Improving training results of a CNN is not409

an easy challenge. While it is true that im-410

plementing models based on widely known ar- 411

chitectures (e.g. ResNet50) incorporates many 412

standard settings and default hyperparameter 413

values, fine-tuning a model is typically an em- 414

pirical endeavour. One of the major determi- 415

nants in achieving well-trained models relies 416

on the number of samples employed in the run 417

(Kavzoglu, 2009; Mathur and Foody, 2008). 418

This was clearly demonstrated when we fur- 419

ther explored the capabilities of our model by 420

introducing more labels to the same training 421

set (less images per label), which resulted in 422

a weaker performance. Instead of the initial 423

binary setting (CPT vs. DMSO), in this case 424

labels included the name of each cell line as 425

well (ALL vs. ALL) culminating in accu- 426

racy values on the test set that dropped nearly 427

15%. When increasing sample size is not fea- 428

sible, there are still several options to enhance 429

performance (e.g. data augmentation, learn- 430

ing rates adjustment). The use of pretrained 431

models that carry weights information from 432

training on benchmark datasets like ImageNet 433

(transfer learning), might help to reduce train- 434

ing time and generalization errors (prediction) 435

(Yosinski et al., 2014). 436

Besides the proof of concept regarding the 437

ability of NN for cell death detection, we also 438

provide a set of scripts wrapped in a python- 439

based tool for a straightforward implementa- 440

tion of this technology. In everyday labora- 441

tory practice, this may be a significant advan- 442

tage for designing and running experiments as 443

it is possible to scale-up throughput and more 444

importantly readout. In particular, the use 445

of these technologies together with automa- 446

tion in highly repetitive assays should increase 447

reproducibility and reduce costs. With min- 448

imal knowledge on deep learning and com- 449

mand line usage, any researcher can run our 450

scripts to get results similar to ours on their 451

own sets of images. 452

In conclusion, we found that DL can be ap- 453

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2020.03.22.002253doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.22.002253
http://creativecommons.org/licenses/by-nc-nd/4.0/


