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Abstract 

Studying human postural structure is one of the challenging issues among scholars and physicians. The spine is 

known as the central axis of the body, and due to various genetic and environmental reasons, it could suffer from 

deformities that cause physical dysfunction and correspondingly reduce people's quality of life. Radiography is 

the most common method for detecting these deformities and requires monitoring and follow-up until full 

treatment. This method frequently exposes the patient to X-rays and ionization. Therefore, cancer risk is 

increased in the patient and could be riskier for children or pregnant women. To prevent this, several solutions 

have been proposed using topographic data analysis of the human back surface. The purpose of this research is 

to provide an entirely safe and non-invasive method to examine the spiral structure and its deformities. Hence, 

it is attempted to find the exact location of anatomical landmarks on the human back surface, which provides 

useful and practical information about the status of the human postural structure to the physician.  

In this study, using Microsoft Kinect sensor, the depth images from the human back surface of 105 people were 

recorded and, our proposed approach - Deep convolution neural network- was used as a model to estimate the 

location of anatomical landmarks. In network architecture, two learning processes, including landmark position 

and affinity between the two associated landmarks, are successively performed in two separate branches. This is 

a bottom-up approach; thus, the runtime complexity is considerably reduced, and then the resulting anatomical 

points are evaluated concerning manual landmarks marked by the operator as the benchmark. Our results showed 

that 86.9% of PDJ and 80% of PCK. According to the results, this study was more effective than other methods 

with more than thousands of training data. 

Keywords: anatomical landmarks; automatic detection; back; deep learning; convolutional neural network; 

Kinect-v2. 
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1-Introduction 

Spinal deformities have always been one of the most critical issues in the medical community; the study 

has been dramatically increased over the past decade. Due to its particular complexities, this disease is 

a different and serious one and affects various age groups [1]. This disorder reduces the patients' quality 

of life and is associated with pain and fatigue. Spinal deformities include Scoliosis, sagittal plane 

misalignment, kyphosis, slipping, and vertebrae [2]. Various factors can cause these deformities, 

including degenerative changes in the intervertebral discs, trauma, tumors, and infections, the 

occurrence of which in adulthood might be due to the development of deformities and disorders from 

childhood [3]. This disease's primary issue is its early diagnosis to prevent significant clinical 

consequences because spinal alignment plays a critical role in protecting the nervous system and 

skeletal stability and maintaining the natural body alignment [1], [4].   

Various invasive and non-invasive measurement systems have assessed these disorders over the 

decades. Radiography is one of the essential invasive diagnostic methods used for clinical purposes and 

is dangerous for many patients, especially adolescents, who are frequently exposed to X-rays, and its 

consequences may occur in the upcoming decades. Studies have shown that adolescent girls with 

Scoliosis are at serious risk of breast cancer [2], [3]. This could also cause breaking intermolecular 

forces and consequently damage deoxyribonucleic acid (DNA). Therefore, individuals during 

reproductive ages are prone to transfer this damaged DNA to the child via mutation. However, this 

phenomenon has not been proved yet.[5] Therefore, such risks have dramatically increased the 

necessity of using non-invasive methods for describing the spinal deformities [2].  

Surface topography is the study of the 3D human back shape. This technique is an alternative for 

radiography to reduce the patient's exposure to ionizing radiation during the treatment period. One of 

these systems' functions that separates them from other technologies is putting anatomical landmarks 

on specific points of the human back surface, such as the posterior superior iliac spine (PSIS), 7th 

Cervical Vertebra(C7). Research has shown that this system can detect landmarks more accurately than 

an experienced physician [3]. These landmarks are essential for advanced topographic analysis because 

they are regarded as a fixed coordinate system and an axis for the patient [4].  

In this study, a new heuristic approach automatically detects anatomical landmarks of the human back 

surface. The system includes a Kinect depth sensor [6]. The resulting information is a grayscale image 

of the human body surface that contains information about the exact location of critical points. Given 
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that recent approaches based on deep learning have led to significant achievements in various machine 

vision studies [7], thus, in this study, the problem can be examined using deep learning methods and 

convolutional neural networks (CNNs). It should be noted that the methods are utilized to detect the 

critical points of the body in the human pose estimation because restoring the human condition means 

locating the critical points of the body. Although this research aims not to estimate the body pose, the 

anatomical landmark points have a specific description of it.  

