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Abstract 16 

 17 

Polyphenols, natural products present in plant-based foods, play a protective role 18 

against several complex diseases through their antioxidant activity and by diverse 19 

molecular mechanisms. Here we developed a network medicine framework to uncover 20 

the mechanistic roles of polyphenols on health by considering the molecular interactions 21 

between polyphenol protein targets and proteins associated with diseases. We find that 22 

the protein targets of polyphenols cluster in specific neighborhoods of the human 23 

interactome, whose network proximity to disease proteins is predictive of the molecule’s 24 

known therapeutic effects. The methodology recovers known associations, such as the 25 

effect of epigallocatechin 3-O-gallate on type 2 diabetes, and predicts that rosmarinic 26 

acid (RA) has a direct impact on platelet function, representing a novel mechanism 27 

through which it could affect cardiovascular health. We experimentally confirm that RA 28 

inhibits platelet aggregation and alpha granule secretion through inhibition of protein 29 

tyrosine phosphorylation, offering direct support for the predicted molecular mechanism. 30 

Our framework represents a starting point for mechanistic interpretation of the health 31 

effects underlying food-related compounds, allowing us to integrate into a predictive 32 

framework knowledge on food metabolism, bioavailability, and drug interaction. 33 
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Introduction 34 

 35 

Diet plays a defining role in human health. Indeed, while poor diet can significantly 36 

increase the risk for coronary heart disease (CHD) and type 2 diabetes mellitus (T2D), a 37 

healthy diet can play a protective role, even mitigating genetic risk for CHD1. 38 

Polyphenols are a class of compounds present in plant-based foods, from fruits to 39 

vegetables, nuts, seeds, beans (e.g. coffee, cocoa), herbs, spices, tea, and wine, with 40 

well documented protective role as antioxidants, which affect several diseases, from 41 

cancer to T2D, cardiovascular, and neurodegenerative diseases2,3. Previous efforts 42 

profiled over 500 polyphenols in more than 400 foods4,5 and have documented the high 43 

diversity of polyphenols to which humans are exposed through their diet, ranging from 44 

flavonoids to phenolic acids, lignans, and stilbenes.  45 

The underlying molecular mechanisms through which specific polyphenols exert 46 

their beneficial effects on human health remain largely unexplored. From a mechanistic 47 

perspective, dietary polyphenols are not engaged in endogenous metabolic processes 48 

of anabolism and catabolism, but rather affect human health through their anti- or pro-49 

oxidant activity6, by binding to proteins and modulating their activity7,8, interacting with 50 

digestive enzymes9, and modulating gut microbiota growth10,11. Yet, the variety of 51 

experimental settings and the limited scope of studies that explore the molecular effects 52 

of polyphenols have, to date, offered a range of often conflicting evidence. For example, 53 

two clinical trials, both limited in terms of the number of subjects and the intervention 54 

periods, resulted in conflicting conclusions about the beneficial effects of resveratrol on 55 

glycemic control in T2D patients12,13. We, therefore, need a framework to interpret the 56 

evidence present in the literature, and to offer in-depth mechanistic predictions on the 57 

molecular pathways responsible for the health implications of polyphenols present in 58 

diet. Ultimately, these insights could help us provide evidence on causal diet-health 59 

associations, guidelines of food consumption for different individuals, and help to 60 

develop novel diagnostic and therapeutic strategies, which may lead to the synthesis of 61 

novel drugs. 62 

Here, we address this challenge by developing a network medicine framework to 63 

capture the molecular interactions between polyphenols and their cellular binding 64 
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targets, unveiling their relationship to complex diseases. The developed framework is 65 

based on the human interactome, a comprehensive subcellular network consisting of all 66 

known physical interactions between human proteins, which has been validated 67 

previously as a platform for understanding disease mechanisms14,15, rational drug target 68 

identification, and drug repurposing16,17. 69 

We find that the proteins to which polyphenols bind form identifiable 70 

neighborhoods in the human interactome, allowing us to demonstrate that the proximity 71 

between polyphenol targets and proteins associated with specific diseases is predictive 72 

of the known therapeutic effects of polyphenols. Finally, we unveil the potential 73 

therapeutic effects of rosmarinic acid (RA) on vascular diseases (V), predicting that its 74 

mechanism of action is related to modulation of platelet function. We confirm this 75 

prediction by experiments that indicate that RA modulates platelet function in vitro by 76 

inhibiting tyrosine protein phosphorylation. Altogether, our results demonstrate that the 77 

network-based relationship between disease proteins and polyphenol targets offers a 78 

tool to systematically unveil the health effects of polyphenols. 79 

 80 

Results 81 

 82 

Polyphenol Targets Cluster in Specific Functional Neighborhoods of the Interactome 83 

 84 

We mapped the targets of 65 polyphenols (see Methods) to the human 85 

interactome, consisting of 17,651 proteins and 351,393 interactions (Fig 1a,b). We find 86 

that 19 of the 65 polyphenols have only one protein target, while a few polyphenols 87 

have an exceptional number of targets (Fig 1c). We computed the Jaccard Index (JI) of 88 

the protein targets of each polyphenol pair, finding only a limited similarity of targets 89 

among different polyphenols (average JI = 0.0206) (Supplementary Figure 1a). Even 90 

though the average JI is small, it is still significantly higher (Z = 147, Supplementary 91 

Figure 1b) than the JI expected if the polyphenol targets were randomly assigned from 92 

the pool of all network proteins with degrees matching the original set. This finding 93 

suggests that while each polyphenol targets a specific set of proteins, their targets are 94 

confined to a common pool of proteins, likely determined by commonalities in the 95 
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polyphenol binding domains of the three-dimensional structure of the protein targets18. 96 

