
Author names and affiliations

Mats W.J. van Es1, 2, Eelke Spaak1, Jan-Mathijs Schoffelen1, Robert Oostenveld1, 3

1 Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg

29, 6525 EN Nijmegen, The Netherlands

2 Oxford Centre for Human Brain Activity, University of Oxford, Oxford OX3 7JX, United Kingdom

3 NatMEG, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden

Corresponding author: Mats W.J. van Es

Oxford Centre for Human Brain Activity

University of Oxford, Oxford OX3 7JX, UK

Email: mats.vanes@psych.ox.ac.uk

Title

Reducing the efforts to create

reproducible analysis code with

FieldTrip

Abstract

The analysis of EEG and MEG data typically requires a lengthy and complicated sequence of analysis

steps, often requiring large amounts of computations, which are ideally represented in analysis

scripts. These scripts are often written by researchers without formal training in computer science,

resulting in the quality and readability of these analysis scripts to be highly dependent on individual

coding expertise and style. Even though the computational outcomes and interpretation of the

results can be correct, the inconsistent style and quality of analysis scripts make reviewing the details

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

of the analysis difficult for other researchers that are either involved in the study or not, and the

quality of the scripts might compromise the reproducibility of obtained results. This paper describes

the design and implementation of a strategy that allows complete reproduction of MATLAB-based

scripts with little extra efforts on behalf of the user, which we have implemented as part of the

FieldTrip toolbox. Starting from the researchers’ idiosyncratic pipeline scripts, this new functionality

allows researchers to automatically create and publish analysis pipeline scripts in a standardized

format, along with all relevant intermediate data. We demonstrate the functionality and validate its

effectiveness by applying it to the analysis of a recently published MEG study.

Keywords

FieldTrip, MATLAB, reproducibility, analysis pipeline, open science, MEG, EEG

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

Unsound scientific practices have led to a replication crisis in psychological science in recent years (1,2), and

it is unlikely that cognitive neuroscience is an exception (3–5). Initiatives to combat this crisis are taking root

(4,6,7), targeted at increasing robustness of results, publishing of null results, and greater methodological

transparency. This has resulted in publications with recommendations for best practices (8,9), but these have

not yet been universally embraced. The increased sophistication of experimental designs and analysis

methods also results in data analysis getting so complex that the methods sections of manuscripts in most

journals is too short to represent the analysis in sufficient detail, thus hampering transparency. Therefore,

researchers are increasingly encouraged to share their data and analysis pipelines along with their published

results (6).

Scientific analysis represented as scripts and pipelines

The processing and analysis of EEG and MEG data typically involves a sequence of steps, often requiring large

amounts of computations. Each of these steps is based on input data, and produces output data, hence these

analyses can be conceptualized as pipelines through which data “flows”, where each stage modifies the data

somehow. Overall, the input to the analysis pipeline comprises raw data, and the output consists of

interpretable results. The steps in an analysis pipeline are typically represented as code in a human-readable

programming language such as MATLAB, Python or Julia (source code), in files called scripts. The quality,

readability, and generalizability of the scripts, which are written by individual researchers, is highly

dependent on individual coding style and expertise. Since the reproducibility of the pipeline depends on the

quality of the analysis scripts, variability in the quality might compromise the reproducibility of obtained

results. Furthermore, since scripts might be difficult to read, it can be problematic to find (and learn from)

the details of the analytical procedures applied in previous studies. In practice we also see that researchers

set high standards for themselves and therefore are hesitant to openly share their own analysis code,

because the code is not as clean and well-documented as they would like.

Pipeline systems

A number of strategies have been proposed to enhance the reproducibility of analysis pipelines and scientific

results. One option to improve reproducibility and efficiency through reuse of code is through automation

using pipeline systems (e.g. Taverna, Galaxy, LONI, PSOM, Nipype, Brainlife; (10–15) or batch scripts (e.g.

SPM’s matlabbatch (16)). Generally, these provide the researcher with tools to construct an analysis pipeline,

manage the execution of the steps in the pipeline and, to a varying degree, handle data. The pipeline system

manages the execution of code and automatically passes the data from one analysis step to the next, even

when these are implemented in different analysis software. Besides providing a better visual and conceptual

overview of elaborate pipelines and improving the efficiency of the researcher’s workflow, pipeline systems

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

improve reproducibility by providing an explicitly specified sequence of analysis steps, combined with

detailed output logs.

Some drawbacks of pipeline systems are that they require the researcher to learn how the pipeline software

works on top of leaning the analysis itself, that the execution requires extra software to be installed, or that

it requires moving the execution from a local computer to an online (cluster or cloud-based) system, and that

the flexibility of pipeline systems is limited. Some data analysis strategies can not easily be translated to fully

automatable pipelines, because manual intervention and interactive examination of data or intermediate

results is required. There are however also platforms (e.g. brainlife (14)) that enable interaction, while

maintaining the advantages of a pipeline system. Furthermore, the researcher is limited to using the tools

that are already available in a specific pipeline system, or is required to extend the pipeline system

themselves by writing wrappers between the pipeline system and the analysis tools of choice. Moreover, the

pipeline system only improves reproducibility perfectly when the dependencies of the system, e.g. specific

versions of external toolboxes, template data, and external (web-based) services, are well defined. If the

pipeline depends on, or allows the execution of, custom analysis steps (thereby providing maximum

analytical freedom), the source code of those custom analysis steps is also required.

Version control systems for scripts

If an analysis pipeline depends on custom scripts, it is vital for reproducibility to document the version of the

code that produced the result. Version Control Systems (VCS) can facilitate this, by providing tools to track

and control changes made to source code (17–20). Especially the Git version control system is increasingly

being used in science (21), which is in part due to GitHub providing a popular online web platform that gives

a clear graphical presentation of projects and code, and facilitates collaboration (“social coding”) and

dissemination. In a VCS, a complete history of the incremental changes to the source code is saved, and each

revision is given a unique identifier. This enables code developers to compare versions and retrace errors,

but also facilitates multiple developers to contribute to the same project and merge contributions (21).

When using a VCS for scientific workflows, these can easily be shared and published. This has the potential to

increase the reproducibility of a scientific project, but only when a number of conditions are met.

First, the researcher has to use the VCS tool actively on their own code. Working with VCSs requires training

(20), and even if a researcher is well-trained, they have to commit a new version of the source code after

each significant change to the code, ideally including a short textual description of the changes that were

made. This style of working involves extra time investment, and is easily given a lower priority in the busy

day-to-day work of a researcher and therefore skipped.

Second, for the pipeline to be reproducible for outside parties, the researcher has to be willing to share their

analysis workflow. Researchers might be hesitant to do so if they feel insecure about their coding style and

the quality of their code. During their academic training, researchers learn how to present results and write

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

papers, and receive positive reinforcement on these skills; the development of computing and coding skills

are often not part of the formal training programs for young neuroscientists, or are not as well established

(22,23). Low quality code might reflect badly on the quality of their scientific work, and hence researchers

might feel obliged to invest extra time to clean up and document their code solely for sharing purposes. In

our personal experience, it is not uncommon to hear colleagues and coworkers that they will share the code

in the future, after it has been cleaned up and documented, but that in the end the code is never shared.

Training researchers in pro-actively writing clean code and documenting it definitely is of help here, and we

encourage researchers to study examples and use experts’ tips and tricks (e.g. 22, 23). However, given time

constraints, prioritization of other aspects related to the research project, or simply the fact that the

researcher does not know of the existence of such guidelines, it can happen that the researcher decides not

to share the scripts at all. In a trend we view as positive, journals and publishers are increasingly demanding

transparency when researchers wish to publish their results, and one of these requirements can be to

provide access to data and analysis scripts (26).

Last, the workflow that is tracked in a VCS needs to be executable by other researchers on other computers.

This can be challenging, especially if the researcher’s scripts depend on external code and toolboxes that by

themselves are not tracked by the VCS. Similarly, analysis scripts typically depend on a particular organization

of the data over directories and sub-directories, which is unknown to outsiders. Tools to document code

dependencies are becoming more widely adopted, such as Conda, and Python’s virtualenv, modulefinder,

and “pip freeze”. Furthermore, the problem of ill-specified data organization can (partly) be overcome by

recently developed data organization standards such as the Brain Imaging Data Structure (BIDS, (18,27,28).

To summarize, sharing reproducible analysis pipelines can be challenging given that researchers may not be

version controlling their own code so well, may not be making their own code available, and because of

issues created by unknown dependencies on untracked code and undocumented features of the data

organization. The latter two issues might be overcome with platforms such as Code Ocean (29), which is an

open access platform where users can develop their code and run their analysis in the same environment,

but this still leaves the first issue unscathed.

Literate programming

There are multiple styles of computer programming that lead to different degrees of reproducibility. The

easiest way of programming is by using read-eval-print loops (REPLs), such as employed in the MATLAB (30)

command window. These take single user inputs, evaluate them, and return the result to the user. Only using

the command window or interpreter to execute REPLs is bad for reproducibility, since the details and

sequence of analysis steps is not documented. One can improve upon this by saving the code in scripts. It is

even better to include inline documentation (“comments”) in these scripts, describing the rationale of the

code. The script then becomes a combination of a programming language targeted at a computer, and a

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

documentation language targeted at peers, thereby improving the interpretability of the researcher’s code.