Deep learning methods also pose new challenges, the first of which is the lack of training images due 

to the limitations of recording images from countless people. To compensate for this problem, the data 

augmentation method was utilized. The second challenge was to train an optimal model to understand 

and describe the human back surface features from depth data. Training a Neck-network from scratch 

is not a good idea, especially when training it by a small dataset. We used a pre-trained model as a 

feature descriptor for other parts of our model to cover this. Therefore, the transfer-learning technique 

was applied in network architecture by using ResNet-152. In this research, the network was separately 

implemented with three feature descriptors, including ResNet-50[8], VGG-19, ResNet-152[9], and its 

performance was compared in all three models. We predict that Resnet-152 could be the best choice to 

describe the depth data features.  

 

2-Related Work 

2-1-Landmark Detection without Deep Learning 

The nature of the data we used plays a significant role in selecting the appropriate method for the 

automatic analysis of the human back shape. These are application-dependent methods; thus, any 

methods that have been made so far must be consistent with the data used [1]. In this research, the 

depth data were used and approximated as (x,y), indicating each landmark's coordinates on the image. 

It should be noted that there are several methods based on 3D segmentation. L. Soler et al. [10] used 

this method to analyze anatomical structures of 3D volumetric data obtained from CT. This method is 

not useful for 2D data, in which the structures are placed on a surface. Some other methods attempt to 

describe the anatomical shape feature achieved by marking landmarks on the body surface. For 

method, which provides a  )SPHARM( pherical harmonicss used the [11]example, M. A. Styner et al. 

significant representation of the surface for shape analysis. This method only works on data with 

spherical topology and could not support the data used in this research. Another method is the active 
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shape model (ASM) [12], a statistical model-based feature matching method used to detect the 

object's shape in an image using the point distribution model for statistical matching. In this method, 

the shapes are described by a set of points; these points are allowed to deform following the original 

deformation. This method was initially developed for working with 2D images having the desired 

embossing. The point distribution model (PDM) can be easily generalized to be consistent with the 

3D nature of input data by adding third coordinates during analysis. This is valid for volumetric data, 

in which the model can be entirely deformed in all three dimensions. This method does not work 

appropriately for detecting deformities in the body's back structure because a small percentage of the 

total population has a deformation problem on the human body surface. Thus, in the ASM method, a 

very coherent training set that does not contain all changes cannot find new shapes that are valid in 

realtime. Therefore, these changes can be unintentionally neglected during modeling by principle 

component analysis (PCA) [1], [13]. In short, although the described approaches provide an 

invaluable insight into data analysis, they do not correctly solve the problem due to the above 

 .limitations 

 

2-2-Landmark Detection with Deep Learning 

CNNs have achieved advanced results in various fields due to being resistant and having high learning 

capacity [7]. The human pose estimation aims to approximate the location of the human joints in 

images. In other words, it is a process that involves finding key points such as arms and shoulders and 

then combines them in a model [14]. In this section, we mainly discuss deep learning methods to 

approximate these points. In general, based on the management of input images, the deep learning 

methods can be classified into holistic- and part-based methods [14]. DeepPose is an example of a 

holistic-based approach that was proposed by Toshev et al. [15]. This method is considered the first 

approach used in deep learning to estimate the human pose and is formulated as a regression problem, 

and the idea of this method in correcting and improving the estimations is to use the cascade of 

regressors. This model has made progress in several challenging datasets and attracted researchers' 

attention to CNNs. The holistic-based models are not very accurate because it is challenging to learn 

the regression of point vectors directly from images. In the part-based method, the body parts are 

approximated and combined by a graphical model [14]. Thomson et al. [16] used a combination of 

CNNs and graphical models to estimate components. The graphical models often learn the spatial 
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relationships and distances between the points. In this method, the network output is heatmap points, 

instead of continuous regression, estimating a landmark's probability in each pixel. The results of this 

method are very successful and lead future works towards heatmaps. This method's only drawback is 

the lack of body structure modeling and not detecting the point-to-point connection. Establishing this 

affinity is very important from the viewpoint of the detected vital points because the formation of this 

affinity leads to the ease of displaying the key points. Therefore, this problem was solved by the 

following methods. Wei et al. [17] proposed a completely different method to estimate multi-stage 

CNN-based human pose, and a part of the body is estimated at each stage. Therefore, fewer errors could 

occur in landmark detection. This network uses an intermediate layer after each stage due to errors in 

dealing with decreasing slope during training. Carreira et al. [18] proposed an algorithm known as 

duplicate error feedback. Using predictive error feedback, the designed model corrects its initial 

prediction several times. This method can be regarded as estimating an approximate mode to estimate 

a more accurate mode. Cao et al.[19] extracted features from the first ten layers of VGG-19[8]. Then, 

these features were processed using a three-output CNN with two input sources, and one output predicts 

the location of critical points. One output retains the vector field maps, and the third output retains the 

initial features. This method is performed iteratively. Multi-stage CNN combines the processing results 

of each of CNN's outputs, which is used to obtain rich information from images to improve the function 