Gene Ontology (GO) Enrichment Analysis recovers existing mechanisms8 and also 97 

helps identify new processes related to polyphenol protein targets, such as post-98 

translation protein modifications, regulation, and xenobiotic metabolism (Fig 1d). The 99 

enriched GO categories indicate that polyphenols modulate common regulatory 100 

processes, but the low similarity in their protein targets, illustrated by the low average JI, 101 

indicates that they target different processes within the same process.  102 

We next asked whether the polyphenol targets cluster in specific regions of the 103 

human interactome. We focused on polyphenols with more than two targets (n=46, Fig 104 

2), and measured the size and significance of the largest connected component (LCC) 105 

formed by the targets of each polyphenol. We found that 25 of the 46 polyphenols have 106 

a larger LCC than expected by chance (Z-score > 1.95) (Fig 1e, Fig 2). In agreement 107 

with experimental evidence documenting the effect of polyphenols on multiple 108 

pathways19, we find that ten polyphenols have their targets organized in multiple 109 

connected components of size > 2.  110 

These results indicate that the targets of polyphenols modulate specific well 111 

localized neighborhoods of the interactome (Fig 2, Supplementary Figure 1c). This 112 

prompted us to explore if the interactome regions targeted by the polyphenols reside 113 

within network neighborhoods associated with specific diseases, seeking a network-114 

based framework to unveil the molecular mechanism through which specific 115 

polyphenols modulate health. 116 

 117 

Proximity Between Polyphenol Targets and Disease Proteins Reveals their Therapeutic 118 

Effects 119 

 120 

Polyphenols can be viewed as drugs in that they bind to specific proteins, affecting their 121 

ability to perform their normal functions. We, therefore, hypothesized that we can apply 122 

the network-based framework used to predict the efficacy of drugs in specific 123 

diseases16,17 to also predict the therapeutic effects of polyphenols. The closer the 124 

targets of a polyphenol are to disease proteins, the more likely that the polyphenol will 125 

affect the disease phenotype. We, therefore, calculated the network proximity between 126 
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polyphenol targets and proteins associated with 299 diseases using the closest 127 

measure, ��, representing the average shortest path length between each polyphenol 128 

target and the nearest disease protein (see Methods). Consider for example (-)-129 

epigallocatechin 3-O-gallate (EGCG), a polyphenol abundant in green tea. 130 

Epidemiological studies have found a positive relationship between green tea 131 

consumption and reduced risk of T2D20,21, and physiological and biochemical studies 132 

have shown that EGCG presents glucose-lowering effects in both in vitro and in vivo 133 

models22,23. We identified 54 experimentally validated EGCG protein targets and 134 

mapped them to the interactome, finding that the ECGC targets form an LCC of 17 135 

proteins (Z = 7.61) (Fig 3a). We also computed the network-based distance between 136 

EGCG targets and 83 proteins associated with T2D, finding that the two sets are 137 

significantly proximal to each other. We ranked all 299 diseases based on the network 138 

proximity to the ECGC targets in order to determine whether we can recover the 82 139 

diseases in which ECGC has known therapeutic effects according to the CTD database. 140 

By this analysis, we were able to recover 15 previously known therapeutic associations 141 

among the top 20 ranked diseases (Table 1), confirming that network-proximity can 142 

discriminate between known and unknown disease associations for polyphenols, as 143 

previously confirmed among drugs16,17. 144 

We expanded these methods to all polyphenol-disease pairs, to predict diseases 145 

for which specific polyphenols might have therapeutic effects. For this analysis, we 146 

grouped all 19,435 polyphenol-disease associations between 65 polyphenols and 299 147 

diseases into known (1,525) and unknown (17,910) associations. The known 148 

polyphenol-disease set was retrieved from CTD, which is limited to manually curated 149 

associations for which there is literature-based evidence. For each polyphenol, we 150 

tested how well network proximity discriminates between the known and unknown sets 151 

by evaluating the area under the Receiving Operating Characteristic (ROC) curve 152 

(AUC). For EGCG, network proximity offers good discriminative power (AUC = 0.78, CI: 153 

0.70 - 0.86) between diseases with known and unknown therapeutic associations (Table 154 

1). We find that network proximity (��) offers predictive power with an AUC > 0.7 for 31 155 

polyphenols (Fig 3b). The methodology recovers many associations well documented in 156 

the literature, like the beneficial effects of umbelliferone on colonrectal neoplasms24,25. 157 
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In Table 2 we summarize the top 10 polyphenols for which the network medicine 158 

framework offers the best predictive power of therapeutic effects, limiting the entries to 159 

predictive performance of AUC > 0.6 and performance over top predictions with 160 

precision > 0.6. Given the lack of data on true negative examples, we considered 161 

unknown associations as negative cases, observing the same trend when we used an 162 

alternative performance metric that does not require true negative labels (i.e. AUC of 163 

the Precision-Recall curve) (Supplementary Figure 2). 164 

Finally, we performed multiple robustness checks to exclude the role of potential 165 

biases in the input data. To test if the predictions are biased by the set of known 166 

associations retrieved from CTD, we randomly selected 100 papers from PubMed 167 

containing MeSH terms that tag EGCG to diseases. We manually curated the evidence 168 

for EGCG’s therapeutic effects for the diseases discussed in the published papers, 169 

excluding reviews and non-English language publications. The dataset was processed 170 

to include implicit associations (see Methods), resulting in a total of 113 diseases 171 

associated with EGCG, of which 58 overlap with the associations reported by CTD (Fig 172 

3c). We observed that the predictive power of network proximity was unaffected by 173 

whether we considered the annotations from CTD, the manually curated list, or the 174 

union of both (Fig 3d). To test the role of potential biases in the interactome, we 175 

repeated our analysis using only high-quality polyphenol-protein interactions retrieved 176 

from ligand-protein 3D resolved structures (Supplementary Figure 1d) and a subset of 177 

the interactome derived from an unbiased high-throughput screening (Supplementary 178 