This is known as literate programming (31) and it improves the transparency regarding how source code

leads to results. Tools and packages designed for interactive literate programming are available for different

scientific programming languages (e.g. MATLAB live scripts, Jupyter Notebook , R Markdown, knitr, and

matlabweb (32–36)) and allow users to execute pieces of code and look at the results as a REPL, while

simultaneously encouraging inline documentation, keeping a trace of all computational steps, and providing

the ability to revisit and share interactive analyses. Online shared notebooks often make re-execution of the

code possible without the need to install software packages or to download data. Combining REPL with

literate programming benefits both the reproducibility of single analysis steps, and the transparency of the

scientific process. However, it has been noted by users of Jupyter Notebooks that the interface becomes less

manageable as the content grows, which drives users to clean up their notebooks and only keep the

successful steps (37). Additionally, most users only annotate their code after writing it, solely when they

want to share the code. Consequently, the longer, the more sophisticated, and the more interactive an

analysis pipeline becomes, the less transparent it becomes. Finally, the integration of literate programming

REPL code with VCSs is not always optimal.

It all takes time

The improvement of reproducibility by the use of pipeline systems, VCSs, or by literate programming tools

relies on the researcher using these tools properly and consistently. Moreover, it necessitates extra time

investment on the researcher’s part in order to make their data and analysis scripts shareable. While we

recommend the use of such tools, these are currently not (yet) widely adopted. The tools with the highest

chance of adoption are usually the ones with the least friction, i.e. the least effort on the researchers’ part.

Ideally, researchers should be able to transform their (often highly idiosyncratic) analysis scripts into a

standard pipeline format automatically, allowing exact and transparent reproducibility.

We here present an implementation of such functionality in the FieldTrip toolbox (38), which is currently one

of the most widely used toolboxes for MEG and EEG analysis. Using this new functionality, data analysis

within the FieldTrip and MATLAB ecosystem can be made entirely reproducible and transparent with minimal

additional effort by the researchers.

Our solution

Our primary goal is to make analyses reproducible and to allow researchers to easily share details of their

analysis pipeline, yet require minimal extra time investment or training of the researcher. We implemented

this in the form of what we call the ‘reproducescript’ functionality. In short: the researcher adds one

additional flag to the configuration options in each FieldTrip function in the pipeline, which results in the

analysis pipeline and data dependencies to be exported to a standardized representation that resembles the

format of the FieldTrip tutorials which the researcher will be familiar with. The generated scripts and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

corresponding data have minimal to no ambiguity. By standardizing the coding style used in scripts,

researchers do not have to worry about the quality of their personal coding style. All the while, the analysis

flexibility inherent to the FieldTrip toolbox remains, including interactive analysis steps. Finally,

reproducescript enables the researcher to gradually build up and execute parts of their analysis using the

approach they are used to, without the need to compile a complete pipeline at the start (e.g., preprocessing

can be completed before the rest of the analysis pipeline is in place).

Specifically, upon the deployment of a processing pipeline (based on an individual script or collection of

scripts), reproducescript saves all intermediate data from each analysis step in one place, according to a

uniform file naming scheme and directory structure. Intermediate data include the input data to each

individual analysis step, as well as the output each step generates. Additionally, reproducescript creates a

standard-syntax, human-readable, executable, MATLAB script that solely relies on the FieldTrip toolbox,

which, together with the intermediate data, can fully reproduce the entire analysis pipeline with one single

command or mouse click. Researchers enable reproducescript with a single global configuration option, and

can archive and opt to share the generated code, instead of (or in addition to) their custom-written code. In

the remainder of this article, we will explain how this functionality is used, and demonstrate its ability using

examples from published research in which the FieldTrip toolbox was used for analysis. Further limitations

and considerations will also be discussed.

Reproducescript

To explain the new reproducescript functionality, we will demonstrate its use it with a simple example

pipeline for a single-subject analysis that comprises only a few analysis steps. For this we assume the

reader already to be familiar with the structure of FieldTrip toolbox functions (see 33) and the way these

are used during analysis. The example also demonstrates how it is employed by the researcher. Second,

we demonstrate its application in a complete pipeline with preprocessing for multiple subjects, followed

by a group analysis. The original idiosyncratic scripts that we selected for these first two examples are

relatively clean and transparent, which means they are easily reproducible even without the new

reproducescript functionality. Thus, they solely function as practical demonstrations. As an analysis

pipeline becomes more complex, especially when it starts to contain various layers of custom functions

over FieldTrip functions, the researcher’s original code can become more opaque. In such cases, the

advantage of reproducescript to improve the readability and reproducibility becomes more apparent. As

a final, third, example, we will therefore apply it to an already published analysis pipeline that contains

such complexity. The analysis code and data used in these examples are publicly available in the

Donders Repository (https://doi.org/10.34973/21pa-dg13).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

How it works

Example 1: single-subject analysis

Original analysis

Figure 1. File directory tree. The tutorial folder contains subfolders for example 1 and 2, and the folder

for the raw data used in both examples. The file analyze.m contains the analysis and saves the result in

the analysis folder.

To show how the reproducescript functionality works, we apply it to a script from the tutorial “Trigger-

based trial selection” that is available on the FieldTrip website

(http://www.fieldtriptoolbox.org/tutorial/preprocessing/). The directory tree used in this example and

the original source code are shown in Figure 1 and listing 1, respectively. The reproducescript

functionality is initiated by the source code in listing 2, and when applied to the original source code

(listing 1) it generates the files shown in figure 2 and the code shown in listing 3.

Figure 2. reproducescript creates the reproduce folder and its contents: input and output data files with

unique file identifiers, a MATLAB script, and a hashes data file. See text for further explanation.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

data_dir = '../rawdata/'; 1
results_dir = 'analysis/'; 2
 3
% extract epochs 4
cfg = []; 5
cfg.dataset = fullfile(data_dir, 'Subject01.ds'); 6
cfg.trialfun = 'ft_trialfun_general'; 7
cfg.trialdef.eventtype = 'backpanel trigger'; 8
cfg.trialdef.eventvalue = 3; 9
cfg.trialdef.prestim = 1; 10
cfg.trialdef.poststim = 2; 11
cfg = ft_definetrial(cfg); 12
 13
% loading data and basic preprocessing 14
cfg.channel = {'MEG' 'EOG'}; 15
cfg.continuous = 'yes'; 16
dataFIC = ft_preprocessing(cfg); 17
 18
% time-lock analysis 19
cfg = []; 20
avgFIC = ft_timelockanalysis(cfg, dataFIC); 21
 22
% let's make a manual change to the data that is not caputured in the provenance 23
avgFIC.avg = avgFIC.avg * 1e15; % convert from T to fT 24
 25
% save time-locked data 26
save(fullfile(results_dir, 'timelock.mat'), 'avgFIC') 27
 28
% plot the results 29
cfg = []; 30
cfg.xlim = [0.3 0.5]; 31
cfg.layout = 'CTF151_helmet.mat'; 32
ft_topoplotER(cfg, avgFIC); 33
 34
% save the figure 35
savefig(gcf, fullfile(results_dir, 'topoplot'))36

Listing 1. Example single-subject analysis from the FieldTrip tutorial. The script calls two FieldTrip

functions for extracting epochs (ft_definetrial) and for reading in and preprocessing the data

(ft_preprocessing). The data are averaged over trials (ft_timelockanalysis), manually transformed to

femtotesla (fT), saved and visualized (ft_topoplotER).

A MATLAB analysis script that builds on the FieldTrip toolbox consists of a sequence of calls to FieldTrip

functions, each of which perform a conceptual step of the analysis. The first input argument to such

function is a configuration structure (cfg), which specifies the settings and parameters used by the

function, and a data structure can be given as a subsequent input argument. The application of the

function’s algorithms on the input data generates an output data structure. This can serve as input data

to the next analysis step, or as the final result, in which case results can be visualized using a plotting

function. Data structures are commonly represented in MATLAB memory, but can also be stored on disk

in a *.mat file that is based on HDF5. In this example, we use the first analysis steps that are used in a

typical pipeline. First, extraction of epochs of interest is accomplished using ft_definetrial. Its output can

be used by ft_preprocessing to read the data from disk and do basic preprocessing. Finally,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

ft_timelockanalysis computes the average over trials, and ft_topoplotER plots the results.

Both the input and output of FieldTrip functions can be a data structure and/or a cfg structure. The

ft_definetrial call only requires a configuration structure to be specified, including the directory of the

raw data. Its output, too, is only a cfg-structure, which among others now contains a trl-field with the

relevant information for epoching the data. The output from ft_preprocessing and ft_timelockanalysis

are data structures, executed according to the configuration options specified in cfg. The only output

from ft_topoplotER is a figure. Before calling ft_topoplotER, we changed the units from T to fT. This is

usually not done, but in this instance it serves as an example for how reproducescript handles analysis

steps that were performed outside the FieldTrip ecosystem (i.e., arbitrary code).

Initialization of reproducescript

clear 1
close all 2
 3
global ft_default 4
ft_default = []; 5
ft_default.checksize = inf; 6
 7
% enable reproducescript 8
ft_default.reproducescript = 'reproduce/'; 9
 10
% the original source code from listing 1 goes here. 11
 12
% disable reproducescript 13
ft_default.reproducescript = []; 14

Listing 2. reproducescript is initialized at the top of the analysis script, by specifying the directory of the

reproducescript folder in ft_default.reproducescript.

