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Abstract  30 

MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 

neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains 32 

difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 

investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 

developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 

predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 

(MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate 37 

when using original codon sequences than shuffled codon sequences which reflect amino acid 38 

usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 

to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 

transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 

accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 

flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 

of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 

arrangement in the regulation of MAP presentation and support integration of both translational 45 

and post-translational events in predictive algorithms to ameliorate modeling of the 46 

immunopeptidome. 47 

 48 

  49 
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Author summary 50 

MHC-I associated peptides (MAPs) are small fragments of intracellular proteins presented at the 51 

surface of cells and used by the immune system to detect and eliminate cancerous or virus-infected 52 

cells. While it is theoretically possible to predict which portions of the intracellular proteins will 53 

be naturally processed by the cells to ultimately reach the surface, current methodologies have 54 

prohibitively high false discovery rates. Here we introduce an artificial neural network called 55 

Codon Arrangement MAP Predictor (CAMAP) which integrates information from mRNA-to-56 

protein translation to other factors regulating MAP biogenesis (e.g. MAP ligand score and 57 

transcript expression levels) to improve MAP prediction accuracy. While most MAP predictive 58 

approaches focus on MAP sequences per se, CAMAP’s novelty is to analyze the MAP-flanking 59 

mRNA sequences, thereby providing completely independent information for MAP prediction. 60 

We show on several datasets that the integration of CAMAP scores with other known factors 61 

involved in MAP presentation (i.e. MAP ligand score and mRNA expression) significantly 62 

improves MAP prediction accuracy, and further validate CAMAP learned features using an in-63 

vitro assay. These findings may have major implications for the design of vaccines against cancers 64 

and viruses, and in times of pandemics could accelerate the identification of relevant MAPs of 65 

viral origins. 66 

 67 

Abbreviations: MHC-I: major histocompatibility complex class-I, MAP: MHC-I associated 68 

peptides, CAMAP: Codon arrangement MAP predictor, DRiP: defective ribosomal product, 69 

ANN: artificial neural network, MCC: MAP-coding codons, B-LCL: B-lymphoblastoid cell line, 70 

KL: Kullback-Leibler, BS: binding score, OVA: ovalbumin protein, WT: wildtype, EP: 71 

enhanced presentation, RP: reduced presentation. 72 

  73 
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Introduction 74 

In jawed vertebrates, virtually all nucleated cells present at their surface major histocompatibility 75 

complex class-I (MHC-I) associated peptides (MAPs), collectively referred to as the 76 

immunopeptidome [1,2]. MAPs play a central role in shaping the adaptive immune system, as they 77 

orchestrate the development, survival and activation of CD8 T cells [3]. Moreover, recognition of 78 

abnormal MAPs is essential to the elimination of virus-infected and neoplastic cells [4]. Therefore, 79 

systems-level understanding of MAP biogenesis and molecular composition remains a central 80 

issue in immunobiology [5,6]. 81 

The generation of the immunopeptidome can be conceptualized in two main events: (a) the 82 

generation of MAP candidates (i.e. peptides of appropriate length for MHC-I presentation) through 83 

protein degradation, and (b) a subsequent filtering step through the binding of MAP candidates to 84 

the available MHC-I molecules. Rules that regulate the second event have been well characterized 85 

using artificial neural networks (ANN) and weighted matrix approaches [7,8]. However, 86 

accurately predicting which peptides will ultimately reach MHC-I molecules following a multistep 87 

processing in the cytosol and endoplasmic reticulum remains an open question [6]. Most efforts at 88 

modeling MAP generation have focused on post-translational events and their regulation by the 89 

amino acid sequence of MAPs and of directly adjacent residues (typically 10-mers at the N- and 90 

C-termini). While the consideration of preferential sites of proteasome cleavage has proven useful 91 

to enrich for MAP candidates [9], it remains insufficient for MAP prediction, due to prohibitive 92 

false discovery rates [10–12].  93 

A large body of evidence suggests that a substantial portion of MAPs are produced co-94 

translationally [13–15], deriving from defective ribosomal products (DRiPs), that is, polypeptides 95 

that fail to achieve a stable conformation during translation and are consequently rapidly degraded. 96 
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This concept was initially supported by two observations: (i) viral MAPs can be detected within 97 

minutes after viral infection, much earlier than their associated proteins half-life [16], and (ii) MAP 98 

presentation correlates more closely with translation rate than with overall protein abundance 99 

[17,18]. In addition, while all proteins contain peptides that are predicted to bind MHC-I 100 

molecules, mass spectrometry analyses have revealed that the immunopeptidome is not a random 101 

excerpt of the transcriptome or the proteome [1,19]. Indeed, proteogenomic analyses of 25,270 102 

MAPs isolated from B lymphocytes of 18 individuals showed that 41% of expressed protein-103 

coding genes generated no MAPs [19]. These authors also provided compelling evidence that the 104 

presentation of MAPs cannot be explained solely by their affinity to MHC-I alleles and their 105 

transcript expression levels, while ruling out low mass spectrometry sensitivity as an explanation 106 

for the non-presentation of the strong binders. Because (i) MAPs appear to preferentially derive 107 

from DRiPs and (ii) codon usage influences both precision and efficiency of protein synthesis 108 

[20,21], we hypothesized that codon usage in the vicinity of MAP-coding codons (MCCs) might 109 

significantly contribute to the regulation of MAP biogenesis. We developed an artificial neural 110 

network called Codon Arrangement MAP Predictor (CAMAP), trained to identify MCCs flanking 111 

regions. We then used CAMAP to uncover key codon features that characterize mRNA sequences 112 

encoding for MAPs (i.e. source) when compared to sequences that do not (i.e. non-source).  113 

 114 

Results 115 

Dataset description 116 

We analyzed a previously published dataset consisting of MAPs presented on B lymphoblastoid 117 

cell line (B-LCL) by a total of 33 MHC-I alleles from 18 subjects [19,22]. Because we were 118 
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searching for features that influence MAP generation and not the binding of MAP to MHC-I 119 

molecules, we elected to analyze the MCC flanking sequences only and excluded the MCCs per 120 

se from our positive (hits) and negative (decoys) sequences (Fig. 1A). To facilitate data analysis 121 

and interpretation, we restricted our hit dataset to MAPs with a length of 9 amino acids, for a total 122 

of 19,656 9-mer MAPs (which represents 78% of MAPs in this dataset). We next created a decoy 123 

dataset from transcripts that generated no MAPs, by randomly selecting 98,290 9-mers from these 124 

transcripts. Finally, we used pyGeno [23] to extract MCCs flanking regions corresponding to both 125 

hit and decoy MAPs, which constituted our final dataset for CAMAP. Of note, each sequence in 126 

the final dataset is unique and derives from the canonical reading frame. In addition, in order to 127 

investigate the relative importance of codon vs. amino acid usage in MAP biogenesis, we 128 

generated a dataset of shuffled sequences (for both positive and negative datasets) in which original 129 

codon sequences were randomly replaced by synonymous codons according to their usage 130 

frequency in the dataset (Fig. 1B). This transformation was performed to ensure that both neural 131 