Figure 1f). We find that the predictive power was largely unchanged, indicating that the 179 

literature bias in the interactome does not affect our findings. Finally, we re-tested the 180 

predictive performance by considering not only the therapeutic polyphenol-disease 181 

associations, but also the marker/mechanism ones - another type of curated association 182 

available in CTD - finding that the predictive power remains largely unchanged 183 

(Supplementary Notes, Supplementary Figure 3). 184 

 185 

Network Proximity Predicts Gene Expression Perturbation Induced by Polyphenols 186 

 187 
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To validate that network proximity reflects biological activity of polyphenols observed in 188 

experimental data, we retrieved expression perturbation signatures from the 189 

Connectivity Map database26 for the treatment of the breast cancer MCF7 cell line with 190 

21 polyphenols (Supplementary Table 1, Supplementary Figure 4). We investigated the 191 

relationship between the extent to which polyphenols perturb the expression of disease 192 

genes, the network proximity between the polyphenol targets and disease proteins, and 193 

their known therapeutic effects (Fig 4a). For example, we observe different perturbation 194 

profiles for gene pools associated with different diseases: for treatment with genistein (1 195 

µM, 6 hours) we observe 10 skin disease genes with perturbation score > 2, while we 196 

observe only one highly perturbed cerebrovascular disorder gene (Fig 4b). Indeed, 197 

network proximity indicates that skin disease is closer to the genistein targets than 198 

cerebrovascular disorder, suggesting a relationship between network proximity, gene 199 

expression perturbation, and the therapeutic effects of the polyphenol (Fig 4a). To test 200 

this hypothesis, we computed an enrichment score that measures the 201 

overrepresentation of disease genes among the most perturbed genes (see Methods), 202 

finding 13 diseases that have their genes significantly enriched among the most 203 

deregulated genes by genistein, of which 4 have known therapeutic associations. We 204 

find that these four diseases are significantly closer to the genistein targets than the 205 

nine diseases with unknown therapeutic associations (Fig 4c). We observed a similar 206 

trend for treatments with other polyphenols, whether we use the same (1µM, Fig 4c) or 207 

different (100nM to 10µM, Supplementary Figure 5) concentrations. This result suggests 208 

that changes in gene expression caused by a polyphenol are indicative of its therapeutic 209 

effects, but only if the observed expression change is limited to proteins proximal to the 210 

polyphenol targets (Fig 4a). 211 

Consequently, network proximity should also be predictive of the overall gene 212 

expression perturbation caused by a polyphenol on the genes of a given disease. To 213 

test this hypothesis, in each experimental combination defined by the polyphenol type 214 

and its concentration, we evaluated the maximum perturbation among genes for each 215 

disease. We then compared the magnitude of the observed perturbation between 216 

diseases that were proximal (�� < 25th percentile, ���
< -0.5) or distal (�� > 75th 217 

percentile, ���
 > -0.5) to the polyphenol targets. Figures 5a-b and Supplementary Figure 218 
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6 show the results for the genistein treatment (1µM, 6 hours), indicating that diseases 219 

proximal to the polyphenol targets show higher maximum perturbation values than distal 220 

diseases. The same trend is observed for other polyphenols when we use different �� 221 

and ���
 thresholds for defining proximal and distant diseases (Figs 5b, Supplementary 222 

Figures 6-9), confirming that the impact of a polyphenol on cellular signaling pathways 223 

is localized in the network space, being greater in the vicinity of the polyphenol targets 224 

compared to neighborhoods remote from these targets. We also considered gene 225 

expression perturbations in the network vicinity of the polyphenol targets, regardless of 226 

whether the proteins were disease proteins or not, observing higher perturbation scores 227 

for proximal proteins in 12 out 21 polyphenols tested at 10µM (Supplementary Figure 228 

10). Finally, we find that the enrichment score of perturbed genes among disease genes 229 

is not as predictive of the polyphenol therapeutic effects as network proximity 230 

(Supplementary Figure 11). 231 

Altogether these results indicate that network proximity offers a mechanistic 232 

interpretation for the gene expression perturbations induced by polyphenols on disease 233 

genes. They also show that network proximity can indicate when gene expression 234 

perturbations result in therapeutic effects, suggesting that future studies could integrate 235 

gene expression (whenever available) with network proximity as they aim to more 236 

accurately prioritize polyphenol-disease associations. 237 

 238 

Experimental Evidence Confirms that Rosmarinic Acid Modulates Platelet Function 239 

 240 

To demonstrate how the network-based framework can facilitate the mechanistic 241 

interpretation of the therapeutic effects of selected polyphenols, we next focus on 242 

vascular diseases (V). Of 65 polyphenols evaluated in this study, we found 27 to have 243 

associations to V, as their targets were within the V network neighborhood 244 

(Supplementary Table 3). We, therefore, inspected the targets of 15 of the 27 245 

polyphenols with 10 or less targets. The network analysis identified direct links between 246 

biological processes related to vascular health and the targets of three polyphenols: 247 

gallic acid, rosmarinic acid, and 1,4-naphthoquinone (Supplementary Figure 12, 248 

Supplementary Notes). The network neighborhood containing the targets of these 249 
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polyphenols suggests that gallic acid activity involves thrombus dissolution processes, 250 

rosmarinic acid acts on platelet activation and antioxidant pathways through FYN and its 251 

neighbors, and 1,4-naphthoquinone acts on signaling pathways of vascular cells 252 

through MAP2K1 activity (Supplementary Figure 12, Supplementary Notes). 253 

To validate the developed framework, we set out to obtain direct experimental 254 

evidence of the predicted mechanistic role of rosmarinic acid (RA) in V. The RA targets 255 

are in close proximity to proteins related to platelet function, forming the RA-V-platelet 256 

module: a connected component formed by the RA target FYN and the V proteins 257 

associated with platelet function PDE4D, CD36, and APP (Fig 6a). We, therefore, asked 258 

whether RA influenced platelet activation in vitro. As platelets can be stimulated through 259 

different activation pathways, RA effects can, in principle, occur in any of them. To test 260 

these different possibilities, we pretreated platelets with RA and then activated with: 1) 261 

glycoprotein VI by collagen or collagen-related peptide (CRP/CRPXL); 2) protease-262 

activated receptors-1,4 by thrombin receptor activator peptide-6 (TRAP-6); 3) 263 

prostanoid thromboxane receptor by the thromboxane A2 analogue (U46619); and 4) 264 