The functionality for reproducibility of analysis pipelines in the FieldTrip ecosystem is enabled at the top

of a script (listing 2). The user specifies the directory to which the standard script and intermediate data

are written in the reproducescript field of the global ft_default variable. ft_default is the structure in

which global configuration defaults are stored; it is used throughout all FieldTrip functions and global

options are at the start of the function merged with the user-supplied options in the cfg structure

specific to the function. Note that we are additionally specifying ‘ft_default.checksize = inf’, which

instructs FieldTrip to never remove (large) fields from any cfg-structure, thus ensuring perfect

reproducibility. We recommend enabling this additional option whenever reproducescript is used.

Reproduced analysis

The reproducescript option is enabled by specifying an output directory in each functions cfg structure

or in the global ft_default variable if we want it to apply to all functions. FieldTrip functions that are

subsequently called will ensure that the output directory exists, and will store the relevant files in this

directory (figure 2). reproducescript traces the steps to each FieldTrip function call, and recreates

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

human-readable REPL code from scratch (script.m, listing 3). At the same time, the input data to a

function and the output data it generates are copied and given a unique identifier (i.e. filenames).

Pointers to these identifiers end up in the standardized script (listing 3), as cfg.inputfile and

cfg.outputfile. This means that no input or output data structures as they normally appear in the

MATLAB workspace appear in the standardized script; these are all handled using data on disk

corresponding with cfg.inputfile and cfg.outputfile. In the case of ft_definetrial, these are absent,

because the input and output of ft_definetrial are only cfg structures, not data structures. Similarly, if

the function’s output is a figure (e.g. in ft_topoplotER) the figure is also directly saved to disk, in .png

(bitmap) and .fig (MATLAB figure) formats.

Note that the fields from the cfg input to ft_definetrial are repeated as input to ft_preprocessing

because the configuration in the original script was not emptied (listing 1, line 15). There are also

additional fields created by ft_definetrial. If these fields exceed a certain printed size, which would make

them unwieldy to include inline in a script (e.g. cfg.trl, which normally consists of a Ntrials*3 matrix

specifying the relevant sections of the data on disk), these too are saved on disk instead of being printed

in the standardized script. One last thing that should stand out is the comment in listing 3, line 47: “a

new input variable is entering the pipeline here: ...”. This points to the mat-file subsequently specified in

cfg.inputfile to ft_topoplotER. The data structure in this file was not originally created by a FieldTrip

function but comes from another source: in this case it consists of the data in which originates from the

T to fT unit conversion step (listing 1, line 24). Thus, this comment puts an emphasis on the fact that a

data structure with unknown provenance enters the pipeline. All analysis steps that do not use FieldTrip

functions will create such comments and save the data structure. Importantly, the pipeline thus remains

reproducible without relying on external code (see Discussion).

%% 1
 2
cfg = []; 3
cfg.dataset = '../rawdata/Subject01.ds'; 4
cfg.trialfun = 'ft_trialfun_general'; 5
cfg.trialdef.eventtype = 'backpanel trigger'; 6
cfg.trialdef.eventvalue = 3; 7
cfg.trialdef.prestim = 1; 8
cfg.trialdef.poststim = 2; 9
cfg.tracktimeinfo = 'yes'; 10
cfg.trackmeminfo = 'yes'; 11
cfg = ft_definetrial(cfg); 12
 13
%% 14
 15
cfg = []; 16
cfg.dataset = '../rawdata/Subject01.ds'; 17
cfg.trialfun = 'ft_trialfun_general'; 18
cfg.trialdef.eventtype = 'backpanel trigger'; 19
cfg.trialdef.eventvalue = 3; 20
cfg.trialdef.prestim = 1; 21
cfg.trialdef.poststim = 2; 22
cfg.tracktimeinfo = 'yes'; 23
cfg.trackmeminfo = 'yes'; 24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

cfg.datafile = '../rawdata/Subject01.ds/Subject01.meg4'; 25
cfg.headerfile = '../rawdata/Subject01.ds/Subject01.res4'; 26
cfg.dataformat = 'ctf_meg4'; 27
cfg.headerformat = 'ctf_res4'; 28
cfg.representation = 'numeric'; 29
cfg.trl = 'reproduce/20210112T113326_ft_preprocessing_largecfginput_trl.mat'; 30
cfg.outputfile = { 'reproduce/20210112T113326_ft_preprocessing_output_data.mat' }; 31
cfg.channel = {'MEG', 'EOG'}; 32
cfg.continuous = 'yes'; 33
ft_preprocessing(cfg); 34
 35
%% 36
 37
cfg = []; 38
cfg.tracktimeinfo = 'yes'; 39
cfg.trackmeminfo = 'yes'; 40
cfg.inputfile = { 'reproduce/20210112T113326_ft_preprocessing_output_data.mat' }; 41
cfg.outputfile = { 'reproduce/20210112T113332_ft_timelockanalysis_output_timelock.mat' }; 42
ft_timelockanalysis(cfg); 43
 44
%% 45
 46
% a new input variable is entering the pipeline here: 20210112T113333_ft_topoplotER_input_varargin_1.mat 47
 48
cfg = []; 49
cfg.xlim = [0.3 0.5]; 50
cfg.layout = 'CTF151_helmet.mat'; 51
cfg.tracktimeinfo = 'yes'; 52
cfg.trackmeminfo = 'yes'; 53
cfg.inputfile = { 54
 'reproduce/20210112T113333_ft_topoplotER_input_varargin_1.mat' }; 55
cfg.outputfile = 'reproduce/20210112T113338_ft_topoplotER_output'; 56
figure; 57
ft_topoplotER(cfg);58

Listing 3. Example reproducescript output. This script is generated by reproducescript when listing 1 and

2 are combined and executed.

Finally, the reproduce folder contains a file named hashes.mat. This is a file containing MD5 hashes for

bookkeeping all input and output files. It allows reproducescript to match the output files of any one

step to the input files of any subsequent step. For example, the output from ft_preprocessing is used as

input to ft_timelockanalysis, which means that the data structure only needs to be stored once and

“…_ft_timelockanalysis_input_timelock.mat” does not have to be additionally saved to disk. If the

output data from one function and the input data to the next function are slightly different, they are

both saved under different file names. This happens when the researcher modified the data using

custom code (as in the example when converting channel units). The hashes.mat file furthermore allows

any researcher to check the integrity of all the intermediate and final result files of the pipeline.

Example 2: group analysis

The first example contained only a few analysis steps in a single subject. More realistic data analysis

pipelines consist of many more steps in which often the same (or similar) pipelines are used for multiple

subjects. In this section, we will show how the reproducescript functionality applies in such a case.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Original analysis

The analysis example follows the strategy outlined in (31) and starts with a single subject analysis

pipeline that is repeated for four subjects. The directory is structured as depicted in figure 3. After the

single-subject analysis, all single-subject results are used in a group analysis. The single-subject and

group analyses are executed from the master script analyze.m (listing 4), which is the control script from

which the relevant analysis scripts and functions are called. The master script relies on two functions:

doSingleSubjectAnalysis and doGroupAnalysis, which are each stored in separate m-files. The original

source code for these scripts can be found in Appendices Ia (single subject analysis) and IIa (group

analysis).

Figure 3. File directory tree for group study example. The main folder example2 contains scripts with

source code and subject-specific analysis details, and separate folders for the results of each subject,

and the group results for the original analysis (result_*).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

clear 1
close all 2
 3
subjlist = { 4
 'Subject01' 5
 'Subject02' 6
 'Subject03' 7
 'Subject04' 8
 }; 9
 10
%% Loop single-subject analysis over subjects 11
for i=1:numel(subjlist) 12
 subj = subjlist{i}; 13
 doSingleSubjectAnalysis(subj); 14
end 15
 16
%% Group analysis 17
doGroupAnalysis(subjlist);18

Listing 4. The entire group analysis can be executed from this master script.

Initialization of reproducescript

To create a standard script from the analysis pipeline, the ft_default variable is initialized at the top of

analyze.m. Note that we do not immediately initiate reproducescript, this is done in the loop just before

doSingleSubjectAnalysis, and just before doGroupAnalysis by specifying unique directories (listing 5,

lines 20 and 27) for each subject and foir the group. In fact, reproducescript can be stopped and

restarted between different subjects, or even in between analysis steps, which is especially convenient

in pipelines that require a lot of compute resources and that the researcher rather splits up to allow for

parallel execution on a compute cluster.

clear 1
close all 2
 3
% initialize ft_default variable 4
global ft_default 5
ft_default = []; 6
ft_default.checksize = inf; 7
 8
subjlist = { 9
 'Subject01' 10
 'Subject02' 11
 'Subject03' 12
 'Subject04' 13
 }; 14
 15
%% Loop single-subject analysis over subjects 16
for i=1:numel(subjlist) 17
 subj = subjlist{i}; 18
 % initiate reproducescript 19
 ft_default.reproducescript = ['reproduce_' subj]; 20
 doSingleSubjectAnalysis(subj); 21
 ft_default.reproducescript = []; % disable 22
end 23
 24
%% Group analysis 25
% initiate reproducescript 26
ft_default.reproducescript = 'reproduce_Group'; 27
doGroupAnalysis(subjlist); 28
ft_default.reproducescript = []; % disable29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Listing 5. The master script from example 2 (listing 4), but now including the initialization of

reproducescript.

Figure 4. A reproduce_* folder is created for the reproduction of each single-subject analysis, and for

the group analysis, containing the relevant (intermediate) data, standardized script, and hashes file for

that analysis.

Reproduced analysis

The file directory tree (figure 4) and the initialization of reproducescript (listing 5) show that there is a

specific folder devoted to the reproducescript content of each subject, and one for the group analysis.