networks received the same number of parameters as input, preventing the introduction of a 132 

favorable bias for the codon network. The random shuffling causes any codon-specific feature to 133 

be shared among synonyms, thereby causing the shuffled codon distribution to reflect the amino 134 

acid usage (see Materials and Methods for more details). Indeed, codon distributions in the 135 

shuffled datasets more closely reflected those of their corresponding amino acid than in the original 136 

dataset (Supplementary Figure S1), with 92% of codons in the shuffled dataset showing a strong 137 

correlating (R2 > 0.95) with the amino acid distribution, compared to only 69% in the original 138 

dataset (p < 2x10-16, Supplementary Figure S2). Importantly, this shuffling does not affect the 139 

resulting amino acid sequence thereby preserving all potential amino acid-related motifs. 140 
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Distributions of each codons in the original VS shuffled dataset and compared to its corresponding 141 

amino acid can be found in Supplementary Figure S3. 142 

Figure 1. Construction of the dataset. (a) Transcripts expressed in B cells from 18 subjects were 143 

considered as source or non-source transcripts depending on their match with at least one MAP. 144 

Because we were searching for features that might influence MAP generation and not the binding 145 

of MAP to MHC-I, we focused our attention on mRNA sequences adjacent to the nine MCCs (i.e. 146 

up to 162 nucleotides on each side of MCCs). (b) Creation of the shuffled dataset. Codons were 147 

randomly replaced by a synonymous codon according to their respective frequencies (i.e. codon 148 

usage) in the dataset. The random shuffling causes any codon-specific feature to be shared among 149 

synonyms, thereby causing the shuffled codon distribution to reflect the amino acid usage. 150 

Importantly, both the original sequence and its shuffled version translates into the same amino 151 

acids. 152 

 153 

CAMAP links codon usage to MAP presentation 154 

To assess the importance of codon usage in MAP biogenesis, we reasoned that if codons bear 155 

important information that is operative at the translational rather than the post-translational level, 156 

then: (i) CAMAP trained to identify MCCs flanking regions should consistently perform better 157 

when trained on original codon sequences than on shuffled codon sequences (reflecting amino acid 158 

sequences), and (ii) synonymous codons should have different effects on the prediction. To test 159 

these hypotheses, CAMAP received as inputs MCCs flanking regions from hit and decoy 160 

sequences from either the original or shuffled datasets. It was then trained to predict the probability 161 

that individual input sequences were MCCs flanking regions (i.e. hit) rather than sequences from 162 

the negative dataset (Supplementary Figure S4A).  163 

We compared CAMAP performance when predicting MAP presentation from original codon 164 

sequences, versus shuffled sequences representing amino acid arrangement. To evaluate the 165 
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robustness of our approach, 12 different CAMAPs were trained in parallel, with different train-166 

validation-test splits of the dataset. Our results show that predictions were consistently better when 167 

CAMAP received the original codons rather than the shuffled sequences (Fig. 2A). CAMAPs 168 

receiving information from both pre-MCCs and post-MCCs sequences (i.e. whole MCC flanking 169 

context) also performed better than when receiving only pre- or post-MCCs context (Fig. 2A and 170 

Supplementary Figure S4B-C), suggesting that pre- and post-MCCs context are not redundant. 171 

Indeed, we found a weak correlation between the prediction scores of CAMAPs trained only with 172 

pre- or post-MCCs sequences (Supplementary Fig. S5). In addition, CAMAPs receiving longer 173 

sequences performed better than those receiving shorter sequences (Fig. 2B). Because sequences 174 

located far upstream and downstream of the MCCs (i.e. in ranges exceeding the direct influence 175 

of proteases) are informative regarding MAP presentation, it supports the existence of factors 176 

unrelated to protein degradation modulating MAP presentation.  177 

Figure 2. CAMAP predictions on MAP-flanking sequences. (A) Area under the curve (AUC) 178 

score for CAMAPs trained with whole MCCs context, versus CAMAPs trained with only pre- or 179 

post-MCCs context. All CAMAPs presented here were trained with a context size of 162 180 

nucleotides. (B) AUC for CAMAPs trained with codon context sizes of 9, 27, 81 and 162 181 

nucleotides (context here refer to mRNA sequences flanking the MCCs). 182 

 183 

Both MAP binding affinity to the MHC-I molecule and the level of gene expression are predictive 184 

of MAP presentation [19]. Because codon usage has been shown to be different in highly expressed 185 

genes, we wanted to verify whether the codon-specific rules captured by CAMAP were associated 186 

with potential biases in our positive dataset, which is enriched in highly expressed genes. We first 187 

show that there is no correlation between gene expression levels and CAMAP scores in both the 188 

positive and negative datasets (R < 0.1, Fig. 3A). This was true for both average expression levels 189 
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across our samples (Fig. 3A), and for samples individually (see Supplementary Fig. S6). Secondly, 190 

we trained CAMAP networks using a decoy dataset that mirrored the positive dataset gene 191 

expression level (Supplementary Fig. S7A) and showed similar results: CAMAP trained on 192 

original codon sequence performed better than CAMAP trained on shuffled sequences 193 

(Supplementary Fig. S7B). These results show that the codon-specific rules captured by CAMAP 194 

trained on original sequences are independent of gene expression levels. 195 

Figure 3. Correlation between CAMAP prediction score and (A) transcript expression levels 196 

and (B) MAP binding affinity. CAMAP used here was trained on original codon sequences using 197 

a context size of 162 nucleotides (both pre- and post-MCCs context).   198 

 199 

We stipulate that the presence of MHC-I binding motifs in the MCCs in the positive dataset might 200 

be associated with biases in the MAP-flanking regions, which could also influence CAMAP 201 

training. Therefore, to evaluate the presence of this potential bias, we first evaluated the correlation 202 

between CAMAP scores and MAPs binding affinity. Again, our result showed no correlation 203 

between CAMAP scores and MAP binding affinity, both when considering the minimal binding 204 

affinity of each MAP to the MHC-I alleles contained in our dataset (Fig. 3B) or when considering 205 

each allele individually (Supplementary Fig. S8). Secondly, we trained CAMAP networks using a 206 

decoy dataset that mirrored the positive dataset MAP binding affinities (Supplementary Fig. S9A). 207 

Again, CAMAPs trained on original codon sequence performed better than CAMAPs trained on 208 

shuffled sequences (Supplementary Fig. S9B). These results show that codon-specific rules 209 

captured by CAMAP trained on original sequences are independent of MAP binding affinities and 210 

of potential biases in codon usage of MAP-flanking sequences associated with the presence of an 211 