[19]–[22]. Hence, given that this algorithm is the most advanced method in this field and has multiple 

outputs, this method can detect the desired landmarks for medical purposes. On the other side, having 

three outputs is one of the advantages of this method. In detecting anatomical landmarks on the human 

back surface, by determining affinity between two pairs of the related points, a view of the human spine 

can also be predicted. Despite all the advantages of this method, after testing and implementing the 

network proposed by Cao et al. [19], the result showed that VGG-19 [8] is not appropriate as a feature 

descriptor for our depth data, and no good output is obtained. Thus, in this paper, the structure of the 

feature descriptor was changed and Resnet-152 was employed. The results show that the used algorithm 

achieved the best results even despite the lack of training data. In the following, we will elaborate on 

the algorithm operation. In Section 3, we indicate show how to choose the anatomical structure and 

network architecture. Section 4 describes how to collect data and Section 5 explains the preprocessing 

and data enhancement methods. Section 6 shows the evaluation criteria and Section 7 describes the 

network training along with the network parameters. We will compare the results of applying the 
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algorithm to the VGG-19, Resnet-50 and Resnet-152 networks, and finally both discussion and 

conclusion are provided in Section 8. 

  

3-Methodology 

This approach's primary purpose is the automatic landmark detection of the human body surface and 

the affinity to evaluate the spinal deformities and ease of the diagnostic process. As mentioned, the 

restriction of traditional methods and shared goals with human pose estimation provides the context to 

study the latest methods in the literature. Thus, in this research, human pose estimation's best 

architecture is inspired for medical purposes. In this section, first, choosing the key points related to 

spinal displacements, and then, the deep convolutional network architecture used for the stated purposes 

is described in detail.  

  

 

3-1- Selection of Anatomical Structures 

A topographical assessment of the human back surface visually provides the physician's postural 

structure's required information. However, this requires determining a series of variables and indicators 

to detect disorders and deformities of the human back surface using these indicators. Two indicators 

that have been widely used as determinants to this date are called posterior trunk symmetry index [23] 

and deformity in the axial plane index [24]. The location of the landmarks is optionally defined. A 

common feature of these structures is that their position is influenced by the shape of the spine that can 

facilitate the detection of deformities using topographic data [1].   

This paper is inspired by the list of landmarks in both deformity in the axial plane index (DAPI) and 

posterior trunk symmetry index (POTSI) indicators, and concerning the definition of the problem, 10 

points are shown in Figure 1 were selected as anatomical structures. These structures contain a small 

area and no single points. This means that these points' neighborhood can be considered an anatomical 

landmark, but the parameters used to evaluate the deformities should consider single positions as an 

input. The output of the described algorithm must also be single-point, each point of which indicates 

the position of an anatomical structure [1], [2]. 
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3-2- Model Architecture 

The proposed network architecture consists of two parts. 1. Feature extraction, 2. Prediction of 

landmark position and the affinity. In the present research, the data's characteristics have caused the 

complexity of feature extraction because understanding the depth data features for medical purposes is 

highly sensitive. Then, choosing an appropriate feature extractor plays a determinant role in the 

network's accuracy and performance. In this study, ResNet-152 [9] is selected as a feature descriptor. 

It is noteworthy to mention that to match the input image to the standard structure of the network 

ResNet-152, a stacked image of the input was created and applied to the network input.  

The output of this stage is fed to the n stage. As illustrated in figure 2, each stage is divided into two 

parts. The first branch is made of a deep convolutional network that produces a heatmap for each 

landmark and is defined as 𝐻 = (𝐻1, … . , 𝐻𝐽). The design of branch 2 is the same as branch 1, except 

that the network in this branch tends to predict the affinity between these points, which is known as 

landmark affinity field and is defined as 𝐿 = (𝐿1, … . , 𝐿𝐶). There is a vector for each joint between the 

two landmarks. Each pixel on the heatmap indicates the possibility of a specific key point. These two 

branches are considered a stage in this architecture, and as required, stage 7 is used in this work [19]. 

The network architecture is shown in Figure 2. 

Table1: List of single points. 