Thus, upon execution of the master script in listing 5, folders are created for each of the subjects, and

for the group analysis. These all contain the intermediate data, a standardized script, and a hashes.mat

file for the bookkeeping. The reproducescript standardized scripts for the single-subject analysis and

group analysis can be found in the Supplementary Materials as Appendix Ib and IIb, respectively.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reproducescript in practice

In order to show that the reproducescript functionality is not limited to small examples and can indeed

fully reproduce real-world pipelines with a single button click, we applied it to a previously published

study that none of the authors of the current paper was involved in. The analysis pipeline in question

was described by Andersen in (22) and published in a special Frontiers issue on group analyses on MEG

data.

Example 3: application to published dataset

The analysis pipeline in (24) is well-documented and itself a good demonstration of a reproducible

analysis pipeline in the FieldTrip ecosystem. Nevertheless, it consists of a complex set of 10 analysis

scripts and 46 functions, which, without the extensive documentation that has been provided by the

author, would be challenging to reuse and reproduce the results. This makes it particularly suited to

demonstrate the effectiveness and simplicity of reproducescript.

Andersen describes an analysis pipeline from raw single-subject MEG data to group-level statistics in

source space. Each of the custom-written scripts has a specific purpose (figure 5), but multiple analysis

steps in separate functions are required for the purpose of one script (see figure 6 for the full analysis

pipeline), creating a complex hierarchy of scripts and functions.

Figure 5. The purpose of each original script, reproduced with permission from (24).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6. The full analysis pipeline (reproduced with permission from (24)) does not linearly map onto a

single custom-written script or function.

To keep the computational time and storage requirements low, we applied the full analysis pipeline to

two subjects only. The pipeline was ran with reproducescript enabled, and thus created the original

results, and also the code and intermediate data with which it should be able to reproduce the results,

had the original scripts not been available. Both the original source code from Andersen and the

standardized scripts generated by reproducescript are available on GitHub

(https://github.com/matsvanes/reproducescript). To confirm that reproducescript indeed resulted in a

reproducible analysis pipeline, the newly formed standardized script was executed, and its results were

compared qualitatively (figures) and quantitatively (data) with the original results.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Even though the original source code from Andersen is organized clearly and is accompanied by

extensive documentation, it did take some effort to get the analysis pipeline up and running. Besides

changing the relevant directories in the analysis scripts, the initial executions of the pipeline resulted in

unexpected errors (e.g. some data files were missing because they contained information that could

trace back to a specific individual; without these files, the pipeline broke). This illustrates that even the

cleanest hand-written analysis pipelines might not be easily reproducible. After all errors were resolved

(i.e. through help of the corresponding author of the original pipeline) the pipeline was executed with

reproducescript enabled, similarly to the group study in the example above (see the superscript in listing

6).

The resulting data that was produced by the original pipeline applied to the two subjects amounted to

roughly 25 GB of data (± 12 GB per subject and 1 GB for group analysis) and a similar amount in the

figures. The reason that the figures make up a lot of data is that they are saved both as .png and as .fig

files. The .png files are small because they only contain pixel values of the image, while .fig files contain

the complete data that was plotted (in compressed format), and thus these files are large.

Because reproducescript saves all intermediate data, the total amount of data was higher: 140 GB (± 64

GB per subject and 12 GB for group analysis), and 18 GB of figures. If we extrapolate these numbers to

the entire group study (e.g. 20 subjects) and save figures as png, the original pipeline would result in ±

240 GB of data, and the reproducescript version in roughly 1300 GB, or 5.4 times the disk space

requirements of the original pipeline. Note that this is an example and by no means a rule of thumb. The

amount of data produced by reproducescript will vary between pipelines and depends on the amount of

FieldTrip calls. The reproducescript pipeline will amount to more data than the original in almost all

cases, because all intermediate data is saved, which is typically not done in original analysis scripts.

The reproducescript analysis pipeline was executed without further problems and without the need for

debugging. We asserted whether this pipeline produced the same results as the original pipeline. In the

group analysis, the last analysis step comprises a statistical comparison between two conditions, using

ft_frequencystatistics and ft_sourcestatistics. The results from both pipelines were numerically identical.

Even if a FieldTrip function relies on random numbers (e.g. for the initialization of an ICA algorithm, or

for a random permutation in statistics), numerically identical numbers can be acquired: if a FieldTrip

function uses random numbers, reproducescript saves the state of the random number generator in the

standardized script. This allows the exact numerical results to be obtained from the reproducescript

pipeline. However, this is not always to be expected, especially when interactive and subjective analysis

steps are part of the analysis. For example, during preprocessing a researcher could visually select

particular trials and/or channels with artifacts and reject them from the data. However, a different

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

researcher might employ other criteria and thus remove other pieces of data as artifacts. Therefore, it is

not always expected (or desired) to get numerically identical results from the reproduced pipeline (see

Discussion).

The comparison between the original pipeline and the reproduced pipeline revealed a few more

caveats. First, only analysis steps that were conducted in the FieldTrip ecosystem can be reproduced,

since source code outside of the FieldTrip ecosystem is not tracked by reproducescript. In the current

example, Andersen used several standard MATLAB plotting functions for visualization of the results,

which were not reproduced by the reproducescript pipeline. This can especially be problematic when

these steps are the last in the pipeline and represent the outcome of the analysis. There are options to

work around this issue. For example, the user can provide extra documentation in the standardized

script, describing how the figures can be reproduced manually. The same holds for transformations of

the data outside the FieldTrip ecosystem. Instead of writing comments in the standardized script after

running the analysis pipeline, the researcher could also use ft_annotate in the original code after using a

function outside the FieldTrip ecosystem. This returns the same output data as the user has provided as

input, but allows the researcher to add comments to that data structure, which then become part of the

provenance that is stored in the data structure. Another option is to embed non-FieldTrip code into a

copy of ft_examplefunction, which contains all essential (‘boilerplate’) FieldTrip bookkeeping

functionality, and thereby wrap the original custom code in a new FieldTrip function. Both these options

require some extra time investment of the researcher. Therefore, the more the pipeline relies on

functions within the FieldTrip ecosystem, the less work to make the pipeline reproducible and

transparent.

Second, even if the pipeline exclusively uses FieldTrip functions, some FieldTrip functions evaluate

custom-written code. For example, a user can specify custom code to select trials in ft_definetrial (i.e.

cfg.trialfun). If this code were not shared, this particular analysis step could not be re-executed, but

since intermediate results are stored as well (in the example of cfg.trialfun, cfg.trl is stored), it is always

possible to skip a particular step and continue with the rest of the pipeline.

clear 1
close all 2
 3
global ft_default 4
ft_default = []; 5
ft_default.checksize = inf; 6
 7
%% Single subject analysis 8
datainfo; 9
for do_subject = 1:numel(all_subjects) 10
 11
 %%% 12
 % enable reproducescript 13
 ft_default.reproducescript = [home_dir, sprintf('reproduce%02d/', do_subject)]; 14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

 %%% 15
 16
 % Create all relevant directories where all data and all figures will be saved 17
 create_MEG_BIDS_data_structure 18
 19
 % Go from raw MEG data to a time-frequency representation 20
 sensor_space_analysis 21
 22
 % Go from raw MRI data to a volume conductor and a forward model 23
 mr_preprocessing 24
 25
 % Extract fourier transforms and do beamformer source reconstructions 26
 source_space_analysis 27
 28
 %%%%%%%%%%%% 29
 % plotting % 30
 %%%%%%%%%%%% 31
 % Plot all steps in the sensor space analysis 32
 plot_sensor_space 33
 34
 % Plot all steps in the MR processing 35
 plot_processed_mr 36
 37
 % Plot all steps in the source space analysis 38
 plot_source_space 39
 40
 %%% 41
 % disable reproducescript 42
 ft_default.reproducescript = []; 43
 %%% 44
end 45
 46
%% Group analysis 47
 48
%%% 49
% enable reproducescript 50
ft_default.reproducescript = [home_dir, 'reproduce_group']; 51
%%% 52
 53
% Do grand averages across subjects for both sensor and source spaces 54
grand_averages 55
 56
% Do statistics on time-frequency representations and beamformer source reconstructions 57
statistics 58
 59
% Plot grand averages in both the sensor and source spaces, with and without statistical masking 60
plot_grand_averages 61
 62
%%% 63
% disable reproducescript 64
ft_default.reproducescript = []; 65
%%%66

Listing 6. Master script for running the pipeline of Andersen (24) with reproducescript enabled. This

master script was not explicitly part of the source code shared by Andersen, but was created based on

his documentation.

Discussion

Neuroimaging research is relying more and more on complex computational analysis pipelines.

Furthermore, there are strong motivations to improve the reproducibility of neuroimaging results.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Published results can in part be verified by having access to the details and being able to reproduce the

analysis pipeline that produced them.

We presented the design and implementation of new functionality that can help individual researchers

to generate an analysis pipeline that is generic, reproducible, and can be shared easily, while requiring

only minimal effort on the researcher’s part. The functionality, termed reproducescript, has been

released (May 2020) as part of the FieldTrip toolbox. It generates a standardized executable script from

the original researcher’s source code, which can be complex, complicated, and/or of variable quality. By

providing this tool, we hope to encourage researchers to share their analysis pipelines and

corresponding data more commonly.