MHC-I binding motif in the MCCs.  212 
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We next evaluated the possibility of biases associated with many MAPs originating from 213 

conserved regions (e.g., found in multiple domains of the same domain family such as zinc fingers 214 

or kinases). We first evaluated MAPs that could originate from different transcripts within the 215 

transcriptome (i.e. transcripts with sufficient expression levels detected by RNA sequencing) as 216 

they are likely to represent conserved regions in the genome. While 79.9% of MAP originated 217 

from unique contexts (Supplementary Fig. S10A), 2.1% of MAPs had more than 3 possible origins, 218 

which represented 11.7% of the hit dataset (Supplementary Fig. S10B). These MAPs with several 219 

possible origins preferentially derived from zinc finger proteins, which are known to share 220 

homologous regions (Supplementary Fig. S11). We therefore trained CAMAPs with datasets 221 

excluding entries encoding for MAPs that had >3 or >10 possible origins and compared their 222 

performance with that of CAMAPs trained without excluding these MAPs. Our results show that 223 

whatever the dataset used, CAMAP trained with original sequences always significantly 224 

outperformed CAMAP trained with shuffled sequences (Supplementary Fig. S12). Taken together, 225 

these results suggest that the codon-specific rules captured by CAMAP are independent of 226 

potential homologies in the hit dataset, as they do not appear to influence CAMAP performance.  227 

We next validated our CAMAP trained on 9-mer MAPs derived from B-LCL using 5 datasets 228 

derived from different human and mouse cell types. All the validation datasets were described 229 

through proteogenomic analyses similarly to our B-LCL training datasets. However, all the 230 

validation datasets included MAPs of 8-11 mers, in contrast with the training dataset that contained 231 

only 9-mer MAPs. The validation datasets consisted of (i) our B-LCL dataset, this time including 232 

all peptide lengths [19,22], (ii) a dataset of human peripheral blood mononucleated cells or PBMCs 233 

[24], (iii) a dataset of B-lymphoblastoid cells expressing unique HLA alleles (B721.221 [11]), (iv)  234 

murine colon carcinoma cell line (CT26) and (v) a murine lymphoma cell line (EL4, [24,25]). For 235 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2020.06.03.078824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.078824
http://creativecommons.org/licenses/by-nc-nd/4.0/


Short title: Codon arrangement modulates MHC-I peptide presentation. 

 

11 

 

all datasets, we created hit and decoy datasets of original and shuffled sequences using the same 236 

approach described above but including MAPs of 8-11 amino acids. Notably, CAMAPs trained on 237 

human sequences encoding 9-mers MAPs from one human cell type (i.e. B-LCL) could also 238 

predict presentation of 8-11 mers MAPs in other human cell types (Fig. 4), as well as from mouse 239 

cell lines, albeit with lower performances (Fig. 4). Here again, CAMAPs trained on original 240 

sequences consistently outperformed CAMAPs trained on shuffled sequences (Fig. 4). These 241 

results show that the codon-specific rules derived by CAMAPs to predict MAP presentation are 242 

valid across different cell types, and can even be applied to another species, albeit with slightly 243 

lower performances. These results support a role for codons in the modulation of MAP 244 

presentation.  245 

Figure 4. Validation of CAMAP predictions on 5 datasets derived from human and murine 246 

cell lines. CAMAP prediction score for different datasets derived from humans (i.e. B-LCL, 247 

PBMCs and B721.221) or mouse (i.e. CT26 and EL4) cells. Of note, all CAMAPs were trained on 248 

B-LCL-derived sequences encoding for 9-mer MAPs only with a context size of 162 nucleotides. 249 

Results are reported for 8 to 11-mer MAPs derived from the 5 datasets. In all panels, 12 CAMAPs 250 

trained with original or shuffled synonymous sequences were compared (significance assessed 251 

using Student T test).  252 

 253 

The lower performances of CAMAP trained with shuffled sequences (representing amino acid 254 

distribution) suggests that amino acids in MAP-flanking sequences are less informative than 255 

codons regarding MAP presentation. We formally quantified this difference in information using 256 

the Kullback-Leibler (KL) divergence (see Materials and Methods for more details). Most codons 257 

(47/61, 77%) showed greater KL divergence in the original dataset than the shuffled dataset, 258 

indicating that codon distributions contained more information with regards to MAP presentation 259 
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than amino acid distributions (Supplementary Fig. S13). These results suggest that codons in 260 

MAP-flanking regions play a role that is non-redundant with amino acids in MAP biogenesis.  261 

We wondered whether some regions were more influential on MAP presentation than others. To 262 

address this question, we retrieved the model preferences for each codon at each position. The 263 

preferences correspond to the prediction score of our best model (trained with original codon 264 

sequences for a context size of 162 nucleotides) when a single codon at a single position is 265 

provided as input (all other positions being set at [0,0] coordinates in the embedding space). The 266 

model’s preferences are therefore a measure of each individual codon’s propensity to increase or 267 

decrease the model’s output probability as a function of its position relative to the MCCs. A value 268 

of 0.5 denotes a neutral preference, while negative and positive preferences correspond to values 269 

below and above 0.5, respectively. Preferences were obtained by feeding CAMAP sequences in 270 

which all codon values were masked, except for a single position that received a non-null codon 271 

label. 272 

Interestingly, while codons closest to the MCCs were the most influential on CAMAP scores, 273 

some synonymous codons showed opposite effects, further demonstrating that codon usage does 274 

not recapitulate amino acid usage (Fig. 5A-B and Supplementary Fig. S14). The use of embeddings 275 

to encode codons has the advantage of arranging them into a semantic space, wherein codons with 276 

similar influences are positioned close to each other. Interestingly, most synonymous codons did 277 

not form clusters, with a notable exception being proline codons (Fig. 5C). This finding indicates 278 

that for some codons, their effect on CAMAP prediction score may be closer to that of a non-279 

synonymous codon than to that of one of its synonyms.  280 

Figure 5. CAMAP interpretation of codon impact on MAP biogenesis. Preferences for a 281 

network trained on a context of 162 nucleotides (54 codons) for (A) serine, proline and tyrosine 282 
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codons, and (B) leucine codons. (C) Learned codon embeddings. Some synonymous codons, 283 

such as those encoding for Isoleucine (I), Cysteine (C) or Arginine (R) are located far from one 284 

another, while others tend to cluster together (e.g. Proline [P] and Glutamic acid [E]).  285 

 286 

CAMAP increases MAP prediction accuracy 287 

We next compared MAP prediction capacities of CAMAPs scores to that of MAP predicted ligand 288 

score (ranks as predicted by NetMHCpan4.0) and mRNA transcript expression levels. We used 289 

ligand scores as predicted by NetMHCpan4.0, which was shown to possess the best predictive 290 

capacities for naturally processed peptides compared to other predictive algorithms [26]. Because 291 

MAP binding to the MHC molecule is essential for its presentation at the cell surface, we elected 292 

to only compare hits and decoys encoding potential binders, i.e. with a minimal ligand score of 293 

1% for at least one allele in the B-LCL dataset. Using a linear regression model, we compared the 294 

predictive capacity of each single parameter using Matthews correlation coefficient, which 295 

measures the quality of binary classifications [27]. Of note, only the predictions on the test set 296 

were used to evaluate the Matthew correlation coefficient in our different models.  297 

Because only potential binders were analyzed here, the mRNA expression level had the highest 298 

predictive capacity, then followed by ligand scores (second) and CAMAP scores (third, Fig. 6A). 299 