Anatomical Landmarks 

1 Vertebra Prominens 

2 Natal Cleft 

3 L Shoulder 

4 R Shoulder 

5 L Scapulae 

6 R Scapulae 

7 L Waist Line 

8 R Waist Line 

9 LPSIS 

10 RPSIS 
Figure 1: Illustration of 10 

anatomical landmarks. 
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4- Dataset Collection 

In this study, data were collected by Microsoft's Kinect-v2 [6]. Fifty women and fifty-five men aged 

19-35 years old were recruited at Tabriz University of Medical Sciences, which resulted in 105 depth 

images of the human back surface. The participants were assumed to be healthy and have no history of 

Scoliosis. These people were asked to naturally stand with their backs to the camera so that the distance 

of feet from the vertical line was identical (See an example in figure 3). The Kinect sensor was located 

1.5 m behind the participants. As shown in Figure 3, the data entry process was as follows: at first, a 

marker was placed at point C7, and imaging was done without other landmarks. Then, the rest of the 

markers were embedded in the exact location, and the second image was recorded with landmarks. The 

images were saved as raw images in the size of 512×424. It is necessary to note that due to the presence 

of error sources in the Kinect sensor, we decided to limit the image conditions to a closed area far from 

direct light, and a 20-min delay was required to put the sensor in stable conditions [25]. The Institutional 

Review Board approved the protocol for research ethics and human subjects protection at Tabriz 

University of Medical Sciences. All participants gave informed consent after the experimental 

procedures were explained to them. 

 

            (b)         (a) 

Figure 2: Architecture of the two-branch multi-stage CNN. 

Figure 2: Architecture of the two-branch multi-stage CNN. 
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Figure3: Example of captured images 

 

5- Preprocess and Augmentation Pipeline 

Given the characteristics of the Kinect sensor, the resulting depth images were very noisy [6]. Hence, 

it was necessary to apply a pre-processing stage to improve the quality of the depth image. Thus, if r 

were the depth image matrix, it would be removed with the thresholding method 𝑟 > 1.7𝑚. Figure 4 

shows the depth image before and after noise removal.  

  

  

                       (a) Raw image                                  (b) Denoised image 

Figure 4:  Example of Raw image and Denoised image 

In the depth images, the range of pixels varied in different scenes. Meanwhile, the sensor error and 

movement of objects in the scene dynamically changed the minimum and maximum distance. Thus, it 

made feature extraction more difficult during convolutional operations. Therefore, in the training 

process of CNNs, the network was hardly converged. To solve this problem, the data was normalized 

through equation 1. Therefore, the data range was converted to a range of 0 and 1[26]. 

𝑅∗ =
𝑅−𝑀𝐼𝑁(𝑅)

𝑀𝐴𝑋(𝑅)−𝑀𝐼𝑁(𝑅)
               (1)                        

 

Figure 5: Example of Data Augmentation 
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In Equation 1, R is the input image matrix and 𝑅∗ is the post-normalization raw image.  

The first step in using CNNs is to have an extensive dataset. In fact, these networks have provided a 

platform that needs a large volume of data to train the network without overfitting. If we want to use 

deep learning for specific expertise, this need still exists. Compared with large datasets used in deep 

learning, such as COCO [27] and ImageNet [28], the dataset collected for such research, which requires 

precise detection and high sensitivity, is very small. Then, data augmentation [29] was used to solve 

the data shortage problem. We applied four transfer techniques to the right, left, top, and bottom of the 

dataset's images. Figure 5 shows an example of the images. The final number of images of the dataset 

was 525. 

  

 
6-Evaluation Metrics 

In automatic landmark detection, two well-known criteria of PCK (i.e., the percentage of points that 

are correctly estimated) [30] and PDJ (i.e., the percentage of correctly detected points) [31] are widely 

used. First, PDJ is the percentage of points that are correctly detected. A point is detected correctly 

when the distance between the predicted location and real location is less than a coefficient of the upper 

body's diameter. The upper body's diameter is defined as the distance between the left shoulder and the 

right thigh. This coefficient is considered equal to 0.2. Second, PCK is the percentage of points that are 

correctly estimated. A point is correctly estimated when the distance between the predicted location 

and real location is less than a threshold. This threshold limit can be considered equal to 50% of head 

length, less than 0.2 of upper body diameter, or equal to 150 mm. 

 

7-Experiment and Results 

7-1- Training Dataset Generation 

After recording the data, the training dataset's labeling process should be performed immediately for 

network training.  As mentioned earlier, the network has a branch for learning the position and spatial 

coordinates of landmarks and another branch for finding affinity between the two related points. Thus, 

all the information relevant to the JSON file's training images was set in the defined format in the first 

step. This information included the saved image address, image size, spatial coordinates of landmarks, 

and ID of each image, and the connection points. For example, "Landmarks" represents an image's 

landmark coordinates from a dataset written as (x, y) from 1 to 10 in a row. "Links" also represents the 

number of both connection points within a bracket, e.g., points 9 and 10 are connected.  