plied for cell death recognition in transmit-454

ted light microscopy images and we provide455

a user-friendly tool to be implemented in any456

lab working on cell death.457

Materials and methods458

Cell culture and cell death induction459

The four cancer cell lines and the three460

pluripotent stem cells used in this analysis461

were kept in a humidified air-filtered atmo-462

sphere at 37ºC and 5% CO2. Osteosar-463

coma U2OS cells and breast cancer MCF7464

cells were routinely cultured in Dulbecco’s465

Modified Eagle Medium (ref. 12430054,466

DMEM; Thermo Fisher Scientific, United467

States) supplemented with 10% fetal bovine468

serum (NTC-500, FBS; Natocor, Argentina)469

and 1% penicillin/streptomycin (ref. 15140-470

122, Pen/Strep; Thermo Fisher Scientific,471

United States), while prostate cancer PC3 cells472

and breast cancer T47D cells were cultured in473

Roswell Park Memorial Institute medium (ref.474

22400089, RPMI; Thermo Fisher Scientific,475

United States) supplemented with 10% FBS476

and Pen/Strep. Induced pluripotent stem cells477

(iPS1 and iPS2, both previously developed in478

our lab (Questa et al., 2016)) and embryonic479

stem cells (H9) were maintained on GeltrexT M
480

(ref. A1413302; Thermo Fisher Scientific,481

United States)-coated dishes using Essential 8482

flex defined medium (ref. A2858501, E8 flex;483

Thermo Fisher Scientific, United States), re-484

placing it each day. All cells were detached485

with TrypLET M Select 1X (ref. A1217702;486

Thermo Fisher Scientific, United States) every487

4 or 5 days depending on density. For death488

induction experiments, approximately 3x105
489

cells were seeded in the 4 central wells of490

12-well dishes (ref. 3513; CORNING Inc.,491

United States), thus reducing potential border492

effects. The following day cancer cells were493

serum-deprived for 24h and then all cell lines494

were treated either with camptothecin 1-10µM 495

(ref. C9911, CPT; Sigma-Merck, Argentina) 496

or DMSO (ref. D2660, dimethyl sulfoxide; 497

Sigma-Merck, Argentina) for the times indi- 498

cated in experiments. To prevent addition of 499

high doses of DMSO in high-concentration 500

CPT treatments, more concentrated stock so- 501

lutions were employed. Transmitted light mi- 502

croscopy images were taken immediately be- 503

fore adding the treatments and every hour un- 504

til conclusion. Summarized information and 505

further details on cell lines can be found in S1 506

Table. 507

DNA damage assessment 508

Immunostaining was performed as previ- 509

ously described (Moro et al., 2018) with minor 510

modifications. Briefly, cells treated with CPT 511

or DMSO were fixed in 4% paraformalde- 512

hyde for 30min at room temperature and 513

washed 3 times with PBS. Then, they were 514

permeabilized in 0.1% bovine serum albu- 515

min (BSA)/PBS and 0.1% Triton X-100 so- 516

lution for 1h, followed by blocking in 10% 517

normal goat serum/PBS and 0.1% Tween20 518

solution. Incubation with primary antibod- 519

ies against γH2AX (rabbit IgG, ref. ab2893; 520

Abcam, United States) and p53 (mouse IgG, 521

ref. ab1101; Abcam, United States) were per- 522

formed overnight at 4◦C in 1:100 dilutions 523

in blocking solution and later secondary anti- 524

body incubation with Alexa Fluor 594 (anti- 525

mouse, ref. R37121; Thermo Fisher Scien- 526

tific, United States) and Alexa Fluor 488 (anti- 527

rabbit, ref. A11034; Thermo Fisher Scientific, 528

United States) was done in the dark at room 529

temperature for 1h together with DAPI. Cells 530

were washed and then imaged on EVOS flu- 531

orescence microscope (Thermo Fisher Scien- 532

tific, United States). Nonspecific secondary 533

antibody binding was evaluated in the ab- 534

sence of primary antibodies. Images from four 535

fields of three independent replicates were pro- 536
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cessed and analysed automatically using cus-537