P2Y1/12 receptor by adenosine diphosphate (ADP)27. When we compared the network 265 

distance between each stimulant receptor and the RA-V-platelet module (Fig 6a), we 266 

observed that the receptors for CRP/CRPXL, TRAP-6, and U46619 are closer than 267 

random expectation, while the receptor for ADP is more distant (Fig 6b). We expected 268 

that platelets would be most affected by RA when treated with stimulants whose 269 

receptors are most proximal to the RA-V-platelet module, i.e., CRP/CRPXL, TRAP-6, 270 

and U46619, and as a control, we expect no effect for the distant ADP receptor. The 271 

experiments confirm this prediction: RA inhibits collagen-mediated platelet aggregation 272 

(Fig 6c) and impairs dense granule secretion induced by CRPXL, TRAP-6, and U46619 273 

(Supplementary Figure 13). RA-treated platelets also displayed dampened alpha-274 

granule secretion (Fig 6d) and integrin αIIbβ3 activation (Supplementary Figure 13) in 275 

response to U46619. As expected, RA did not affect platelet function when we used an 276 

agonist whose receptor is distant from the RA-V-module, i.e., ADP. These findings 277 

suggest that RA impairs basic hallmarks of platelet activation via strong network effects, 278 

supporting our hypothesis that the proximity between RA targets and the neighborhood 279 

associated with platelet function (Fig 6a) could in part explain RA’s impact on V. 280 
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We next searched to clarify the molecular mechanisms involved in the impact of 281 

RA on platelets. Given that platelet activation is coordinated by several kinases, we 282 

hypothesized that RA inhibits platelet function by blocking agonist-induced protein 283 

tyrosine phosphorylation. We observed that RA-treated platelets demonstrated a dose-284 

dependent reduction in total tyrosine phosphorylation in response to CRPXL, TRAP-6 285 

and U46619 (Fig 6e). Given that RA caused a substantial decrease in phosphorylation 286 

of proteins with atomic mass between 50-60 KDa (Fig 6e), we hypothesized that RA 287 

may reduce phosphorylation of FYN (59 KDa), or other similarly sized members of the 288 

same protein family (i.e. src family kinases, SFKs). To test this, we measured the level 289 

of phosphorylation within the activation domain (amino acid 416) of SFKs, finding that 290 

RA reduced collagen induced phosphorylation of FYN as well as basal tyrosine 291 

phosphorylation of SFKs (Fig 6f). This indicates that RA perturbs the phospho-signaling 292 

networks that regulate platelet response to extracellular stimuli.  293 

 Altogether, these findings support our prediction that RA modulates platelet 294 

activation and function. It also supports the observation that its mechanism of action 295 

involves reduction of phosphorylation at the activation domain of the protein-tyrosine 296 

kinase FYN (Fig 6a) and the inhibition of general tyrosine phosphorylation. Finally, while 297 

polyphenols are usually associated to their antioxidant function, here we illustrate 298 

another mechanistic pathway through which they could benefit health. 299 

 300 

Discussion 301 

 302 

Here, we proposed a network-based framework to predict the therapeutic effects of 303 

dietary polyphenols in human diseases. We find that polyphenol protein targets cluster 304 

in specific functional neighborhoods of the interactome, and we show that the network 305 

proximity between polyphenol targets and disease proteins is predictive of the 306 

therapeutic effects of polyphenols. We demonstrate that diseases whose proteins are 307 

proximal to polyphenol targets tend to have significant changes in gene expression in 308 

cell lines treated with the respective polyphenol, while such changes are absent for 309 

diseases whose proteins are distal to polyphenol targets. Finally, we find that the 310 

network neighborhood around the RA targets and vascular disease proteins are related 311 
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to platelet function. We validate this mechanistic prediction by showing that RA 312 

modulates platelet function through inhibition of protein tyrosine phosphorylation. These 313 

observations suggest a role of RA on prevention of vascular diseases by inhibiting 314 

platelet activation and aggregation. 315 

The observed results also suggest multiple avenues through which our ability to 316 

understand the role of polyphenols could be improved. First, some of the known health 317 

benefits of polyphenols might be caused not only by the native molecules, but also by 318 

their metabolic byproducts 28,29. We, however, lack data about colonic degradation, liver 319 

metabolism, bioavailability, and interaction with proteins of specific polyphenols or their 320 

metabolic byproducts. Future experimental data on protein interactions with polyphenol 321 

byproducts and conjugates can be incorporated in the proposed framework, further 322 

improving the accuracy of our predictions. The lack of this data does not invalidate the 323 

findings presented here, since previous studies report the presence of unmetabolized 324 

polyphenols in blood30–32; and it has been hypothesized that, in some instances, 325 

deconjugation of liver metabolites occurs in specific tissues or cells33–35. Therefore, the 326 

lack of data for specific polyphenols and the fact that other mechanisms exist through 327 

which they can affect health (e.g. antioxidant activity, microbiota regulation) explain why 328 

this methodology might still miss a few known relationships between polyphenols and 329 

diseases. Second, considering that several experimental studies of polyphenol 330 

bioefficacy have been observed in in vitro and in vivo models, the proposed framework 331 

might help us interpret literature evidence, possibly even allowing us to exclude 332 

chemical candidates when considering the health benefits provided by a given food in 333 

epidemiological association studies.  334 

Our assumption that network proximity recovers therapeutic associations is 335 

based on its predictive performance on a ground truth dataset for observed therapeutic 336 

effects and also relies on previous observations about the effect of drugs on 337 

diseases16,17,36. While the proposed methodology offers a powerful prioritization tool to 338 

guide future research, the real effect of polyphenols on diseases might still be negative, 339 

given other unmet factors such as dosage, comorbidities, and drug interactions, which 340 

can only be ruled out by pre-clinical and clinical studies. Gene expression perturbation 341 

profiles, such as the ones provided by the Connectivity map, can also be integrated with 342 
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network proximity to further highlight potential beneficial or harmful effects of chemical 343 

compounds37,38. 344 

The low bioavailability of some polyphenols in food might still present challenges 345 

when considering the therapeutic utility of these molecules. However, 48 of the 65 346 

polyphenols we explored here are predicted to have high gastrointestinal absorption 347 