We verified the effectiveness of reproducescript by applying it to a published analysis pipeline (24). The

example we applied it to is already a good example of a reproducible analysis pipeline, but contains a

hierarchy of custom written scripts and functions on top of the FieldTrip toolbox. We re-executed the

original published pipeline with reproducescript enabled, and found that the generated, standard-

format, code was able to reproduce the original results faithfully.

reproducescript reproduces analysis pipelines efficiently and transparently

The reproducible analysis pipeline was easy to execute and did not require debugging. The results of the

reproduced pipeline were numerically identical to those of the original pipeline, which is a

demonstration of the robustness of reproducescript. This is not to say that numerical identity should

always be the goal of reproduction efforts. Instead of asking “did this code with these exact parameters

return these exact numerical results”, it sometimes is more insightful to show that an analysis pipeline

will return the same qualitative results, independent of arbitrary choices in preprocessing and the state

of random number generators. With reproducescript, both are possible. If numerical reproduction is

required, choices in interactive analysis steps can be based on the researcher’s documentation if

provided, obtained from the input- and output- files of the interactive step. Otherwise, the interactive

step can simply be skipped (i.e. the input- and output- data that are generated by the first run of the

original pipeline are trivially identical to the original results). If only qualitative reproduction is desired,

the state of the random number generator can be removed from the reproduced script (i.e.

cfg.randomseed) and the researcher can run the entire pipeline.

In addition to providing quantitative or qualitative reproducibility for an analysis pipeline,

reproducescript ensures that all analysis steps remain transparent: every individual analysis step is

interpretable, and even though the standardized script might become large, the complete pipeline can

easily be explored using a standard text editor or the visualization tools on GitHub, or visualized with

ft_analysispipeline.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Limitations of reproducescript

One drawback is that the presented method is limited to analysis steps that rely on functions within the

FieldTrip ecosystem. Manual source code, or code that uses default MATLAB functions, are not tracked

by reproducescript and those steps will therefore not be represented in the standardized script. This

means that the transparency of those particular analysis steps is limited, and it is up to the researcher to

provide documentation about what transformations of the data are applied in those steps. If a large part

of the analysis pipeline does not use FieldTrip functionality, the benefits of reproducescript will be

limited. Therefore, this functionality is mostly targeted at researchers who do not use a lot of custom

written code or external toolboxes, with the important exception that custom control structures and

functions wrapping FieldTrip functionality are tracked. As in the real-life example we presented here,

reproducescript will faithfully track any custom functions, loops, etc. written by the researcher that

internally make use of FieldTrip functionality; and, in fact, we would recommend researchers to use

such control structures when building their analysis pipelines. Researchers who tend to use large

amounts of custom written code to do actual analysis work - as opposed to merely structuring the flow

of the code - are probably also those with more expertise in writing and documenting source code, and

are therefore already better equipped to produce a reproducible analysis pipeline or adapt their code

such that it becomes part of FieldTrip’s provenance (e.g. by building it into ft_examplefunction).

Conclusion

In conclusion, we believe to have provided researchers with a tool to easily share complete analysis

pipelines that use the FieldTrip toolbox.

This tool is not meant to replace already existing solutions, like pipeline systems, version control

systems and literate programming, which we think have great value. However, in certain cases, these

tools are limited in their functionality (e.g. the rigidity of pipeline systems) or they require a lot of time

investment (learning to use version control systems or writing analysis code in a literate programming

style). While reproducescript is limited in its use for those researchers whose analysis pipelines rely

largely on custom written algorithms or external toolboxes, it can be of great use for the large group of

researchers who mostly or even exclusively use FieldTrip. reproducescript can be used flexibly, and it can

reproduce results both quantitatively and qualitatively, all the while keeping the pipeline transparent

and intuitive. All of this can be done without much effort by either the researcher providing the pipeline

or the researcher executing it. By making it easier for researchers to share their reproducible analysis

pipeline, we hope this functionality will help to make science more robust and transparent.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Data and code Availability

reproducescript is part of the open source FieldTrip toolbox, which can be downloaded from

https://www.fieldtriptoolbox.org. The raw data for example 1 and 2, and the output data from all

examples can be accessed via the Donders Repository (https://doi.org/10.34973/21pa-dg13). The raw

data from example 3 was described by Andersen (24) and can be accessed at

https://doi.org/10.5281/zenodo.1134776. All MATLAB scripts for the analysis of the data and

reproduction of the results are available at https://github.com/matsvanes/reproducescript.

Author Contributions

Mats W.J. van Es

Roles: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project

Administration, Resources, Software, Validation, Visualization, Writing – Original Draft Preparation,

Writing – Review & Editing

Eelke Spaak

Roles: Conceptualization, Data Curation, Funding Acquisition, Methodology, Resources, Software,

Writing – Review & Editing

Jan-Mathijs Schoffelen

Roles: Conceptualization, Data Curation, Funding Acquisition, Methodology, Resources, Software,

Writing – Review & Editing

Robert Oostenveld

Roles: Conceptualization, Data Curation, Funding Acquisition, Methodology, Resources, Software,

Supervision, Writing – Review & Editing

Competing interests

There are no competing interests to be disclosed

Funding Information

This work was supported by The Netherlands Organisation for Scientific Research, NWO Vidi: 864.14.011

awarded to Jan-Mathijs Schoffelen, NWO Veni: 016.Veni.198.065 awarded to Eelke Spaak. The funding

source had no role in the realization of this manuscript.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

The authors would like to thank Lau Andersen for publishing his original data and analysis scripts in (24)

and his help in executing the pipeline.

Supplementary Material

Appendix Ia: Group study – single subject analysis

Appendix Ia lists the (hand-written) code used in the single-subject analysis of example 2 in the main

text.

function doSingleSubjectAnalysis(subj) 1
 2
% the details of each subject are in separate files 3
% details_Subject01.m 4
% details_Subject02.m 5
% details_Subject03.m 6
% details_Subject04.m 7
 8
fprintf('evaluating single subject analysis for %s\n', subj); 9
eval(['details_' subj]); 10
 11
% this is for artifact detection 12
interactive = false; 13
 14
%% 15
 16
cfg = []; 17
cfg.dataset = fullfile(datadir, filename); 18
cfg.trialfun = 'ft_trialfun_general'; 19
cfg.trialdef.eventtype = 'backpanel trigger'; 20
cfg.trialdef.eventvalue = [triggerFIC triggerIC triggerFC]; 21
cfg.trialdef.prestim = 1; 22
cfg.trialdef.poststim = 2; 23
cfg = ft_definetrial(cfg); 24
 25
% the EOG channel has a different name in the different datasets 26
cfg.channel = {'MEG' eogchannel}; 27
cfg.continuous = 'yes'; 28
data = ft_preprocessing(cfg); 29
 30
%% 31
 32
if interactive 33
 % visually identify the artifacts 34
 cfg = []; 35
 cfg.channel = eogchannel; 36
 cfg.method = 'channel'; 37
 dummy1 = ft_rejectvisual(cfg, data); 38
 39
 cfg = []; 40
 cfg.channel = 'MEG'; 41
 cfg.method = 'summary'; 42
 dummy2 = ft_rejectvisual(cfg, data); 43
 44
 % combine the artifacts that have been detected 45
 artifact = [46
 dummy1.cfg.artfctdef.channel.artifact 47
 dummy2.cfg.artfctdef.summary.artifact 48
]; 49
 50
 % print them and copy them to the subject details file 51
 disp(artifact); 52
 53

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

 % use the MATLAB debugger to wait on this line 54
 disp('please copy these artifacts to the subject details file'); 55
 keyboard 56
end 57
 58
% remove the artifacts that were previously detected 59
cfg = []; 60
cfg.artfctdef.visual.artifact = artifact; 61
data_clean = ft_rejectartifact(cfg, data); 62
 63
%% 64
 65
cfg = []; 66
cfg.trials = data_clean.trialinfo==triggerFIC; 67
avgFIC = ft_timelockanalysis(cfg, data_clean); 68
 69
cfg.trials = data_clean.trialinfo==triggerFC; 70
avgFC = ft_timelockanalysis(cfg, data_clean); 71
 72
cfg.trials = data_clean.trialinfo==triggerIC; 73
avgIC = ft_timelockanalysis(cfg, data_clean); 74
 75
%% 76
 77
cfg = []; 78
cfg.showlabels = 'no'; 79
cfg.fontsize = 6; 80
cfg.layout = 'CTF151_helmet.mat'; 81
cfg.baseline = [-0.2 0]; 82
cfg.xlim = [-0.2 1.0]; 83
cfg.ylim = [-3e-13 3e-13]; 84
ft_multiplotER(cfg, avgFC, avgIC, avgFIC); 85
 86
%% 87
 88
cfg = []; 89
cfg.feedback = 'yes'; 90
cfg.method = 'template'; 91
cfg.neighbours = ft_prepare_neighbours(cfg, avgFIC); 92
cfg.planarmethod = 'sincos'; 93
avgFICplanar = ft_megplanar(cfg, avgFIC); 94
avgFCplanar = ft_megplanar(cfg, avgFC); 95
avgICplanar = ft_megplanar(cfg, avgIC); 96
 97
%% 98
 99
cfg = []; 100
avgFICplanarComb = ft_combineplanar(cfg, avgFICplanar); 101
avgFCplanarComb = ft_combineplanar(cfg, avgFCplanar); 102
avgICplanarComb = ft_combineplanar(cfg, avgICplanar); 103
 104
%% 105
 106
cfg = []; 107
cfg.xlim = [0.3 0.5]; 108
cfg.zlim = 'maxmin'; 109
cfg.colorbar = 'yes'; 110
cfg.layout = 'CTF151_helmet.mat'; 111
subplot(2,3,1); ft_topoplotER(cfg, avgFIC) 112
subplot(2,3,2); ft_topoplotER(cfg, avgFC) 113
subplot(2,3,3); ft_topoplotER(cfg, avgIC) 114
 115
cfg.zlim = 'maxabs'; 116
cfg.layout = 'CTF151_helmet.mat'; 117
subplot(2,3,4); ft_topoplotER(cfg, avgFICplanarComb) 118
subplot(2,3,5); ft_topoplotER(cfg, avgFCplanarComb) 119
subplot(2,3,6); ft_topoplotER(cfg, avgICplanarComb) 120
 121
%% 122
 123
% save the results to disk 124
outputdir = ['result_' subj]; 125
mkdir(outputdir) 126