As expected due to the multiplicative relationship between MAP ligand score and expression levels 300 

in predicting naturally processed MAPs [11], combining both variables greatly increased 301 

prediction performances (Fig. 6B). Importantly, adding CAMAP scores to the regression model 302 

further increased predictive performances (Fig. 6B). We next computed how many predicted 303 

peptides would need to be tested to capture 1, 5 or 10% of hits in the B-LCL dataset. Results 304 

presented in Table 1 show that using only NetMHCpan4.0 ligand scores (ranks) leads to a very 305 
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high false positive rate (FPR) at 72.1% when targeting the top 1%. Adding the expression levels 306 

greatly increased prediction accuracy and decreased the FPR to 32.8% for the top 1% hits. When 307 

adding CAMAP scores as a third variable, the number of peptides needed to capture 1% of hits 308 

greatly decreased, resulting in a very low FPR at 1.1%. Similar trends were observed when 309 

targeting 5 or 10% of hits, although with higher FPR (see Table 1). Similarly, adding CAMAP 310 

scores to expression levels and ligand scores also ameliorated prediction accuracies for the two 311 

other human datasets introduced above (B721.221 and PBMCs, see Supplementary Table S2). 312 

These results show that combining CAMAP scores with the MAP’s ligand score (ranks) and its 313 

corresponding transcript expression level significantly improves prediction of MAP and facilitate 314 

identification of relevant epitopes through more accurate predictions.  315 

 316 

Figure 6. CAMAP prediction score contributes to the prediction of MAPs. (A) Matthews 317 

correlation coefficient for MAP prediction using a single variable. (B) Matthews correlation 318 

coefficient for MAP prediction using multivariable regression models. The B-LCL dataset (all 319 

MAP lengths) was filtered for MAP with a minimal ligand score (rank) of 1% (NetMHCpan4.0).  320 

 321 

Table 1. Number of peptides needed to capture 1%, 5% or 10% of epitopes detected by mass 322 

spectrometry. The lower the number of peptides needed to capture the respective number of 323 

epitopes, the better the performance of the prediction model. This is also illustrated by the 324 

percentage of false identification (false positive rate, FPR) reported here. Peptides were rank-325 

ordered according to regression scores, for a total of 490,297 unique peptides and 8,991 hits. Of 326 

note, only the maximal regression score was kept for peptides with multiple potential origins. 327 

Regression 

model 
1% hits (n=90) 5% hits (n=450) 10% hits (n=899) 
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n FPR n FPR n FPR 

NetMHCpan4.0 322 ± 18 72.05% 2183 ± 69 79.39% 4927 ± 136 81.75% 

NetMHCpan4.0

+ expression 
134 ± 6 32.84% 601 ± 10 25.12% 1211 ± 16 25.76% 

NetMHCpan4.0

+ expression  

+ CAMAP 

91 ± 2 1.11% 524 ± 13 14.12% 1170 ± 18 23.16% 

 328 

Codon usage can modulate MAP presentation 329 

To evaluate whether changing the codon arrangement in a MAP-coding sequence might directly 330 

lead to modulation of MAP presentation, we generated three variants of the chicken ovalbumin 331 

(OVA) protein containing the model MAP SIINFEKL [28]. One construct encoded the wild type 332 

OVA (OVA-WT). For the other two constructs, we used CAMAP (trained on original human B-333 

LCL sequences; Fig. 2) to generate two OVA variants in silico, both encoding for the same OVA 334 

protein but using different synonymous codons: one predicted to enhance SIINFEKL presentation 335 

(OVA-EP), the other predicted to reduce it (OVA-RP). Accordingly, the respective CAMAP 336 

scores for OVA-RP, OVA-WT and OVA-EP were: 0.03, 0.65, and 0.96 (Fig. 7A). All variants 337 

encoded the same amino acid sequence but used different synonymous codons. Notably, the sole 338 

difference between the three constructs were the 162 nucleotides flanking each side of the 339 

SIINFEKL-coding codons (i.e. the RNA sequences coding for OVA202-256 and OVA265-319, 340 

Supplementary Table S1 and Supplementary Figure S15). 341 

Figure 7. Codon usage in MAP-flanking mRNA sequences can influence antigen 342 

presentation and translation efficiency. (A) Design of the inducible Translation Reporter (iTR-343 

OVA) constructs and CAMAP scores for OVA-WT, OVA-EP and OVA-RP sequences. (B) 344 

Schematic representation of possible translation events. When mRNA codon usage leads to 345 

efficient (uninterrupted) translation, similar amounts of eGFP and Ametrine proteins would be 346 

synthesized. When codon usage in the MAP-flanking regions enhances the frequency of 347 
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translation interruption, a lower Ametrine/eGFP ratio would be observed. (C) Kinetics of 348 

SIINFEKL MAP presentation following induction of iTR-OVA constructs expression by 349 

doxycycline, measured in a T-cell activation assay. To remove the influence of differential 350 

expression levels on antigenic presentation and of varying proportion of transduced cells 351 

between samples, T-cell activation levels were normalized to the average Ametrine fluorescence 352 

intensity and to the proportion of eGFP+ cells (i.e. cells expressing the construct). (D) 353 

Translation efficiency as measured by Ametrine/eGFP ratio following iTR-OVA construct 354 

induction. For C and D, results are normalized over the WT sample from the same experiment 355 

(n=4). Statistical differences at each time point were determined using bilateral paired Student T 356 

tests. Significance for the comparison against WT are indicated with *, while comparison of EP 357 

vs RP is indicated with †. N.B.: Each replicate is shown with a dot, while the line and shaded 358 

area represent the average and 95% confidence interval, respectively. 359 

 360 

Because codon usage affects translation efficiency, theoretically leading to DRiP formation 361 

through premature translation arrest [20,21], we expected the variable regions of our construct to 362 

affect both translation rates and SIINFEKL presentation in our variants. Therefore, each construct 363 

also coded for two other proteins, eGFP and Ametrine, placed upstream and downstream of the 364 

OVA coding sequence, respectively (Fig. 7A). While the Ametrine fluorescence intensity reflected 365 

the translation rate of the whole construct, the ratio of Ametrine/eGFP fluorescence intensity was 366 

informative regarding the translation efficiency of the whole construct. Indeed, efficient translation 367 

of the full-length construct should produce equivalent quantities of Ametrine and eGFP proteins, 368 

while inefficient/interrupted translation of the construct (i.e. leading to DRiP formation) should 369 

decrease the Ametrine/eGFP ratio (Fig. 7B). The three protein coding sequences were separated 370 

with P2A self-cleaving peptides [29], therefore allowing the co-synthesis of three separate 371 

proteins, controlled by the doxycycline-inducible Tet-On promoter. Importantly, the three proteins 372 

were tightly co-expressed because of the presence of only one start codon at the 5’ end of the GFP 373 
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protein, as shown by the very high correlation between eGFP and Ametrine fluorescence for each 374 

construct (R>0.97, see Supplementary Figure S16). As we assumed that CAMAP scores reflected 375 

the probability of DRiP generation leading to increased MAP presentation, we expected the OVA-376 

RP construct to show both reduced SIINFEKL presentation and enhanced translation efficiency 377 

compared to the OVA-EP and OVA-WT constructs. However, as both the OVA-EP and OVA-378 