  

"Landmarks   ":

[267,137,261,304,214,154,313,154,239,202,294,192,227,261,295,258,247,286,273,291] 
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"links " : {[[9,10],[7,8],[5,6],[3,4],[1,2]]},…]} 

 

Using this information, heatmaps and vector field maps for each image are labeled for network training. 

In the next section, we will explain how to create them with the existing mathematical equations.   

  

7-2- Heatmap Generation 

For this issue, a label is made for each landmark as groundtruth using the Gaussian distribution, the 

mean of which represents the location of landmarks in the image. Each heatmap indicates the position 

where the landmarks occur. These heatmaps are derived from the coordinates of the critical points 

stored in the JSON file. 

Assume 𝑃𝑗 = (𝑐𝑥𝑗
, 𝑐𝑦𝑗

) is the correct position of the jth landmark for the person in the image so 

that 𝑥𝑗 , 𝑦𝑗𝜖 𝑅2. To make a heatmap for this landmark, it is necessary to define a neighborhood to the 

center of this point because it is determined that each heatmap does not contain only one point but also 

involves a small area, and then the value of the Gaussian function for 𝑃 = (𝑥, 𝑦) is calculated in this 

area. A heatmap for the jth landmark is shown with 𝐻𝑗
𝐺𝑇. 

Then, the value of the Gaussian function in 𝑃𝜖 𝑅2 position for the jth landmark is defined as follows 

[14]:  

𝐻𝑗
𝐺𝑇(P) = exp(−

‖𝑃−𝑃𝑗‖2

2

𝜎2
)                (2)                          

 

Equation 2 shows the 2D Gaussian function at the center of the correct landmark position. An example 

of a heatmap resulting from this method was illustrated in figure 6.  

Below, we indicate how to formulate and generate ground truth images for anatomical landmarks 

mathematically. As mentioned, this method is based on the Gaussian function. First, an affinity around 

𝑐𝑥 , 𝑐𝑦 is defined, and the value of the Gaussian function corresponding to all x and y values in this affinity is 

computed. We also show how to generate groundtruth images for automatic landmarks  

 

Generate Anatomical Landmark Heatmaps 

Input: Coordinates of Manual Landmarks 𝒋𝒐𝒊𝒏𝒕𝒔 = [(𝒙, 𝒚), … … ]  

Output:  𝑯𝑮𝑻 

Initialize 3D array according to (11,368,368); th=4.60 ; 𝝈 = 𝟖 

for 𝟎 ≤ 𝒊 ≤ 𝟏𝟎  do 
    𝑷𝒐𝒊𝒏𝒕 ← 𝒋𝒐𝒊𝒏𝒕𝒔[𝒊] 
    𝒄𝒙, 𝒄𝒚 ← 𝒑𝒐𝒊𝒏𝒕 

    𝒙𝟎 ← 𝐦𝐚𝐱 (𝟎, 𝒄𝒙 −  𝝈√𝟐𝒕𝒉) 

    𝒚𝟎 ← 𝐦𝐚𝐱 (𝟎, 𝒄𝒚 −  𝝈√𝟐𝒕𝒉) 
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    𝒙𝟏 ← 𝐦𝐢𝐧 (𝒘, 𝒄𝒙 +  𝝈√𝟐𝒕𝒉) 

    𝒚𝟏 ← 𝐦𝐢𝐧 (𝒉, 𝒄𝒚 +  𝝈√𝟐𝒕𝒉)  

    for 𝒚𝟎 ≤ 𝒚 ≤ 𝒚𝟏  do 
         for 𝒙𝟎 ≤ 𝒙 ≤ 𝒙𝟏  do 

             𝒅 ← (𝒙 − 𝒄𝒙)𝟐 + (𝒚 − 𝒄𝒚)𝟐 

             𝒆𝒙𝒑 ← 𝒅/𝟐𝝈𝟐 
             If 𝒆𝒙𝒑 > 𝒕𝒉 then 
                  𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆   
               𝒉𝒆𝒂𝒕𝒎𝒂𝒑[𝒚][𝒙]  ←  𝒎𝒂𝒙(𝒉𝒆𝒂𝒕𝒎𝒂𝒑[𝒚][𝒙], 𝒆𝒙𝒑(−𝒆𝒙𝒑))  
               𝒉𝒆𝒂𝒕𝒎𝒂𝒑[𝒚][𝒙]  ←  𝒎𝒊𝒏(𝒉𝒆𝒂𝒕𝒎𝒂𝒑[𝒚][𝒙], 𝟏)   
         end 

    end 
end 
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7-2- Landmark Affinity Fields Generation 

Each of the defined joints holds a vector map that connects two different parts of the body and 

contains the position and direction information in the joints. In Figure 7, a joint is shown between two 

landmarks. Assume that 𝑥𝑗1 and 𝑥𝑗2 are positions of the two related landmarks 𝑗1 and  𝑗2 in the image. 