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

save(fullfile(outputdir, 'avgFIC'), 'avgFIC'); 127
save(fullfile(outputdir, 'avgFC'), 'avgFC'); 128
save(fullfile(outputdir, 'avgIC'), 'avgIC'); 129
save(fullfile(outputdir, 'avgFICplanarComb'), 'avgFICplanarComb'); 130
save(fullfile(outputdir, 'avgFCplanarComb'), 'avgFCplanarComb'); 131
save(fullfile(outputdir, 'avgICplanarComb'), 'avgICplanarComb');132

Appendix Ib: Group study – single subject analysis (reproducescript)

Appendix Ib lists the code for the single-subject analysis produced by reproducescript after running

example 2 from the main text . It is the reproducescript counterpart of the source code in Appendix Ia,

executed for Subject01.

 1
%% 2
 3
cfg = []; 4
cfg.dataset = '../rawdata/Subject01.ds'; 5
cfg.trialfun = 'ft_trialfun_general'; 6
cfg.trialdef.eventtype = 'backpanel trigger'; 7
cfg.trialdef.eventvalue = [3 5 9]; 8
cfg.trialdef.prestim = 1; 9
cfg.trialdef.poststim = 2; 10
cfg.tracktimeinfo = 'yes'; 11
cfg.trackmeminfo = 'yes'; 12
cfg = ft_definetrial(cfg); 13
 14
%% 15
 16
cfg = []; 17
cfg.dataset = '../rawdata/Subject01.ds'; 18
cfg.trialfun = 'ft_trialfun_general'; 19
cfg.trialdef.eventtype = 'backpanel trigger'; 20
cfg.trialdef.eventvalue = [3 5 9]; 21
cfg.trialdef.prestim = 1; 22
cfg.trialdef.poststim = 2; 23
cfg.tracktimeinfo = 'yes'; 24
cfg.trackmeminfo = 'yes'; 25
cfg.datafile = '../rawdata/Subject01.ds/Subject01.meg4'; 26
cfg.headerfile = '../rawdata/Subject01.ds/Subject01.res4'; 27
cfg.dataformat = 'ctf_meg4'; 28
cfg.headerformat = 'ctf_res4'; 29
cfg.representation = 'numeric'; 30
cfg.trl = 'reproduce_Subject01/20210112T113604_ft_preprocessing_largecfginput_trl.mat'; 31
cfg.outputfile = { 'reproduce_Subject01/20210112T113604_ft_preprocessing_output_data.mat' }; 32
cfg.channel = {'MEG', 'EOG'}; 33
cfg.continuous = 'yes'; 34
ft_preprocessing(cfg); 35
 36
%% 37
 38
cfg = []; 39
cfg.artfctdef.visual.artifact = [8101 9000; 40
68401 69300; 41
99001 99900; 42
... 43
228601 229500]; 44
cfg.tracktimeinfo = 'yes'; 45
cfg.trackmeminfo = 'yes'; 46
cfg.inputfile = { 'reproduce_Subject01/20210112T113604_ft_preprocessing_output_data.mat' }; 47
cfg.outputfile = { 'reproduce_Subject01/20210112T113611_ft_rejectartifact_output_data.mat' }; 48
ft_rejectartifact(cfg); 49
 50
%% 51
 52
cfg = []; 53
cfg.trials = logical([true false ... false]); 54

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

cfg.tracktimeinfo = 'yes'; 55
cfg.trackmeminfo = 'yes'; 56
cfg.inputfile = { 'reproduce_Subject01/20210112T113611_ft_rejectartifact_output_data.mat' }; 57
cfg.outputfile = { 'reproduce_Subject01/20210112T113616_ft_timelockanalysis_output_timelock.mat' }; 58
ft_timelockanalysis(cfg); 59
 60
%% 61
 62
cfg = []; 63
cfg.trials = logical([false false ... false]); 64
cfg.tracktimeinfo = 'yes'; 65
cfg.trackmeminfo = 'yes'; 66
cfg.inputfile = { 'reproduce_Subject01/20210112T113611_ft_rejectartifact_output_data.mat' }; 67
cfg.outputfile = { 'reproduce_Subject01/20210112T113621_ft_timelockanalysis_output_timelock.mat' }; 68
ft_timelockanalysis(cfg); 69
 70
%% 71
 72
cfg = []; 73
cfg.trials = logical([false true ... true]); 74
cfg.tracktimeinfo = 'yes'; 75
cfg.trackmeminfo = 'yes'; 76
cfg.inputfile = { 'reproduce_Subject01/20210112T113611_ft_rejectartifact_output_data.mat' }; 77
cfg.outputfile = { 'reproduce_Subject01/20210112T113625_ft_timelockanalysis_output_timelock.mat' }; 78
ft_timelockanalysis(cfg); 79
 80
%% 81
 82
cfg = []; 83
cfg.showlabels = 'no'; 84
cfg.fontsize = 6; 85
cfg.layout = 'CTF151_helmet.mat'; 86
cfg.baseline = [-0.2 0]; 87
cfg.xlim = [-0.2 1]; 88
cfg.ylim = [-3e-13 3e-13]; 89
cfg.tracktimeinfo = 'yes'; 90
cfg.trackmeminfo = 'yes'; 91
cfg.inputfile = { 92
'reproduce_Subject01/20210112T113621_ft_timelockanalysis_output_timelock.mat', 93
'reproduce_Subject01/20210112T113625_ft_timelockanalysis_output_timelock.mat', 94
'reproduce_Subject01/20210112T113616_ft_timelockanalysis_output_timelock.mat' 95
}; 96
cfg.outputfile = 'reproduce_Subject01/20210112T113634_ft_multiplotER_output'; 97
figure; 98
ft_multiplotER(cfg); 99
 100
%% 101
 102
cfg = []; 103
cfg.feedback = 'yes'; 104
cfg.method = 'template'; 105
cfg.tracktimeinfo = 'yes'; 106
cfg.trackmeminfo = 'yes'; 107
cfg.inputfile = { 'reproduce_Subject01/20210112T113616_ft_timelockanalysis_output_timelock.mat' }; 108
cfg.outputfile = { 'reproduce_Subject01/20210112T113643_ft_prepare_neighbours_output_neighbours.mat' }; 109
ft_prepare_neighbours(cfg); 110
 111
%% 112
 113
cfg = []; 114
cfg.feedback = 'yes'; 115
cfg.method = 'template'; 116
cfg.neighbours = 'reproduce_Subject01/20210112T113643_ft_megplanar_largecfginput_neighbours.mat'; 117
cfg.planarmethod = 'sincos'; 118
cfg.tracktimeinfo = 'yes'; 119
cfg.trackmeminfo = 'yes'; 120
cfg.inputfile = { 'reproduce_Subject01/20210112T113616_ft_timelockanalysis_output_timelock.mat' }; 121
cfg.outputfile = { 'reproduce_Subject01/20210112T113647_ft_megplanar_output_data.mat' }; 122
ft_megplanar(cfg); 123
 124
%% 125
 126
cfg = []; 127