(Supplementary Table 2) and different methodologies are available to increase 348 

bioavailability of natural compounds39,40. Additionally, in the same way that the 349 

polyphenol phlorizin led to the discovery of new strategies for disease treatment 350 

resulting in the development of new compounds with higher efficacy41, we believe that 351 

the present methodology can help us identify polyphenol-based candidates for drug 352 

development. 353 

The methodology introduced here offers a foundation for the mechanistic 354 

interpretation of alternative pathways through which polyphenols can affect health, e.g., 355 

the combined effect of different polyphenols36,42 and their interaction with drugs43. To 356 

address such synergistic effects, we need ground-truth data on these aspects. The 357 

developed methodology can be applied to other food-related chemicals, providing a 358 

framework by which to understand their health effects. Future research may help us 359 

also account for the way that food-related chemicals affect endogenous metabolic 360 

reactions, impacting not only signaling pathways, but also catabolic and anabolic 361 

processes. Finally, the methodology provides a framework to interpret and find causal 362 

support for associations identified in observational studies. Taken together, the 363 

proposed network-based framework has the potential to reveal systematically the 364 

mechanism of action underlying the health benefits of polyphenols, offering a logical, 365 

rational strategy for mechanism-based drug development of food-based compounds. 366 

 367 

Methods 368 

 369 

Building the Interactome 370 

 371 

The human interactome was assembled from 16 databases containing different types of 372 

protein-protein interactions (PPIs): 1) binary PPIs tested by high-throughput yeast-two-373 
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hybrid (Y2H) experiments44; 2) kinase-substrate interactions from literature-derived low-374 

throughput and high-throughput experiments from KinomeNetworkX45, Human Protein 375 

Resource Database (HPRD)46, and PhosphositePlus47; 3) carefully literature-curated 376 

PPIs identified by affinity purification followed by mass spectrometry (AP-MS), and from 377 

literature-derived low-throughput experiments from InWeb48, BioGRID49, PINA50, 378 

HPRD51, MINT52, IntAct52, and InnateDB53; 4) high-quality PPIs from three-dimensional 379 

(3D) protein structures reported in Instruct54, Interactome3D55, and INSIDER56; 5) 380 

signaling networks from literature-derived low-throughput experiments as annotated in 381 

SignaLink2.057; and 6) protein complex from BioPlex2.058. The genes were mapped to 382 

their Entrez ID based on the National Center for Biotechnology Information (NCBI) 383 

database as well as their official gene symbols. The resulting interactome includes 384 

351,444 protein-protein interactions (PPIs) connecting 17,706 unique proteins 385 

(Supplementary Data 1). The largest connected component has 351,393 PPIs and 386 

17,651 proteins. 387 

 388 

Polyphenols, Polyphenol Targets, and Disease Proteins 389 

 390 

We retrieved 759 polyphenols from the PhenolExplorer database4. The database lists 391 

polyphenols with food composition data or profiled in biofluids after interventions with 392 

polyphenol-rich diets. For our analysis, we only considered polyphenols that: 1) could 393 

be mapped in PubChem IDs, 2) were listed in the Comparative Toxicogenomics (CTD) 394 

database59 as having therapeutic effects on human diseases, and 3) had protein-395 

binding information present in the STITCH database60 with experimental evidence (Fig 396 

1a). After these steps, we considered a final list of 65 polyphenols, for which 598 protein 397 

targets were retrieved from STITCH (Supplementary Table 1). We considered 3,173 398 

disease proteins corresponding to 299 diseases retrieved from Menche et al (2015)15. 399 

Gene ontology enrichment analysis of protein targets was performed using the 400 

Bioconductor package clusterProfiler with a significance threshold of p < 0.05 and 401 

Benjamini-Hochberg multiple testing correction with q < 0.05. 402 

 403 

Polyphenol Disease Associations 404 
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 405 

We retrieved the polyphenol-disease associations from the Comparative 406 

Toxicogenomics Database (CTD). We considered only manually curated associations 407 

labeled as therapeutic. By considering the hierarchical structure of diseases along the 408 

MeSH tree, we expanded explicit polyphenol-disease associations to include also 409 

implicit associations. This procedure was performed by propagating associations in the 410 

lower branches of the MeSH tree to consider diseases in the higher levels of the same 411 

tree branch. For example, a polyphenol associated with heart diseases would also be 412 

associated with the more general category of cardiovascular diseases. By performing 413 

this expansion, we obtained a final list of 1,525 known associations between the 65 414 

polyphenols and the 299 diseases considered in this study. 415 

 416 

Network Proximity Between Polyphenol Targets and Disease Proteins 417 

 418 

The proximity between a disease and a polyphenol was evaluated using a distance 419 

metric that takes into account the shortest path lengths between polyphenol targets and 420 

disease proteins16. Given �, the set of disease proteins, �, the set of polyphenol targets, 421 

and ���, �	, the shortest path length between nodes � and � in the network, we define: 422 

 423 

����, �	 

�

||�||
 ∑ min��� ���, �		��   (1) 424 

We also calculated a relative distance metric (���) that compares the absolute distance 425 