WT have CAMAP scores above the neutral threshold of 0.5 and closer to one another (0.98 and 379 

0.65, respectively) compared to the OVA-RP construct (0.03), we expected OVA-EP and OVA-380 

WT to behave more similarly.  381 

We then used a SIINFEKL-H2-Kb specific T-cell activation assay [30] to measure SIINFEKL 382 

presentation at the cell surface following doxycycline induction. Results for the T-cell activation 383 

assay were normalized by both the Ametrine mean fluorescence intensity and the percentage of 384 

transduced (eGFP+) cells in each specific sample, so that any difference in T-cell activation 385 

observed between our constructs could only be ascribed to synonymous codon variants in the 386 

SIINFEKL-flanking OVA codons. Two main findings emerged from our analyses. First, in 387 

accordance with CAMAP predictions, variation in codon usage led to a 2.3-fold difference in 388 

SIINFEKL presentation between the OVA-EP and OVA-RP variants, with OVA-WT in between 389 

(Fig. 7C). Second, translation efficiency (Ametrine/eGFP ratio) was higher with OVA-RP than 390 

with OVA-EP or OVA-WT, while OVA-EP showed similar translation efficiency compared to 391 

ONA-WT (Fig. 7D). Hence, synonymous codon variations led to slightly divergent outcomes in 392 

OVA-EP and OVA-RP: they modulated the levels of SIINFEKL presentation in both constructs, 393 

but enhanced translation efficiency could only be detected for OVA-RP. These data show that 394 

codon arrangement can modulate MAP presentation strength without any changes in the amino 395 
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acid sequence and support a role for translation efficiency and DRiP formation in the modulation 396 

of MAP presentation. 397 

 398 

Discussion 399 

Our analyses of large datasets using artificial neural networks and other bioinformatics approaches 400 

provide compelling evidence that codon usage regulates MAP biogenesis via both short- and long-401 

range effects. While most MAP predictive approaches focus on MAP sequences per se, CAMAP’s 402 

novelty is that it only receives the MAP-flanking mRNA sequences as input, and no information 403 

on the MAP itself, thereby providing completely independent information for MAP prediction. 404 

The better prediction accuracy of CAMAPs trained with original codons rather than with shuffled 405 

synonyms supports the role of codon usage in modulating MAP biogenesis (Fig. 2). In addition, 406 

we demonstrated that the codon-specific signal that is captured by CAMAP was independent of 407 

transcript expression levels and MAP ligand scores, thereby providing complementary and non-408 

overlapping information regarding MAP presentation. Additionally, while CAMAP preferences 409 

were more influential for codons located close to the MCCs (Fig. 5), the better performance of 410 

CAMAP trained with longer context size pointed toward a long-range impact of codon usage on 411 

MAP presentation. 412 

The functional link between codon arrangement and MAP biogenesis was illustrated by our in 413 

vitro analyses of SIINFEKL biogenesis, in which we were able to modulate SIINFEKL 414 

presentation solely by substituting synonymous codons in mRNA regions flanking SIINFEKL 415 

codons, without changing the protein sequence. While the experimental data derives from a single 416 

model thus limiting the interpretability of our results, this points nonetheless to an interesting 417 
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mechanism that could be exploited to enhance antigenic presentation in peptide-bas4ed 418 

immunotherapy (i.e. dendritic cells modified to express a specific MAP).  419 

Further analyses will be needed to assess the full extent of codon arrangement’s impact on both 420 

classic MAPs (i.e. derived from canonical reading frames of coding sequences) and cryptic MAPs 421 

(i.e. derived from non-canonical reading frames and non-coding sequences) [31,32], as well as the 422 

potential contribution of codons in non-coding regions (e.g. 5’- or 3’-UTRs) on the regulation of 423 

MAP presentation. However, our results show that the integration of CAMAP scores to the two 424 

best predictive factors for naturally processed MAPs led to a significant increase in prediction 425 

accuracy. Indeed, our regression model combining only transcript expression levels to MAP ligand 426 

scores (ranks as predicted by NetMHCpan4.0), showed that a total of 134 peptides would need to 427 

be tested in order to capture 1% of all presented MAPs (hits), leading to a false positive rate of 428 

32.8%. In contrast, the addition of CAMAP to this model decreased the false positive rate to only 429 

1.1%, leading to 90 correct identifications out of 91 MAPs tested. Although predictions were not 430 

as accurate for the two other human datasets, adding CAMAP scores always resulted in improved 431 

prediction accuracy. Our results therefore support the combined use of ligand scores, transcript 432 

expression levels and CAMAP scores in MAP predictive algorithms. These results have important 433 

practical implications for cancer immunotherapy and peptide-based vaccines, where discovery of 434 

suitable target antigens remains a formidable challenge to this day [33,34]. 435 

 436 

Materials and methods 437 

Dataset generation 438 
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We analyzed a previously published dataset consisting of MAPs presented on B lymphocytes by 439 

a total of 33 MHC-I alleles from 18 subjects [19,22]. Since this dataset was assembled using older 440 

versions of MHC-I binding prediction algorithms (i.e. using a combination of NetMHC3.4 for 441 

common alleles and NetMHCcons1.1 for rare alleles), we verified that the majority of MAPs in 442 

this dataset would also be predicted as binders using more recent algorithms (i.e. a rank ≤ 2.0% 443 

using NetMHC4.0 or NetMHCpan4.0). We found an overlap of >92% between these methods (see 444 

Supplementary Fig. S17), thereby validating this dataset for further analysis. In addition, we 445 

reasoned that a transcript should be considered as a genuine positive or negative regarding MAP 446 

biogenesis only if it was expressed in the cells. We therefore excluded from the dataset all 447 

transcripts with very low expression (<1st percentile in terms of FPKM). 448 

To facilitate data analysis and interpretation, we only included transcripts coding for MAPs with 449 

a length of 9 amino acids, for a total of 19,656 9-mer MAPs (which represents 78% of MAPs in 450 

this dataset). We then used pyGeno [23] to extract the mRNA sequences of transcripts coding for 451 

these 9-mer MAPs, which constituted our source-transcripts (Fig. 1A). We next created a negative 452 

(non-source) dataset from transcripts that generated no MAPs. Importantly, transcripts that 453 

encoded for MAPs of any length (i.e. 8 to 11-mer) were excluded from the negative dataset. We 454 

then randomly selected 98,290 non-MAP 9-mers from this negative dataset, and extracted their 455 

coding sequences using pyGeno. Of note, both positive and negative datasets were derived from 456 

the canonical reading frame of non-redundant transcripts. 457 

We analyzed only the MAP context and excluded the MCCs per se from our positive (hits) and 458 

negative (decoys) sequences (Fig. 1A). We limited our analyses of flanking sequences to 162 459 

nucleotides (54 codons) on each side of MCCs, because longer lengths would entail the exclusion 460 

of >25% of transcripts (Supplementary Fig. S18). 461 
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Creation of the shuffled synonymous codon dataset 462 