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

cfg.feedback = 'yes'; 128
cfg.method = 'template'; 129
cfg.neighbours = 'reproduce_Subject01/20210112T113643_ft_megplanar_largecfginput_neighbours.mat'; 130
cfg.planarmethod = 'sincos'; 131
cfg.tracktimeinfo = 'yes'; 132
cfg.trackmeminfo = 'yes'; 133
cfg.inputfile = { 'reproduce_Subject01/20210112T113621_ft_timelockanalysis_output_timelock.mat' }; 134
cfg.outputfile = { 'reproduce_Subject01/20210112T113650_ft_megplanar_output_data.mat' }; 135
ft_megplanar(cfg); 136
 137
%% 138
 139
cfg = []; 140
cfg.feedback = 'yes'; 141
cfg.method = 'template'; 142
cfg.neighbours = 'reproduce_Subject01/20210112T113643_ft_megplanar_largecfginput_neighbours.mat'; 143
cfg.planarmethod = 'sincos'; 144
cfg.tracktimeinfo = 'yes'; 145
cfg.trackmeminfo = 'yes'; 146
cfg.inputfile = { 'reproduce_Subject01/20210112T113625_ft_timelockanalysis_output_timelock.mat' }; 147
cfg.outputfile = { 'reproduce_Subject01/20210112T113653_ft_megplanar_output_data.mat' }; 148
ft_megplanar(cfg); 149
 150
%% 151
 152
cfg = []; 153
cfg.tracktimeinfo = 'yes'; 154
cfg.trackmeminfo = 'yes'; 155
cfg.inputfile = { 'reproduce_Subject01/20210112T113647_ft_megplanar_output_data.mat' }; 156
cfg.outputfile = { 'reproduce_Subject01/20210112T113657_ft_combineplanar_output_data.mat' }; 157
ft_combineplanar(cfg); 158
 159
%% 160
 161
cfg = []; 162
cfg.tracktimeinfo = 'yes'; 163
cfg.trackmeminfo = 'yes'; 164
cfg.inputfile = { 'reproduce_Subject01/20210112T113650_ft_megplanar_output_data.mat' }; 165
cfg.outputfile = { 'reproduce_Subject01/20210112T113701_ft_combineplanar_output_data.mat' }; 166
ft_combineplanar(cfg); 167
 168
%% 169
 170
cfg = []; 171
cfg.tracktimeinfo = 'yes'; 172
cfg.trackmeminfo = 'yes'; 173
cfg.inputfile = { 'reproduce_Subject01/20210112T113653_ft_megplanar_output_data.mat' }; 174
cfg.outputfile = { 'reproduce_Subject01/20210112T113704_ft_combineplanar_output_data.mat' }; 175
ft_combineplanar(cfg); 176
 177
%% 178
 179
cfg = []; 180
cfg.xlim = [0.3 0.5]; 181
cfg.zlim = 'maxmin'; 182
cfg.colorbar = 'yes'; 183
cfg.layout = 'CTF151_helmet.mat'; 184
cfg.tracktimeinfo = 'yes'; 185
cfg.trackmeminfo = 'yes'; 186
cfg.inputfile = { 'reproduce_Subject01/20210112T113616_ft_timelockanalysis_output_timelock.mat' }; 187
cfg.outputfile = 'reproduce_Subject01/20210112T113708_ft_topoplotER_output'; 188
figure; 189
ft_topoplotER(cfg); 190
 191
%% 192
 193
cfg = []; 194
cfg.xlim = [0.3 0.5]; 195
cfg.zlim = 'maxmin'; 196
cfg.colorbar = 'yes'; 197
cfg.layout = 'CTF151_helmet.mat'; 198
cfg.tracktimeinfo = 'yes'; 199
cfg.trackmeminfo = 'yes'; 200

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

cfg.inputfile = { 'reproduce_Subject01/20210112T113621_ft_timelockanalysis_output_timelock.mat' }; 201
cfg.outputfile = 'reproduce_Subject01/20210112T113712_ft_topoplotER_output'; 202
figure; 203
ft_topoplotER(cfg); 204
 205
%% 206
 207
cfg = []; 208
cfg.xlim = [0.3 0.5]; 209
cfg.zlim = 'maxmin'; 210
cfg.colorbar = 'yes'; 211
cfg.layout = 'CTF151_helmet.mat'; 212
cfg.tracktimeinfo = 'yes'; 213
cfg.trackmeminfo = 'yes'; 214
cfg.inputfile = { 'reproduce_Subject01/20210112T113625_ft_timelockanalysis_output_timelock.mat' }; 215
cfg.outputfile = 'reproduce_Subject01/20210112T113716_ft_topoplotER_output'; 216
figure; 217
ft_topoplotER(cfg); 218
 219
%% 220
 221
cfg = []; 222
cfg.xlim = [0.3 0.5]; 223
cfg.zlim = 'maxabs'; 224
cfg.colorbar = 'yes'; 225
cfg.layout = 'CTF151_helmet.mat'; 226
cfg.tracktimeinfo = 'yes'; 227
cfg.trackmeminfo = 'yes'; 228
cfg.inputfile = { 'reproduce_Subject01/20210112T113657_ft_combineplanar_output_data.mat' }; 229
cfg.outputfile = 'reproduce_Subject01/20210112T113721_ft_topoplotER_output'; 230
figure; 231
ft_topoplotER(cfg); 232
 233
%% 234
 235
cfg = []; 236
cfg.xlim = [0.3 0.5]; 237
cfg.zlim = 'maxabs'; 238
cfg.colorbar = 'yes'; 239
cfg.layout = 'CTF151_helmet.mat'; 240
cfg.tracktimeinfo = 'yes'; 241
cfg.trackmeminfo = 'yes'; 242
cfg.inputfile = { 'reproduce_Subject01/20210112T113701_ft_combineplanar_output_data.mat' }; 243
cfg.outputfile = 'reproduce_Subject01/20210112T113726_ft_topoplotER_output'; 244
figure; 245
ft_topoplotER(cfg); 246
 247
%% 248
 249
cfg = []; 250
cfg.xlim = [0.3 0.5]; 251
cfg.zlim = 'maxabs'; 252
cfg.colorbar = 'yes'; 253
cfg.layout = 'CTF151_helmet.mat'; 254
cfg.tracktimeinfo = 'yes'; 255
cfg.trackmeminfo = 'yes'; 256
cfg.inputfile = { 'reproduce_Subject01/20210112T113704_ft_combineplanar_output_data.mat' }; 257
cfg.outputfile = 'reproduce_Subject01/20210112T113731_ft_topoplotER_output'; 258
figure; 259
ft_topoplotER(cfg);260

Appendix IIa: Group study – group analysis

Appendix IIa lists the (hand-written) code used in the group analysis of example 2 in the main text.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

function doGroupAnalysis(allsubj) 1
 2
avgFIC = cell(size(allsubj)); 3
avgFC = cell(size(allsubj)); 4
avgIC = cell(size(allsubj)); 5
 6
% load the results from disk 7
for i=1:numel(allsubj) 8
 subj = allsubj{i}; 9
 fprintf('loading data for subject %s\n', subj); 10
 11
 inputdir = ['result_' subj]; 12
 tmp = load(fullfile(inputdir, 'avgFIC')); avgFIC{i} = tmp.avgFIC; 13
 tmp = load(fullfile(inputdir, 'avgFC')); avgFC{i} = tmp.avgFC; 14
 tmp = load(fullfile(inputdir, 'avgIC')); avgIC{i} = tmp.avgIC; 15
 clear tmp 16
end 17
 18
%% 19
 20
cfg = []; 21
cfg.showlabels = 'no'; 22
cfg.fontsize = 6; 23
cfg.layout = 'CTF151_helmet.mat'; 24
cfg.baseline = [-0.2 0]; 25
cfg.xlim = [-0.2 1.0]; 26
cfg.ylim = [-3e-13 3e-13]; 27
figure 28
ft_multiplotER(cfg, avgFIC{:}); 29
title('Fully incongruent condition'); 30
 31
figure 32
ft_multiplotER(cfg, avgFC{:}); 33
title('Fully congruent condition'); 34
 35
figure 36
ft_multiplotER(cfg, avgIC{:}); 37
title('Initially congruent condition'); 38
 39
%% 40
 41
avgFICvsFC = cell(size(allsubj)); 42
for i=1:numel(allsubj) 43
 cfg = []; 44
 cfg.parameter = 'avg'; 45
 cfg.operation = 'x1-x2'; 46
 avgFICvsFC{i} = ft_math(cfg, avgFIC{i}, avgFC{i}); 47
end 48
 49
cfg = []; 50
cfg.showlabels = 'no'; 51
cfg.fontsize = 6; 52
cfg.layout = 'CTF151_helmet.mat'; 53
cfg.baseline = [-0.2 0]; 54
cfg.xlim = [-0.2 1.0]; 55
cfg.ylim = [-3e-13 3e-13]; 56
ft_multiplotER(cfg, avgFICvsFC{:}); 57
title('FIC minus FC'); 58
 59
%% 60
 61
% let's make a manual change to the data that is not caputured in the provenance 62
for i=1:numel(allsubj) 63
 avgFIC{i}.avg = avgFIC{i}.avg * 1e15; % convert from T to fT 64
 avgFC{i}.avg = avgFC{i}.avg * 1e15; % convert from T to fT 65
 avgIC{i}.avg = avgIC{i}.avg * 1e15; % convert from T to fT 66
end 67
 68
%% 69
 70
cfg = []; 71
grandavgFIC = ft_timelockgrandaverage(cfg, avgFIC{:}); 72

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

grandavgFC = ft_timelockgrandaverage(cfg, avgFC{:}); 73
grandavgIC = ft_timelockgrandaverage(cfg, avgIC{:}); 74
 75
%% 76
 77
% save the results to disk 78
outputdir = 'result_Group'; 79
mkdir(outputdir) 80
save(fullfile(outputdir, 'grandavgFIC'), 'grandavgFIC'); 81
save(fullfile(outputdir, 'grandavgFC'), 'grandavgFC'); 82
save(fullfile(outputdir, 'grandavgIC'), 'grandavgIC');83

Appendix IIb: Group study – group analysis (reproducescript)

Appendix IIb lists the code for the group analysis produced by reproducescript after running example 2

from the main text. It is the reproducescript counterpart of the source code Appendix IIa.