tom macro scripts (ImageJ software) to de-538

termine mean fluorescent intensity per nu-539

cleus and statistical significance between CPT-540

treated and vehicle-treated cell populations541

was evaluated by Welch Two Sample t-test us-542

ing R.543

AnnexinV assay544

Translocation of phosphatidylserine (PS)545

residues in apoptotic cells was detected with546

AnnexinV-FITC (ref. 556547; BD Pharmin-547

gen, United States) and AnnexinV-PE (ref.548

559763; BD Pharmingen, United States) com-549

mercial kits, following instructions from man-550

ufacturer. Untreated and treated cells (CPT551

or DMSO) were collected from wells with552

TrypLET M 1X (including supernatants), incu-553

bated with reagents provided in the kit and fi-554

nally ran on BD Accuri Flow Cytometer. Re-555

sults from three independent replicates were556

analysed using FlowJo (v7.6) software and557

statistical significance between CPT-treated558

and DMSO-treated cell populations from third559

quadrant (Q3) was evaluated by Welch Two560

Sample t-test using R.561

Transmitted light imaging562

Cell images were captured in EVOS micro-563

scope using a 20x objective and setting light564

intensity at 40%. Between 30 and 50 images565

were taken across each of the 4 central wells566

(2 with CPT and 2 with DMSO) of multiwell567

plates (4 independent experiments) for each of568

the 7 cell lines described in Cell culture and569

cell death induction, avoiding field overlap-570

ping or any places with few or no cells and571

stored as png files. Size of these images was572

originally 960x1280 pixels, though we applied573

a short python script (image-slicer) to slice574

them into four parts in order to obtain four575

images from each one (480,640,3). This pro- 576

duced a total of 58596 images considering all 577

timepoints (0, 1, 2 and 3h). 578

Deep learning analysis 579

For deep learning training and predic- 580

tion, we used fast.ai (v1.0.60), a frontend 581

of PyTorch (v1.4). Briefly, training was 582

done by using several different convolutional 583

neural networks. ResNet50 architecture (He 584

et al., 2015; Huang et al., 2016; Howard 585

et al., 2018), however, was chosen among 586

different options (ResNet34, ResNet101 and 587

DenseNet121) because it rendered excellent 588

results and it is widely known. Specifications 589

on the CNN may be found in S2 Table. For 590

analyses, images from all cell lines were 591

split in four as previously explained resulting 592

in a total of 15224 images from 1h, 15312 593

from 2h and 15032 from 3h treatments. We 594

assigned an entire independent experiment 595

(1 of 4) as the test set and then randomly 596

divided the other 3 into 70% for training and 597

30% for validation. Final number of images 598

in each set for all conditions assayed in this 599

work are detailed in S3 Table. Pretrained 600

model weights were obtained from available 601

trainings on benchmark ImageNet dataset. 602

Class activation maps (CAM) were con- 603

structed following specifications by the fastai 604

project using CPT-treated and DMSO-treated 605

random PSC images (Zhou et al., 2015). A 606

python script with details on hyperparameter 607

values used during trainings is available 608

in https://github.com/miriukaLab/celldeath. 609

Hardware specifications may be found in 610

celldeath/blob/master/machineDetails.md. 611

Data Availability 612

All images used for training are available upon 613

request. 614
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Figure 1: Camptothecin treatment induced apoptosis in both iPS1 pluripotent stem cell and MCF7 cancer
cell lines. A) Immunostaining with anti-γH2AX and anti-p53 of iPS1 pluripotent cell line treated (CPT 1µM)
or not (DMSO: vehicle) with CPT for 1.5h. Both marks were merged with DAPI to reveal cell nuclei and scale
was set to 200µm (white bar). Images are representative of four different microscopic fields. B) Distribution
of mean signal intensity per nucleus in all fields from A, measured in arbitrary units (log10 a.u.) for γH2AX
(left) and p53 (right) marks. Statistical significance between CPT and DMSO was evaluated by Welch Two-
Sample t-test (*p-value=2.2e−16). C) Immunostaining as in A for MCF7 cancer cell line treated (CPT 10µM)
or not with CPT for 6h. D) Mean signal intensity quantification and statistical significance were determined
as in B (#p-value=4.89e−7; *p-value=2.22e−16). E) Flow cytometry analysis with AnnexinV-PE of iPS1 cells
treated with CPT 1µM (light blue) for 3h compared to DMSO (red). Incubation with 7-AAD was performed to
discriminate dead cells (Q2) from early apoptotic (Q3). Number of events (cells) in each quadrant is presented
as mean percentage of total population ± SEM of three independent replicates. Statistical significance between
conditions in Q3 was evaluated with Welch Two-Sample t-test (*p-value=2.5e−2). F) MCF7 cancer cells treated
with CPT 10µM (light blue) for 6h were analysed as in E, though using AnnexinV-FITC instead of PE.
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Figure 2: Transmitted light images used for visual deep learning analysis. Representative images of DMSO
(vehicle)- and CPT-treated cell lines for 1, 2 and 3h. Scale bar is displayed in the pictures and equals to 50µm.
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Figure 3: Results of CNN training. A) Comparison of human performance versus CNN. Pre (48.80±3.03%)
and post-training (46.40±3.57%) results of five human subjects are shown compared to five separate runs of
CNN training for a validation (98.18±0.33%) and a test set (96.58±0.24%). B) Representative Learning Curve
of five independent CNN trainings using CPT and DMSO labels for 50 epochs. Accuracy curve for the same
representative run is shown. C) Confusion matrix of CPT versus DMSO for training with highest test accuracy
results. The highly accurate model led to very low false positives (65) and false negatives (52) during prediction
on test set. D) Representative Learning Curve and accuracy of three independent CNN trainings using all cell
lines and treatments as labels for 50 epochs. E) Confusion matrix of training with highest test accuracy results
for all-versus-all analysis of test set. F) Validation accuracy results for training sets missing one cell line. The
missing cell line was used as test set; testing accuracy for every run is shown in Table 2.
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Table 1: Model performance for different conditions.