To create the shuffled synonymous codon dataset, each sequence was re-encoded by replacing 463 

each codon with itself or with a random synonym according to the human transcriptome usage 464 

frequencies. These frequencies were calculated using the annotations provided by Ensembl for the 465 

human reference genome GRCh37.75. Thus, all codon-specific features differing between the 466 

positive and negative datasets was removed from the shuffled datasets. Because codons were 467 

replaced by their synonymous codons, the shuffled sequences directly reflected amino acid usage 468 

in the positive and negative datasets. 469 

CAMAP architecture, sequence encoding and training 470 

The first (input) layer received either MCCs flanking regions from the hit dataset or sequences of 471 

the same length contained in the decoy dataset (Fig. 1A). The second layer (Supplementary Fig. 472 

4A) was a codon embedding layer similar to that introduced for a neural language model [35]. 473 

Embedding is a technique used in natural language processing to encode discrete words, and has 474 

been shown to greatly improve performances [36]. With this technique, the user defines a fixed 475 

number of dimensions in which words should be encoded. When the training starts, each word 476 

receives a random vector-valued position (its embedding coordinates) in that space. The network 477 

then iteratively adjusts the words’ embedding vectors during the training phase and arranges them 478 

in a way that optimizes the classification task. Notably, embeddings have been shown to represent 479 

semantic spaces in which words of similar meanings are arranged close to each other [36]. In the 480 

present work, we treated codons as words: each codon received a set of random 2D coordinates 481 

that were subsequently optimized during training. The third (output) layer delivered the probability 482 

that the input sequence was a MCCs flanking region (rather than a sequence from the negative 483 

dataset).   484 
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CAMAPs were trained on sequences resulting from the concatenation of pre- and post-MCCs 485 

regions. Before presenting sequences to our CAMAPs, we associated each codon to a unique 486 

number ranging from 1 to 64 (we reserved 0 to indicate a null value) and used this encoding to 487 

transform every sequence into a vector of integers representing codons. Neural networks were built 488 

using the Python package Mariana [37] [https://www.github.com/tariqdaouda/Mariana]. The 489 

Embedding layer of Mariana was used to associate each label superior to 0 to a set of 2D trainable 490 

parameters; the 0 label represents a null (masking) embedding fixed at coordinates (0,0). As an 491 

output layer, we used a Softmax layer with two outputs (positive / negative). Because negative 492 

sequences are more numerous than positive ones, we used an oversampling strategy during 493 

training. At each epoch, CAMAPs were randomly presented with the same number of positive and 494 

negative sequences. All CAMAPs in this work share the same architecture (Supplementary Fig. 495 

4A), number of parameters and hyper-parameter values: learning rate: 0.001; mini-batch size: 64; 496 

embedding dimensions: 2; linear output without offset on the embedding layer; Softmax non-497 

linearity without offset on the output layer.  498 

For each condition (e.g. context size), the positive and negative datasets were randomly divided 499 

into three non-redundant subsets: (i) the training subsets containing 60% of the positive and 500 

negative transcripts, (ii) the validation and (iii) the test subsets each containing 20% of the positive 501 

and negative transcripts. Transcripts were assigned through a sequence redundancy removal 502 

algorithm, thereby ensuring that no transcript was assigned to multiple subsets. We used an early 503 

stopping strategy on validation sets to prevent over-fitting and reported average performances 504 

computed on test sets. We trained 12 CAMAPs for each combination of conditions, each one using 505 

a different random split of train/validation/test sets. To mask sequences either before or after the 506 

MCCs, we masked either half with null value.  507 
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Kullback-Leibler divergence 508 

The Kullback-Leibler (KL) divergence computes how well a given distribution is approximated 509 

by another distribution. Its value can be either positive or 0, a null value indicating that the two 510 

distributions are identical (see Materials and Methods for more details). Accordingly, a higher KL 511 

divergence for codon distributions vs. amino acid distributions would indicate that codon 512 

variations are not entirely accounted for by amino acid variations. KL divergence is not a metric, 513 

as it is neither symmetric nor does it satisfy the triangle inequality. It is nevertheless an accurate 514 

and most common way of comparing two probability distributions. 515 

We defined the probability of having codon c at position i as a function of the number of 516 

occurrences of c at position i, divided by the total number of occurrences of that same codon: 517 

𝑸(𝒄,𝒚,𝒔)(𝒊) =
𝑵𝒄,𝒚,𝒔(𝒊)

∑ 𝑵𝒄,𝒚,𝒔 (𝒋)𝒋
   518 

Here Q is a probability, N is a number of occurrences, c is a codon, y is a class (positive or 519 

negative), s indicates if codons have been randomized (true or false), i is a position in sequence. 520 

For the remainder of the text we will use the following abbreviations: 521 

𝑷𝒄(𝒊) =  𝑸𝒄,𝒚=𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆,𝒔=𝒇𝒂𝒍𝒔𝒆(𝒊) 522 

𝑫𝒄(𝒊) =  𝑸𝒄,𝒚=𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆,𝒔=𝒇𝒂𝒍𝒔𝒆(𝒊) 523 

𝑷𝑺𝒄(𝒊) =  𝑸𝒄,𝒚=𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆,𝒔=𝒕𝒓𝒖𝒆(𝒊) 524 

𝑫𝑺𝒄(𝒊) =  𝑸𝒄,𝒚=𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆,𝒔=𝒕𝒓𝒖𝒆(𝒊) 525 

We then used the KL divergence to compute how well 𝑃𝑐 distributions approximate 𝐷𝑐 526 

distributions and 𝑃𝑆𝑐 distributions approximate 𝐷𝑆𝑐 distributions. 527 
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The KL divergence was defined as: 528 

𝑫𝑲𝑳(𝑷||𝑸) =  ∑ 𝑷(𝒊)𝐥𝐨𝐠 (
𝑷(𝒊)

𝑸(𝒊)
)

𝒊

 529 

We performed this calculation for both the original and the shuffled dataset, which we then 530 

compared together. If codons and amino acid distributions were equivalent, KL divergence 531 

between hits and decoys would be the same for both original and shuffled sequences, and codons 532 

would cluster along the diagonal.  533 

Predicting MAP presentation with linear regressions 534 

The prediction capacity of CAMAP, NetMHCpan-4.0 ligand score and transcription expression 535 

(TPM) was tested in different combinations of those parameters (Ligand Score + Expression, 536 

Ligand score + Expression + CAMAP score) using the LogisticRegressionCV function from the 537 

python package sklearn (sklearn.linear_model, v0.22.1). In each case, the dataset containing hits 538 

and decoy sequences was split into train and test datasets with a ratio of 0.7 to 0.3, respectively. 539 

Values for CAMAP score, Ligand Score and TPM were each scaled to a range of 0-1 in the train 540 

set using MinMaxScaler from sklearn.preprocessing and the same scaling model was applied to 541 

the test set afterwards. Regression analysis was performed using LogisticRegressionCV with a 10x 542 

cross-validation using the lbfgs solver with 1000 iterations. MCC scores were calculated using 543 

matthews_corrcoef from sklearn.metrics. When a peptide had multiple sources (multiple 544 

transcripts or genes), only the maximum value from its regression scores was kept. 545 