����, �	 between a disease and a polyphenol with a reference distribution describing the 426 

random expectation. The reference distribution corresponds to the expected distances 427 

between two randomly selected groups of proteins matching the size and degrees of the 428 

original disease proteins and polyphenol targets in the network. It was generated by 429 

calculating the proximity between these two randomly selected groups across 1,000 430 

iterations. The mean ��
�,�� and standard deviation ��
�,�� of the reference distribution 431 

were used to convert the absolute distance ��  into the relative distance ���, defined as: 432 

 433 

���



� �����,��

�����,��
     (2) 434 
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 435 

We performed a degree-preserving random selection, but due to the scale-free nature 436 

of the human interactome, we avoid repeatedly choosing the same (high degree) nodes 437 

by using a binning approach in which nodes within a certain degree interval were 438 

grouped together such that there were at least 100 nodes in the bin. The 439 

Supplementary Data 2 reports the proximity scores ��and ���
 for all pairs of diseases 440 

and polyphenols. 441 

 442 

Area Under ROC Curve Analysis 443 

 444 

For each polyphenol, we used AUC to evaluate how well the network proximity 445 

distinguishes diseases with known therapeutic associations from all of the others of the 446 

set of 299 diseases. The set of known associations (therapeutic) retrieved from CTD 447 

were used as positive instances, all unknown associations were defined as negative 448 

instances, and the area under the ROC curve was computed using the implementation 449 

in the Scikit-learn Python package. Furthermore, we calculated 95% confidence 450 

intervals using the bootstrap technique with 2,000 resamplings with sample sizes of 150 451 

each. Considering that AUC provides an overall performance, we also searched for a 452 

metric to evaluate the top ranking predictions. For this analysis, we calculated the 453 

precision of the top 10 predictions, considering only the polyphenol-disease 454 

associations with relative distance ��� �  �0.516. 455 

 456 

Analysis of Network Proximity and Gene Expression Deregulation 457 

 458 

We retrieved perturbation signatures from the Connectivity Map database 459 

(https://clue.io/) for the MCF7 cell line after treatment with 21 polyphenols. These 460 

signatures reflect the perturbation of the gene expression profile caused by the 461 

treatment with that particular polyphenol relative to a reference population, which 462 

comprises all other treatments in the same experimental plate26. For polyphenols having 463 

more than one experimental instance (time of exposure, cell line, dose), we selected the 464 

one with highest distil_cc_q75 value (75th quantile of pairwise spearman correlations in 465 
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landmark genes, https://clue.io/connectopedia/perturbagen\_types\_and\_controls). We 466 

performed Gene Set Enrichment Analysis61 to evaluate the enrichment of disease 467 

genes among the top deregulated genes in the perturbation profiles. This analysis offers 468 

Enrichment Scores (ES) that have small values when genes are randomly distributed 469 

among the ordered list of expression values and high values when they are 470 

concentrated at the top or bottom of the list. The ES significance is calculated by 471 

creating 1,000 random selection of gene sets with the same size as the original set and 472 

calculating an empirical p-value by considering the proportion of random sets resulting 473 

in ES smaller than the original case. The p-values were adjusted for multiple testing 474 

using the Benjamini-Hochberg method. The network proximity �� of disease proteins 475 

and polyphenol targets for diseases with significant ES were compared according to 476 

their therapeutic and unknown-therapeutic associations using the Student's t-test. The 477 

relevant code for calculating the network proximity, AUCs, and enrichment scores can 478 

be found on https://github.com/italodovalle/polyphenols. 479 

 480 

Platelet Isolation 481 

 482 

Human blood collection was performed as previously described in accordance with the 483 

Declaration of Helsinki and ethics regulations with Institutional Review Board approval 484 

from Brigham and Women’s Hospital (P001526). Healthy volunteers did not ingest 485 

known platelet inhibitors for at least 10 days prior. Citrated whole blood underwent 486 

centrifugation with a slow brake (177 x g, 20 minutes), and the PRP fraction was 487 

acquired for subsequent experiments. For washed platelets, PRP was incubated with 1 488 

μM prostaglandin E1 (Sigma, P5515) and immediately underwent centrifugation with a 489 

slow brake (1000 x g, 5 minutes). Platelet-poor plasma was aspirated, and pellets 490 

resuspended in platelet resuspension buffer (PRB; 10 mM Hepes, 140 mM NaCl, 3 mM 491 

KCl, 0.5 mM MgCl2, 5 mM NaHCO3, 10 mM glucose, pH 7.4). 492 

 493 

Platelet Aggregometry 494 

 495 
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Platelet aggregation was measured by turbidimetric aggregometry as previously 496 

described62. Briefly, PRP was pretreated with RA for 1 hour before adding 250 μL to 497 

siliconized glass cuvettes containing magnetic stir bars. Samples were placed in 498 

Chrono-Log® Model 700 Aggregometers before the addition of various platelet agonists. 499 

Platelet aggregation was monitored for 6 minutes at 37°C with a stir speed of 1000 rpm 500 

and the maximum extend of aggregation recorded using AGGRO/LINK®8 software. In 501 

some cases, dense granule release was simultaneously recorded by supplementing 502 

samples with Chrono-Lume® (Chrono-Log®, 395) according to the manufacturer’s 503 

instructions. 504 

 505 
Platelet Alpha Granule Secretion and Integrin αIIbβ3 Activation 506 

 507 

Changes in platelet surface expression of P-selectin (CD62P) or binding of Alexa 508 

FluorTM 488-conjugated fibrinogen were used to assess alpha granule secretion and 509 

integrin αIIbβ3 activation, respectively. First, PRP was pre-incubated with RA for 1 hour, 510 

followed by stimulation with various platelet agonists under static conditions at 37°C for 511 