If point p is on the joint c, the value of 𝐿𝑐
𝐺𝐻(𝑃) is a single vector; otherwise, a vector with zero value 

for all the other points [19].  

 

(a) Original image 

 
(b) Ground Truth 

C7 

(c) Ground Truth 

NC 

(d) Ground Truth 

LSH 

(e) Ground Truth 

RSH 

(f) Ground Truth 

Lsca 

(g) Ground Truth 

Rsca 

(h) Ground Truth 

LW 

(i) Ground Truth 

RW 

(j) Ground Truth 

LPSIS 

(k) Ground Truth 

RPSIS 

(l) Ground Truth 

Whole body 

 

Figure 6: Example of Heatmaps 
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Figure 7: Landmark Affinity Field  

A vector filed map 𝐿𝑐
𝐺𝐻 in the image, points p is defined as follows [14]: 

𝐿𝑐
𝐺𝐻(𝑃) = {

𝑣      𝑖𝑓 𝑃 𝑜𝑛 𝑙𝑖𝑚𝑏 𝑐
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                 (3)                             

where v is a single vector in the direction of joints and is defined as follows: 

𝑣 =
(𝑋𝑗2−𝑋𝑗1)

‖𝑋𝑗2−𝑋𝑗1
‖

2

                                     (4)         

Figure 8 shows an example of vector maps obtained by the above method. 

  

(c) [3,4] (b) [1,2] (a) Original image 
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(f) [9,10] (e) [7,8] (d) [5,6] 

 

 
7-3- Training Protocol 

We trained the model on 400 images and used the rest of the images for network testing. The deep 

learning model is created in Python 3.6 and TensorFlow 1.4. To design an optimal model, the heatmaps 

and vector maps were trained simultaneously using a training process similar to the training process 

[19]. Our model's best performance was achieved with a batch size of 3 and a learning rate of 0.0001. 

It should be noted that maximum epochs were equal to 70, and the network was implemented on a 

system with Nvidia Tesla T4 and 12GB RAM.  

  

7-4- Training 

Figure 2 shows that the image (424 x 512) is entirely imported into the convolutional network Resnet-

152. Transfer learning occurs in this part because the network extracts the features of the input image 

without supervision. The result is a set of feature maps F that are entered into each branch, and local 

features are obtained. In this stage, the layers are more meaningful because they are directly set with 

the training data label.   

Branch 1 predicts anatomical points, and Branch 2 can detect the affinity between two pairs of related 

points and show them as vector maps at the output. This part is significant since the deformities can be 

visually and generally found by drawing these affinities in the human back front structure, which 

requires a specialist to detect the affinity between joints with various spinal diseases.  

Assume that 𝜌1 and 𝜙1 are the same CNNs. Then, the first branch produces a set of heatmaps 𝐻1 =

𝜌1(𝐹) and the second branch produces a set of vector map 𝐿1 = 𝜙1(𝐹). In the next stages, both 

branches' predictions in the previous stage and features of main image F obtained from the descriptor 

are combined.  

Figure 8: Example of vector map 
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Equations 5 and 6 show the predictions of branches 1 and 2 in step t, respectively [19]. 

  

        𝐻𝑡 = 𝜌𝑡(𝐹, 𝐻𝑡−1, 𝐿𝑡−1), ∀𝑡 ≥ 2                 (5)  

        𝐿𝑡 = 𝜙𝑡(𝐹, 𝐻𝑡−1, 𝐿𝑡−1), ∀𝑡 ≥ 2                  (6)            

 

To guide the network and correct predictions, two-loss functions are applied at the end of each step, 

where 𝑓𝑯
𝑡 and  𝑓𝑳

𝑡 are used for branches 1 and 2, respectively. The specific cost function is assigned to 

each branch per step. 