In vitro assay – inducible translation reporter (iTR)-OVA construct design 546 

An inducible translation reporter was generated by flanking the truncated chicken ovalbumin 547 

(OVA) cDNA (amino acids 144-386) with EGFP-P2A (in 5’) and P2A-Ametrine (in 3’) cDNA 548 

sequences. MCCs flanking contexts for the EP and RP construct were synthesized as gBlocks 549 
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(purchased from Integrated DNA Technologies). The fragments were amplified by PCR and joined 550 

by Gibson assembly under a doxycycline-inducible Tet-ON promoter in a pCW backbone. 551 

Synthetic variants of the OVA coding sequence were generated in silico by varying synonymous 552 

codon usage in the MAP context regions (i.e. 162 nucleotides pre- and post-MCCs). Importantly, 553 

the amino acid sequence was preserved between the different variants; only nucleotide sequences 554 

in the MAP context (162 nucleotides on either side) differed. The sequences with the highest (EP) 555 

and the lowest (RP) prediction scores were selected for further in vitro validation and swapped 556 

into the iTR-OVA plasmid by Gibson assembly [38]. OVA-EP and OVA-RP sequences can be 557 

found in Supplementary Table 1. 558 

Important features of our inducible translation reporter construct and T cell activation assay were: 559 

(i) No changes in amino acid sequence between the three variants: only co-translational events can 560 

differ between the three variants, post-translational events being equivalent for the three 561 

constructs; (ii) Only one start codon, at the beginning of the eGFP coding sequence: this is 562 

important for the translation reporter aspect of our construct (i.e. Ametrine/eGFP ratio), to ensure 563 

that translation can only start at the 5’-end of the whole construct, and not at the beginning of the 564 

OVA or Ametrine coding sequences; (iii) Separation of the three proteins using P2A peptide: 565 

allows the inducible synthesis of three separate proteins in a highly correlated manner; also, the 566 

degradation of one protein will be independent from the others. As we hypothesized that codon 567 

usage might lead to DRiP formation, we did not want the degradation of OVA-derived polypeptide 568 

to induce degradation of attached eGFP or Ametrine, which would affect our translation reporter 569 

assay (Ametrine/eGFP ratio); (iv) Because transcript expression level impacts MAP presentation, 570 

we normalized T-cell activation results by both the number of transduced cells present in the 571 

samples (% of eGFP+ cells) and the Ametrine mean fluorescence intensity of eGFP+ cells 572 
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(representing whole construct expression level). Because of these four features, any difference 573 

between the three constructs could be ascribed solely to synonymous codon variants in the 574 

SIINFEKL-flanking OVA codons. 575 

Stable cell line generation 576 

Wildtype and transduced Raw-Kb cells [39] were cultured in DMEM supplemented with 10% Fetal 577 

Bovine Serum (FBS), penicillin (100 units/ml), and streptomycin (100mg/ml). B3Z cells [40] were 578 

maintained in RPMI medium supplemented with 5% FBS, penicillin (100 units/ml), and 579 

streptomycin (100mg/ml). 580 

Lentiviral particles were produced from HEK293T cells by co-transfection of iTR-OVA WT, EP 581 

or RP along with pMD2-VSVG, pMDLg/pRRE and pRSV-REV plasmids. Viral supernatants 582 

were used for Raw-Kb transduction. Raw-Kb OVA-WT, Raw-Kb OVA-EP were sorted on 583 

Ametrine and GFP double positive population after 24h of doxycycline treatment (1 mg/ml). 584 

T-cell activation assay 585 

Raw-Kb OVA-EP, OVA-RP and OVA-WT cells were plated at a density of 250,000 cells/well in 586 

24 well-plates 24h prior to doxycycline treatment (1 mg/ml). After the corresponding treatment 587 

duration, cells were harvested and fixed using PFA 1% for 10 minutes at room temperature and 588 

washed using DMEM 10% FBS. Raw-Kb were then co-cultured (37°C, 5% CO2) in triplicates with 589 

the CD8 T cell hybridoma cell line B3Z cells at a 3:2 ratio for 16h (7.5 x 105 B3Z and 5 x 105 590 

Raw-Kb) in 96 well-plates. Cells were lysed for 20 minutes at room temperature using 50 µl/well 591 

of lysis solution (25mM Tris-Base, 0.2 mM CDTA, 10% glycerol, 0.5% Triton X-100, 0.3mM 592 

DTT; pH 7.8). 170 µl/well CPRG buffer was added (0.15mM chlorophenol red-β-d-593 

galactopyranoside (Roche), 50mM Na2HPO4•7H20, 35mM NaH2PO4•H20, 9mM KCl, 0.9mM 594 

MgSO4•7H2O). β-galactosidase activity was measured at 575 nm using SpectraMax® 190 595 
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Microplate Reader (Molecular Devices). In parallel, cells were analyzed by flow cytometry using 596 

a BD FACS CantoII for eGFP and Ametrine fluorescence.  597 

Data Availability 598 

The datasets analyzed for this study can be found: 599 

• Human B-LCL: RNA-Seq data can be accessed on the NCBI Bioproject database 600 

(http://www.ncbi.nlm.nih.gov/bioproject/; accession PRJNA286122).  601 

• Human PBMC: RNA-sequencing data for human PBMC were extracted from healthy 602 

donors in Zucca et al (2019) [41] and can be accessed under the GEO accession number 603 

GSE106443 and GSE115259, while MAPs were extracted from Murphy et al (2017) [24].  604 

• Human B721.221: The B721.221 dataset was retrieved from Abelin et al (2017) [11]; RNA 605 

sequencing data can be accessed under the GEO accession number GSE93315.  606 

• Murine CT26: RNA-Seq data can be accessed under the GEO accession number 607 

GSE111092. Mass spectrometry data can be found on the ProteomeXchange Consortium 608 

via the PRIDE partner repository (human B-LCL: PXD004023 and murine CT26: 609 

PXD009065 and 10.6019/PXD009065).  610 

• Murine EL4: MAP dataset was extracted from Murphy et al (2017) [24] and EL4 RNA 611 

sequencing dataset was extracted from Sidoli et al (2019) [42] and can be accessed under 612 

the GEO accession number GSE125384. 613 

All figures were generated using R’s package “ggplot2”. Source code for pyGeno 614 

(https://github.com/tariqdaouda/pyGeno, doi: 10.12688/f1000research.8251.2) and Mariana 615 

(https://github.com/tariqdaouda/Mariana, doi: [to be provided after acceptance]) are freely 616 

available online. 617 
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Supporting information captions 766 

Supplementary Figures 767 

Supplementary Figure S1. Codon distribution in the shuffled datasets more closely resembles 768 

that of amino acids, compared to the original datasets. (A) Pearson correlation (R2) factors and 769 

(b) Kullback-Leibler (KL) divergence between positional distribution of codons and their 770 

corresponding amino acid in the shuffled (y axis) VS original (x axis) datasets. For all codons, the 771 

shuffled dataset showed greater correlations (A) and smaller KL divergence to their respective 772 

amino acid distributions than the original datasets (p < 1 x 10-8, assessed using unilateral paired 773 