20 minutes. Samples were then incubated with APC-conjugated anti-human CD62P 512 

antibodies (BioLegend®, 304910) and 100 μg/mL Alexa FluorTM 488-Fibrinogen (Thermo 513 

ScientificTM, F13191) for 20 minutes before fixation in 2% [v/v] paraformaldehyde 514 

(Thermo ScientificTM, AAJ19945K2). Fifty thousand platelets were processed per 515 

sample using a CytekTM Aurora spectral flow cytometer. Percent-positive cells were 516 

determined by gating on fluorescence intensity compared to unstimulated samples. 517 

 518 

Platelet Cytotoxicity 519 

 520 

Cytotoxicity were tested by measuring lactate dehydrogenase (LDH) release by 521 

permeabilized platelets into the supernatant63. Briefly, washed platelets were treated 522 

with various concentrations of RA for 1 hour, before isolating supernatants via 523 

centrifugation (15,000 x g, 5 min). A Pierce LDH Activity Kit (Thermo ScientificTM, 524 

88953) was then used to assess supernatant levels of LDH. 525 

 526 
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Immunoprecipitation and Western blot 527 

 528 

Washed platelets were pre-treated with RA for 1 hour, followed by a 15 minute 529 

treatment with Eptifibatide (50 μM). Platelets were then stimulated with various agonists 530 

for 5 minutes under stirring conditions (1000 rpm, 37°C). Platelets were lysed on ice 531 

with RIPA Lysis Buffer System® (Santa Cruz®, sc-24948) and supernatants clarified via 532 

centrifugation (15,000 x g, 10 min, 4°C). For immunoprecipitation of FYN, lysates were 533 

first precleared of IgG by incubating with Protein A agarose beads (Cell Signaling 534 

Technologies, 9863S) for 30 minutes at 4°C, before isolation of the supernatant via 535 

centrifugation (15,000 x g, 10 min, 4°C). Supernatants were incubated with anti-FYN 536 

antibodies (Abcam, 2A10) overnight at 4°C before incubation with Protein A beads for 1 537 

hour. Beads were then washed 5 times with NP-40 lysis buffer (144 mM Tris, 518 mM 538 

NaCl, 6 mM EDTA, 12 mM Na2VO3, 33.3% [v/v] NP-40, HaltTM protease inhibitor 539 

cocktail (Thermo, 78429)). 540 

For Western Blot analysis, total cell lysates or immunoprecipitated FYN were 541 

reduced with Laemmli Sample Buffer (Bio-Rad, 1610737) and proteins separated by 542 

molecular weight in PROTEAN TGXTM precast gels (Bio-Rad, 4561084). Proteins were 543 

transferred to PVDF membranes (Bio-Rad, 1620174) and probed with either 4G10 544 

(Milipore, 05-321), a primary antibody clone that recognizes phosphorylated tyrosine 545 

residues, or primary antibodies that probe for the site-specific phosphorylation of src 546 

family kinases (SFKs, p-Tyr416) within their activation loop. Membranes were incubated 547 

with horseradish peroxidase-conjugated secondary antibodies (Cell Signaling 548 

Technologies, 7074S) to catalyze an electrochemiluminescent reaction (Thermo 549 

ScientificTM, PI32109). Membranes were visualized using a Bio-Rad ChemiDoc Imaging 550 

System and densitometric analysis of protein lanes conducted using ImageJ (NIH, 551 

Version 1.52a). 552 
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Table 1 – Top 20 Predicted Therapeutic Associations Between EGCG and Human 588 
Diseases. Diseases were ordered according to the network distance (��) of their 589 
proteins to EGCG targets and diseases with relative distance ��� � �0.5 were removed. 590 
References reported in CTD for curated ‘therapeutic associations’ are shown. 591 
 592 

Disease Distance �� Significance ��
�

 
Known Therapeutic Effect 

(References) 

nervous system diseases 1.13 -1.72 64,65 

nutritional and metabolic diseases 1.25 -1.45 23 

metabolic diseases 1.25 -1.41 23 

cardiovascular diseases 1.27 -2.67 66–71 

immune system diseases 1.29 -1.31 72 

vascular diseases 1.33 -3.47 66,67,70 

digestive system diseases 1.33 -1.57 73–77 

neurodegenerative diseases 1.37 -1.71 78 

central nervous system diseases 1.41 -0.54 78 

autoimmune diseases 1.41 -1.30 72 

gastrointestinal diseases 1.43 -1.02 79 

brain diseases 1.43 -0.89 NA 

intestinal diseases 1.49 -1.08 79 

inflammatory bowel diseases 1.54 -2.10 NA 

bone diseases 1.54 -1.18 NA 

gastroenteritis 1.54 -1.92 NA 

demyelinating diseases 1.54 -1.78 NA 

glucose metabolism disorders 1.54 -1.58 23 

heart diseases 1.56 -1.20 68,69,71 

diabetes mellitus 1.56 -1.66 23 

  593 
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Table 2 – Top Ranked Polyphenols. Polyphenols for which network proximity to 594 
diseases best predicts their therapeutic effects. Table showing polyphenols with AUC > 595 
0.6 and Precision > 0.6. (*) Confidence intervals calculated with 2,000 bootstraps with 596 
replacement and sample size of 50% of the diseases (150/299). (**) Precision was 597 
calculated based on the top 10 polyphenols after their ranking based on the distance 598 
(dc) of their targets to the disease proteins and considering only predictions with Z-score 599 
< -0.5.(***) Concentrations of polyphenols in blood were retrieved from the Human 600 
Metabolome Database (HMDB) 601 