Loss functions in both branches in step t are defined as follows: 

  

 

𝑓𝑯
𝑡 = ∑ ∑ 𝑊(𝑃). ‖𝑯𝑗

𝑡(𝑃) − 𝑯𝑗
𝐺𝑇(𝑃)‖

2

2
𝑃

𝐽
𝑗=1              (7)           

𝑓𝑳
𝑡 = ∑ ∑ 𝑊(𝑃). ‖𝑳𝒄

𝒕 (𝑃) −𝑳𝑐
𝐺𝑇(𝑃)‖2

2
𝑃

𝐶
𝑐=1                  (8) 

 

where Hj
GTis the ground truth of heatmap, Lc

GT is the ground truth of vector map, and W is a binary 

mask with 𝑊(𝑃) = 0. This binary mask made of ground truth is applied to prevent the removal of 

correct predictions to the outputs to mask the points. P represents a pixel of the image. Equation 9 

shows the total cost function, which is a combination of the cost functions 𝑓𝑯
𝑡 and  𝑓𝑳

𝑡. 

  

𝑓 = ∑ (𝑓𝑯
𝑡 + 𝑓𝑳

𝑡)𝑇
𝑡=1                                          (9)   

8- Results  

8-1- Results on VGG-19 

First, we were required to design and implement a descriptor to comprehend and extract the general 

concepts and input distinguishing features. This becomes problematic because of having depth images 

with different visual content compared to the color images. Putting the model under training from 

scratch because of leakage in our depth images dataset was not possible. Therefore, we tried to see 

transfer-learning from pre-trained models over color images to work on depth images. First, the deep 

convolutional network VGG-19 is utilized as a feature extractor, but no satisfactory results are 

achieved. 

 Figure 9 depicted a 10-channel Heatmap. Each of these heatmaps is the output of the first branch. 

As shown, the predicted Heatmaps are expected to represent anatomical landmarks of the human back 
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surface. However, the desired output is failed to be obtained. Figure 10 also shows the Affinity part 

map. The undesired network performance in detecting and extracting the distinguishing features in 

this algorithm is observed.  

  

 

 

      

 

Figure 10: Vector map of stage-7 (trained with VGG-19) 

 

8-2- Results on ResNet-152   

Regarding the poor function of the VGG-19 network, the ResNet-152 network was applied. The 

network was expected to have better performance than VGG-19. Figure 11 shows the prediction of 

heatmaps obtained from the last layer of the CNN, and Figure 12 represents the prediction of vector 

maps.  

  

 

Figure 9: Confidence map of stage-7 (trained with VGG-19) 
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Figure11: Confidence map of stage-7 (trained with Resnet-152) 

 

     

Figure12: Vector map of stage-7 (trained with Resnet-152) 

By applying the input image to the ResNet-152 descriptor, the network could comprehend and extract 

distinguishing features from the input image. The second part of the network architecture could quickly 

learn the extracted features and achieve remarkable and promising results. After the training process 

ended, the experimental data were used to test the new architecture and ensure proper training.  

In addition to increasing network accuracy, ResNet-152 can be used as a feature descriptor to accelerate 

the network convergence process. This result was expected since this network was the deepest version 

of the ResNet network and had higher accuracy than ResNet-50 in the ranking. Therefore, this network's 

outputs, which will be presented in more details in the next section, obtained higher percentage in 

proper landmark detection compared to others based on the evaluation criteria.      

In Figure 13, the results of applying the evaluation samples to the ResNet-152 network are shown, 

which was visually compared with the ground truth of each one, and the process of improvement can 

be observed in network performance. The red points and lines indicate ground truth in these images, 

and the yellow points and lines indicate the predicted output. Here the network had a very remarkable 

performance in detecting all points, although the participants were assumed to be healthy. However, in 

practice, there were cases with spinal deformities and Scoliosis, an example of which can be observed 

in Figure 13. In addition to automatic landmark detection, the proposed algorithm could predict a view 
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of people's spine by finding a relationship in these points; this will help diagnose Scoliosis and other 

spinal deformities.  

  

 

    

    

    

Figure 13: Sample plots of output from our model 

 

7-5- Comparisons 

Evaluation criteria were calculated for both ResNet-50 and ResNet-152 networks. In this comparison, 

the VGG-19 model was not included, because it did not produce comprehensible output. By comparing 

both networks' performance, as expected, the final version of ResNet increased network accuracy with 

less difference from the original version. Table 2 illustrates the PCK for all landmarks.  

 

Accordingly, the network performs well in IF detection but shows poor performance in detecting 

scapular points (LS, RS). Although most people were assumed to be healthy, they had asymmetrical 
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protrusions in the scapula; therefore, to make the network comprehensive, this amount of difference 

should learn more data. Indeed, correct detection of deformities in the back surface depends on having 

a large dataset with different forms of spine deformities; then, the network could learn the new features. 