Student T test).  774 

  775 

Supplementary Figure S2. Distribution of Pearson’s correlation factors calculated between 776 

codons and amino acids positional distributions in the original (green) and shuffled (coral) 777 

datasets. 92% of codons in the shuffled dataset reflecting the amino acids distribution with a R2 778 

> 0.95, compared to only 69% in the original dataset (p < 5x10-5). 779 

  780 

Supplementary Figure S3. Distribution of amino acid and codon usage per position in the 781 

original VS shuffled datasets. (A) Alanine – A. (B) Cysteine – C. (C) Aspartic acid – D. (D) 782 

Glutamic acid – E. (E) Phenylalanine – F. (F) Glycine – G. (G) Histidine – H. (H) Isoleucine – I. 783 

(I) Lysine – K. (J) Leucine – L. (K) Asparagine – N. (L) Proline – P. (M) Glutamine – Q. (N) 784 

Arginine – R. (O) Serine – S. (P) Threonine – T. (Q) Valine – V. (R) Tyrosine – Y. 785 

  786 

Supplementary Figure S4. CAMAP architecture and detailed predictions. (A) Architecture of the 787 

ANN used in this work. (B) Results for the AUC on all train, validation and test subsets. Grey 788 

areas represent the 95% confidence intervals. (C) Distributions of output probabilities of CAMAPs 789 

used to calculate correlations in Supplementary Figure S5.  790 

 791 
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Supplementary Figure S5. Correlation between CAMAP prediction score trained only with pre-792 

MCC or post-MCC sequences. For each sequence in the test set we calculated the average 793 

prediction score given by CAMAPs in each condition, and calculated the Pearson correlation using 794 

the R software. Densities were calculated on all points and drawn using ggplot2. Only a random 795 

subset of the points is represented in the figures to limit their size. 796 

  797 

Supplementary Figure S6. Absence of correlation between CAMAP prediction score and 798 

transcript expression levels in 4 individual B-LCL samples (each derived from a different subject).  799 

  800 

Supplementary Figure S7. Training of CAMAP on dataset selected to reflect positive 801 

dataset’s distribution in expression levels. (A) Distribution of transcript expression levels for 802 

normal datasets (related to Figure 2) and the dataset used here to retrain CAMAP. As shown in 803 

this figure, the decoy dataset was selected to mirror the distribution of transcript expression level 804 

in the hit dataset. (B) CAMAP performance (measured by the AUC) when trained using the decoy 805 

dataset that mirrors the transcript expression levels of the hit dataset. Significance was assessed 806 

using bilateral paired Student T test (p = 5.36 x 10-7). 807 

  808 

Supplementary Figure S8. Absence of correlation between CAMAP prediction score and 809 

binding affinities for individual alleles for decoys (A) and hits (B).  810 

  811 

Supplementary Figure S9. Training of CAMAP on dataset selected to reflect positive 812 

dataset’s distribution in binding affinities. (A) Distribution of binding affinities for normal 813 

datasets (related to Figure 2) and the corrected dataset used to retrain CAMAP. As shown in this 814 

figure, the decoy dataset was selected to mirror the distribution of binding affinities in the hit 815 

dataset. (B) CAMAP performance (measured by the AUC) when trained using the decoy dataset 816 

that mirrors the binding affinities of the hit dataset. Significance was assessed using bilateral paired 817 

Student T test (p = 1.21 x 10-9). 818 
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  819 

Supplementary Figure S10. Evaluation of homology in hit dataset and its impact of CAMAP 820 

performance. (A) Proportion of unique MAPs that can be ascribed to a single origin, 2-3, or >10 821 

possible origins. (B) Proportion of entries in the hit dataset that encode for MAPs with a single 822 

origin, 2-3, 4-10 or >10 possible origins  823 

  824 

Supplementary Figure S11. Gene families overrepresented in hits with >3 possible origins. 825 

  826 

Supplementary Figure S12. CAMAP performance (AUC) when trained using either all hits 827 

(left), hits with 10 possible origins or less (center) or hits with 3 possible origins or less (right).  828 

 829 

Supplementary Figure S13. Kullback-Leibler divergence between hit and decoy datasets in 830 

original codon (y-axis) or shuffled synonymous codon sequences (x-axis). Shuffled sequences 831 

represent amino acid usage, as codon-specific information are removed with synonymous codon 832 

shuffling. 833 

  834 

Supplementary Figure S14. Preferences per position for all codons for CAMAP trained with 835 

original sequences. See Materials and Methods for more details. 836 

  837 

Supplementary Figure S15. OVA-construct alignment, showing point mutations (red lines) in 838 

the mRNA sequences flanking the SIINFEKL MCC. (A) Comparison of the OVA-EP nucleotide 839 

sequence to the wildtype OVA sequence. The OVA-EP and OVA-WT sequences have 93.3% 840 

nucleotide identity for a total of 78 modified nucleotides. (B) Comparison of the OVA-RP 841 

nucleotide sequence to the wildtype OVA sequence. The OVA-EP and OVA-WT sequences have 842 

92.6% nucleotide identity, for a total of 86 modified nucleotides. Mutations, shown in red, are 843 
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located only in the 162 nucleotide regions flanking the SIINFEKL coding codons. Of note, the 844 

SIINFEKL coding codons (nucleotides 772-799) were not modified between the 3 constructs.  845 

  846 

Supplementary Figure S16. Correlations between eGFP and Ametrine fluorescence intensity at 847 

the single cell level. Single cell eGFP and Ametrine fluorescence intensities measured at 10 hours 848 

post-induction are shown for the OVA-WT (A), OVA-EP (B) and OVA-RP (C) constructs. N.B.: 849 

only transduced cells are shown (eGFP+ cells).  850 

 851 

Supplementary Figure S17. Validation of MHC-I associated peptides (MAP) dataset from 852 

Pearson H. et al. (2016) using the new versions of MAP binding affinity prediction algorithm 853 

NetMHC4.0 (A) and NetMHCpan4.0 (B).  854 

 855 

Supplementary Figure S18. Percentage of transcript ineligibility as a function of context size. 856 

Transcript length corresponds to C x 2 + 27, where C is the context size in nucleotides and 27 the 857 

length of the MCCs. Related to Figure 1A. 858 

  859 

  860 

Supplementary Tables 861 

Supplementary Table S1. Nucleotide sequences of the EP and RP constructs. SIINFEKL 862 

MCCs are shown in bold, while the variant regions (pre- and post-MCCs flanking sequences, 863 

context size of 162-nucleotides) are in blue and italics. Related to Fig. 7.  864 

 865 

Supplementary Table S2. Number of peptides needed to capture 1%, 5 and 10% of epitopes 866 

detected by mass spectrometry in B721.221 and PBMC cell lines. The lower the number of 867 
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peptides needed to capture the respective number of epitopes, the better the performance of the 868 

prediction model. This is also illustrated by the percentage of false identification (false positive 869 

rate, FPR) reported here. Peptides were rank-ordered according to regression scores. Of note, only 870 

the maximal regression score was kept for peptides with multiple potential origins. 871 

 872 

 873 
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