Polyphenol AUC AUC CI* Precision** Concentration in 
Blood*** 

N Mapped 
Targets 

LCC 
Size 

Coumarin 0.93 [0.86 - 0.98] 0.6  7 1 

Piceatannol 0.86 [0.77 - 0.94] 0.6  39 23 

Genistein 0.82 [0.75 - 0.89] 0.7 [0.006 - 0.525 uM] 18 6 

Ellagic acid 0.79 [0.63 - 0.92] 0.6  42 19 

(-)-epigallocatechin 3-O-gallate 0.78 [0.70 - 0.86] 0.8 
 

51 17 

Isoliquiritigenin 0.75 [0.77 - 0.94] 0.6 
 

10 8 

Resveratrol 0.75 [0.66 - 0.82] 1 
 

63 25 

Pterostilbene 0.73 [0.61 - 0.84] 0.6 
 

5 2 

Quercetin 0.73 [0.64 - 0.81] 1 [0.022 - 0.080 uM] 216 140 

(-)-epicatechin 0.65 [0.49 - 0.80] 0.8 0.625 uM 11 3 

 602 

  603 
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 604 
Figure 1 – Properties of Polyphenol Protein Targets. (A) Schematic representation of the human 605 
interactome, highlighting regions where polyphenol targets and disease proteins are localized. (B) 606 
Diagram showing the selection criteria of the polyphenols evaluated in this study. (C) Distribution of the 607 
number of polyphenol protein targets mapped to the human interactome. (D) Top (n=15) enriched GO 608 
terms (Biological Process) among all polyphenol protein targets. The X-axis shows the proportion of 609 
targets mapped to each pathway. (E) Size of the Largest Connected Component (LCC) formed by the 610 
targets of each polyphenol in the interactome and the corresponding significance (z-score). 611 
  612 
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Figure 2 – Protein-Protein Interactions of Polyphenol Targets. The 23 polyphenols whose targets 614 
form connected components in the interactome and their respective subgraphs. For example, piceatannol 615 
targets form a unique connected component of 23 proteins, while quercetin targets form multiple 616 
connected components, the largest with 140 proteins. Polyphenol targets that are not connected to any 617 
other target are not shown in the figure. Colors distinguish connected component of different polyphenols. 618 
 619 

 620 
Figure 3 – Proximity Between Polyphenol Targets and Disease Proteins is Predictive of 621 
Therapeutic Effects of the Polyphenol. (a) Interactome neighborhood showing the EGCG protein 622 
targets and their interactions with type 2 diabetes (T2D)-associated proteins. (b) Distribution of AUC 623 
values considering the predictions of therapeutic effects for 65 polyphenols. (c) Comparison of the ECGC-624 
disease associations considering the CTD database and the in-house database derived from the manual 625 
curation of the literature. (d) Comparison of the prediction performance when considering known EGCG-626 
disease associations from the CTD, in-house manually curated database, or combined datasets. 627 
  628 
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 629 
Figure 4 – Relationships among Gene Expression Perturbation, Network Proximity, and 630 
Therapeutic Effects of Polyphenols on Diseases. (a) Schematic representation of the relationship 631 
between the extent to which a polyphenol perturbs disease genes expression, its proximity to the disease 632 
genes, and its therapeutic effects. (b) Interactome neighborhood showing the modules of skin diseases 633 
(SD), genistein, and cerebrovascular disorders (CD). The SD module has 10 proteins with high 634 
perturbation scores (>2) in the treatment of the MCF7 cell line with 1 µM of genistein. Genes associated 635 
to SD are significantly enriched among the most differentially expressed genes, and the maximum 636 
perturbation score among disease genes is higher in SD than CD. (c) Among the diseases in which 637 
genes are enriched with highly perturbed genes, those with therapeutic associations show smaller 638 
network distances to the polyphenol targets than those without. The same trend is observed in treatments 639 
of the polyphenols quercetin, resveratrol, and myricetin. 640 
  641 
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 642 
Figure 5 – Diseases Proximal to Polyphenol Targets Have Higher Gene Expression Perturbation 643 
Profiles. (a) Proximal and distal diseases in relation to genistein targets. Each node represents a disease 644 
and the node size is proportional to the perturbation score after treatment with genistein (1 µM, 6 hours). 645 
Distance from the origin represents the network proximity (dc) to genistein targets. Purple nodes represent 646 
diseases in which the therapeutic association was previously known. (c) Cumulative distribution of the 647 
maximum perturbation scores of genes from diseases that are distal or proximal to polyphenol targets 648 
considering different polyphenols (1 µM, 6 hours): genistein, quercetin, resveratrol, and myricetin. 649 
Statistical significance was evaluated with the Kolmogorov-Smirnov test. 650 
  651 
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 652 
Figure 6 – Rosmarinic Acid Modulates Platelet Function. (a) Interactome neighborhood showing 653 
rosmarinic acid (RA) targets and the RA-V-platelet module - the connected component formed by the RA 654 
target FYN and the V proteins associated with platelet function PDE4D, CD36, and APP – and the 655 
receptor for platelet agonists used in our experiments (collagen/CRPXL, TRAP6, U46619, and ADP). (b) 656 
Average shortest path length from each platelet agonist receptor and the RA-V-platelet module formed by 657 
the proteins FYN, PDE4D, CD36, APP. Bars represent standard deviation of that same measure over 658 
1000 iterations of random selection of nodes in a degree preserving fashion. c-e) Platelet-rich plasma 659 
(PRP) or washed platelets were pre-treated with RA for 1 hour before stimulation with either collagen (1 660 
μg/mL), collagen-related peptide (CRP-XL, 1μg/mL), thrombin receptor activator peptide-6 (TRAP-6, 20 661 
μM), U46619 (1 μM), or ADP (10 μM). Platelets were assessed for either (c) aggregation, (d) alpha 662 
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granule secretion. Platelet lysates were also probed for either (e) non-specific tyrosine phosphorylation 663 
(p-Tyr) of the whole cell lysate, or (d) site-specific phosphorylation of src family kinases (SFKs) and FYN 664 
at residue 416. n = 3-6 separate blood donations, mean +/- SEM. p-values in (c) and (d) were determined 665 
by Kruskal-Wallis test and by unpaired t.tests in (f). 666 
  667 
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