However, our algorithm has a remarkable performance, even with a limited number of subjects. As 

indicated in table 2, the PCK value is computed for only two networks, ResNet-50 and ResNet-152. 

VGG is not a suitable option for our research study because the ResNet network has been formed by 

deeper layers and has more computational complexities than the VGG network.   

Table 2: PCK results 

Total RPSIS LPSIS  RW LW RS LS RSH LSH IF VP Method 

 Train 

76.1 76.8 81  73 89 68 49 72 82 97 74 
ResNet-50 

80 80 83  79 89 74 56 80 86 97 76 
ResNet-152 

 
Test 

71.74 65.7 78  71 88.8 60.9 46 66 81 89 71 
ResNet-50 

76.14 73 80  75 84 72 54 75 83.45 90 75 
ResNet-152 

 

In table 2, PDJ results indicate the percentage of the points which have been detected accurately. As 

illustrated, ResNet-152 has better performance than ResNet-50 network, and again, the lowest level 

of precision is to detect the scapular points. As noted, it is because of the limited number of subjects 

with this specific deformity. If the network trains with various data, it can extract more complicated 

features. Therefore, this accuracy level of the network indicates the proper statistical population of the 

data.  

Table 3: PDJ results 

Total RPSIS LPSIS RW LW RS LS RSH LSH IF VP Method 

Train 

85.12 93.64 91 94 89.1 67 61.21 81 86.68 97 90.57 
ResNet-50 
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86.9 92 93 96 91 69 66 85 88 97 92 
ResNet-152 

Test 

79.37 91.6 85.6 82 87 56 57.84 73 82.7 92 86 
ResNet-50 

80.9 90 88 84 89 61 58 74 84 93 88 
ResNet-152 

 

Similarly, the following plots provide evidence for our interpretations. For example, as shown, 

ResNet-152 performed better than ResNet-52; the lowest accuracy was obtained for detection and 

estimation of spatial position in point LS. By comparing PCK and PDJ, the critical point to note is the 

network's remarkable performance to detect and estimate the spatial position of the point IF. This 

point, placed on top of the intergluteal furrow, does not have a particular deformity compared to the 

other points. On the other hand, its position is not influenced by other spine deformities; therefore, 

enough data is fed to the network for training the features.   
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Figure 15: PCK comparison in testing phase between 

Resnet-50 and Resnet-152 

 

Figure 14: PCK comparison in training phase between 

Resnet-50 and Resnet-152  

 

 

Figure 17: PDJ comparison in testing phase between 

Resnet-50 and Resnet-152  

 

Figure 16: PDJ comparison in training phase between 

Resnet-50 and Resnet-152 

 

From the medical and clinical point of view, the manual detection of anatomical points is difficult. If 

the desired anatomical points are marked by several specialists on a patient's body, none of the points 

are located at a specific point. Therefore, to detect these points, the spatial coordinates are not enough, 

and a range of neighborhoods of that point is considered. However, this research aimed to reduce the 

error rate of landmark detection and achieve only one coordinate as the detected point. The promising 

results were obtained using the proposed algorithm, and it is also essential to highlight the point that 

the deep convolutional network could comprehend the complexity of this type of data and meet the 

primary goal of research.  
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8-Discussion and Conclusion 

This study aims to automatically detect the anatomical landmarks of the human back surface to 

investigate spinal deformities. This study's necessity arose from the point that many people suffer 

from spinal deformities, among which Scoliosis is highly important because the predominant method 

for the detection and evaluation of the treatment process is performed through multiple radiographs. 

However, due to being invasive and having ionizing radiation, it increases cancer incidence, 

particularly among the youth. Therefore, one of the benefits of this study is the use of a non-invasive 

diagnosis method.  

In this paper, deep learning methods were utilized since CNN has a remarkable capability, and in recent 

years, has been applied in a wide range of studies, obtaining remarkable results. The use of the presented 

algorithm is advantageous for the physician due to autonomy. Because in a spontaneous process, an 

appropriate diagnosis system presents recommendations to the physicians. This study's essential 

attainment is deep image training because it provides rich information about the patients' back surface 

to physicians.  

To evaluate the algorithm's results, the evaluation criteria were calculated and compared with ground 

truth. The results indicated that the network could comprehend the distinguishing features of the input 

and perform well in the evaluation data. As illustrated in the images, some points were not placed in 

the exact position, and the highest error rate in this regard was related to the scapula. This can be 

justified so that the network needs more data to learn more features and information.  
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