Condition Train. Loss Val. Loss Val. Acc. Test Acc.
CPTvs.DMS O 0.068 0.045 0.9837 0.9723
imagenet(CvsD) 0.055 0.051 0.9825 0.9790
ALLvs.ALL 0.068 0.330 0.9979 0.8271
imagenet(AvsA) 0.029 0.035 0.9900 0.8658
PC3 0.138 0.041 0.986 0.955
MCF7 0.081 0.146 0.9528 0.9234
T47D 0.204 0.054 0.9746 0.8667
U2O2 0.141 0.002 1.000 0.9444
iPS 1 0.379 0.056 0.998 0.970
iPS 2 0.091 0.0007 1.000 0.948
ES C(H9) 0.007 0.002 1.000 0.996

Highest value of accuracy achieved in the test set (Test Acc.) among several trainings is presented
for each condition at 1h. Corresponding values of the Loss function for training (Train. Loss) and

validation (Val. Loss) are shown as well as accuracy on validation set (Val. Acc.). Results of
running a pretrained model on CPT vs. DMSO (imagenet CvsD) and ALL vs. ALL (imagenet

AvsA) conditions were included.

Table 2: Model performance after removing a cell line from training.

Cell line out Train. Loss Val. Loss Val. Acc. Test Acc.
PC3 0.053 0.032 0.9872 0.5283
MCF7 0.054 0.038 0.9901 0.8688
T47D 0.071 0.047 0.9858 0.7734
U2OS 0.043 0.059 0.9800 0.6363
iPS 1 0.063 0.052 0.9820 0.9871
iPS 2 0.046 0.056 0.9826 0.9708
ES C(H9) 0.076 0.058 0.9822 0.9752

Removed cell line (Cell line out) was used for testing the model. Highest value of accuracy
achieved during testing (Test Acc.) for each cell line is shown. Corresponding values of the Loss
function for training (Train. Loss) and validation (Val. Loss) are shown as well as accuracy on

validation set (Val. Acc.).
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brightfield heatmap

DMSO 1h CPT 1h

brightfield heatmap

Figure 4: Features contributing to classification. Representative images of 1h CPT- and DMSO-treated PSC
cells (brightfield) and corresponding class activation maps (heatmap). Areas in bright yellow indicate high
activation for decision making and areas in purple correspond to low activation. Scale bar is displayed in the
pictures and equals to 100µm.
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Supplemental information

S1 Fig. Effect of longer CPT exposure times on γH2AX and p53 staining and flow cytometry
controls. A) iPS1 cells were treated or not (DMSO) with CPT 1uM for 3 and 5h. Cells were
stained with anti-γH2AX or anti-p53 and nuclei were revealed with DAPI. Scale was set to 200um
(white bar). B) MCF7 cells were treated or not (DMSO) with CPT 10uM for 8h. Cells were stained
as in A. C) Controls used for setting background levels in iPS1 flow cytometry experiments. D)
Controls used for setting background levels in MCF7 flow cytometry experiments.

S2 Fig. Human trials. Detailed results of five subjects involved in scientific activities tested for
their capacity to discriminate cells treated with CPT from DMSO before (Pre-) and after (Post-)
being trained with a different set of images.

S3 Fig. Neural Network performance. A) Comparison of accuracy results between ResNet50
and ResNet34 architectures using the same input data and parameters. B) Learning curve (training
and validation sets) for ResNet50 architecture during extended training (400 epochs). Point of
inflection in validation curve is indicated with an arrow inside the inset box. Validation accuracy
for the training run is also shown. C) Confusion matrix for images of 2h CPT/DMSO-treated cells.
D) Confusion matrix for images of 3h CPT/DMSO-treated cells.

S1 Table. Description of cell lines used in this work.

S2 Table. Deep learning model specifications.

S3 Table. Number of images per condition.
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