 1
%% 2
 3
% a new input variable is entering the pipeline here: 20210112T114236_ft_multiplotER_input_varargin_1.mat 4
% a new input variable is entering the pipeline here: 20210112T114236_ft_multiplotER_input_varargin_2.mat 5
% a new input variable is entering the pipeline here: 20210112T114236_ft_multiplotER_input_varargin_3.mat 6
% a new input variable is entering the pipeline here: 20210112T114236_ft_multiplotER_input_varargin_4.mat 7
 8
cfg = []; 9
cfg.showlabels = 'no'; 10
cfg.fontsize = 6; 11
cfg.layout = 'CTF151_helmet.mat'; 12
cfg.baseline = [-0.2 0]; 13
cfg.xlim = [-0.2 1]; 14
cfg.ylim = [-3e-13 3e-13]; 15
cfg.tracktimeinfo = 'yes'; 16
cfg.trackmeminfo = 'yes'; 17
cfg.inputfile = { 18
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_1.mat', 19
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_2.mat', 20
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_3.mat', 21
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_4.mat' 22
}; 23
cfg.outputfile = 'reproduce_Group/20210112T114246_ft_multiplotER_output'; 24
figure; 25
ft_multiplotER(cfg); 26
 27
%% 28
 29
% a new input variable is entering the pipeline here: 30
20210112T114253_ft_multiplotER_input_varargin_1.mat 31
% a new input variable is entering the pipeline here: 32
20210112T114253_ft_multiplotER_input_varargin_2.mat 33
% a new input variable is entering the pipeline here: 34
20210112T114253_ft_multiplotER_input_varargin_3.mat 35
% a new input variable is entering the pipeline here: 36
20210112T114253_ft_multiplotER_input_varargin_4.mat 37
 38
cfg = []; 39
cfg.showlabels = 'no'; 40
cfg.fontsize = 6; 41
cfg.layout = 'CTF151_helmet.mat'; 42
cfg.baseline = [-0.2 0]; 43
cfg.xlim = [-0.2 1]; 44
cfg.ylim = [-3e-13 3e-13]; 45
cfg.tracktimeinfo = 'yes'; 46
cfg.trackmeminfo = 'yes'; 47
cfg.inputfile = { 48
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_1.mat', 49

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_2.mat', 50
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_3.mat', 51
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_4.mat' 52
}; 53
cfg.outputfile = 'reproduce_Group/20210112T114303_ft_multiplotER_output'; 54
figure; 55
ft_multiplotER(cfg); 56
 57
%% 58
 59
% a new input variable is entering the pipeline here: 60
20210112T114310_ft_multiplotER_input_varargin_1.mat 61
% a new input variable is entering the pipeline here: 62
20210112T114310_ft_multiplotER_input_varargin_2.mat 63
% a new input variable is entering the pipeline here: 64
20210112T114310_ft_multiplotER_input_varargin_3.mat 65
% a new input variable is entering the pipeline here: 66
20210112T114310_ft_multiplotER_input_varargin_4.mat 67
 68
cfg = []; 69
cfg.showlabels = 'no'; 70
cfg.fontsize = 6; 71
cfg.layout = 'CTF151_helmet.mat'; 72
cfg.baseline = [-0.2 0]; 73
cfg.xlim = [-0.2 1]; 74
cfg.ylim = [-3e-13 3e-13]; 75
cfg.tracktimeinfo = 'yes'; 76
cfg.trackmeminfo = 'yes'; 77
cfg.inputfile = { 78
'reproduce_Group/20210112T114310_ft_multiplotER_input_varargin_1.mat', 79
'reproduce_Group/20210112T114310_ft_multiplotER_input_varargin_2.mat', 80
'reproduce_Group/20210112T114310_ft_multiplotER_input_varargin_3.mat', 81
'reproduce_Group/20210112T114310_ft_multiplotER_input_varargin_4.mat' 82
}; 83
cfg.outputfile = 'reproduce_Group/20210112T114321_ft_multiplotER_output'; 84
figure; 85
ft_multiplotER(cfg); 86
 87
%% 88
 89
cfg = []; 90
cfg.parameter = 'avg'; 91
cfg.operation = 'x1-x2'; 92
cfg.tracktimeinfo = 'yes'; 93
cfg.trackmeminfo = 'yes'; 94
cfg.inputfile = { 95
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_1.mat', 96
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_1.mat' 97
}; 98
cfg.outputfile = { 'reproduce_Group/20210112T114330_ft_math_output_data.mat' }; 99
ft_math(cfg); 100
 101
%% 102
 103
cfg = []; 104
cfg.parameter = 'avg'; 105
cfg.operation = 'x1-x2'; 106
cfg.tracktimeinfo = 'yes'; 107
cfg.trackmeminfo = 'yes'; 108
cfg.inputfile = { 109
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_2.mat', 110
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_2.mat' 111
}; 112
cfg.outputfile = { 'reproduce_Group/20210112T114333_ft_math_output_data.mat' }; 113
ft_math(cfg); 114
 115
%% 116
 117
cfg = []; 118
cfg.parameter = 'avg'; 119
cfg.operation = 'x1-x2'; 120
cfg.tracktimeinfo = 'yes'; 121
cfg.trackmeminfo = 'yes'; 122

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

cfg.inputfile = { 123
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_3.mat', 124
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_3.mat' 125
}; 126
cfg.outputfile = { 'reproduce_Group/20210112T114337_ft_math_output_data.mat' }; 127
ft_math(cfg); 128
 129
%% 130
 131
cfg = []; 132
cfg.parameter = 'avg'; 133
cfg.operation = 'x1-x2'; 134
cfg.tracktimeinfo = 'yes'; 135
cfg.trackmeminfo = 'yes'; 136
cfg.inputfile = { 137
'reproduce_Group/20210112T114236_ft_multiplotER_input_varargin_4.mat', 138
'reproduce_Group/20210112T114253_ft_multiplotER_input_varargin_4.mat' 139
}; 140
cfg.outputfile = { 'reproduce_Group/20210112T114340_ft_math_output_data.mat' }; 141
ft_math(cfg); 142
 143
%% 144
 145
cfg = []; 146
cfg.showlabels = 'no'; 147
cfg.fontsize = 6; 148
cfg.layout = 'CTF151_helmet.mat'; 149
cfg.baseline = [-0.2 0]; 150
cfg.xlim = [-0.2 1]; 151
cfg.ylim = [-3e-13 3e-13]; 152
cfg.tracktimeinfo = 'yes'; 153
cfg.trackmeminfo = 'yes'; 154
cfg.inputfile = { 155
'reproduce_Group/20210112T114330_ft_math_output_data.mat', 156
'reproduce_Group/20210112T114333_ft_math_output_data.mat', 157
'reproduce_Group/20210112T114337_ft_math_output_data.mat', 158
'reproduce_Group/20210112T114340_ft_math_output_data.mat' 159
}; 160
cfg.outputfile = 'reproduce_Group/20210112T114351_ft_multiplotER_output'; 161
figure; 162
ft_multiplotER(cfg); 163
 164
%% 165
 166
% a new input variable is entering the pipeline here: 20210112T114358_ft_timelockgrandaverage_input_varargin_1.mat 167
% a new input variable is entering the pipeline here: 20210112T114358_ft_timelockgrandaverage_input_varargin_2.mat 168
% a new input variable is entering the pipeline here: 20210112T114358_ft_timelockgrandaverage_input_varargin_3.mat 169
% a new input variable is entering the pipeline here: 20210112T114358_ft_timelockgrandaverage_input_varargin_4.mat 170
 171
cfg = []; 172
cfg.tracktimeinfo = 'yes'; 173
cfg.trackmeminfo = 'yes'; 174
cfg.inputfile = { 175
'reproduce_Group/20210112T114358_ft_timelockgrandaverage_input_varargin_1.mat', 176
'reproduce_Group/20210112T114358_ft_timelockgrandaverage_input_varargin_2.mat', 177
'reproduce_Group/20210112T114358_ft_timelockgrandaverage_input_varargin_3.mat', 178
'reproduce_Group/20210112T114358_ft_timelockgrandaverage_input_varargin_4.mat' 179
}; 180
cfg.outputfile = { 'reproduce_Group/20210112T114403_ft_timelockgrandaverage_output_grandavg.mat' }; 181
ft_timelockgrandaverage(cfg); 182
 183
%% 184
 185
% a new input variable is entering the pipeline here: 20210112T114404_ft_timelockgrandaverage_input_varargin_1.mat 186
% a new input variable is entering the pipeline here: 20210112T114404_ft_timelockgrandaverage_input_varargin_2.mat 187
% a new input variable is entering the pipeline here: 20210112T114404_ft_timelockgrandaverage_input_varargin_3.mat 188
% a new input variable is entering the pipeline here: 20210112T114404_ft_timelockgrandaverage_input_varargin_4.mat 189
 190
cfg = []; 191
cfg.tracktimeinfo = 'yes'; 192
cfg.trackmeminfo = 'yes'; 193
cfg.inputfile = { 194
'reproduce_Group/20210112T114404_ft_timelockgrandaverage_input_varargin_1.mat', 195
'reproduce_Group/20210112T114404_ft_timelockgrandaverage_input_varargin_2.mat', 196

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

'reproduce_Group/20210112T114404_ft_timelockgrandaverage_input_varargin_3.mat', 197
'reproduce_Group/20210112T114404_ft_timelockgrandaverage_input_varargin_4.mat' 198
}; 199
cfg.outputfile = { 'reproduce_Group/20210112T114409_ft_timelockgrandaverage_output_grandavg.mat' }; 200
ft_timelockgrandaverage(cfg); 201
 202
%% 203
 204
% a new input variable is entering the pipeline here: 20210112T114411_ft_timelockgrandaverage_input_varargin_1.mat 205
% a new input variable is entering the pipeline here: 20210112T114411_ft_timelockgrandaverage_input_varargin_2.mat 206
% a new input variable is entering the pipeline here: 20210112T114411_ft_timelockgrandaverage_input_varargin_3.mat 207
% a new input variable is entering the pipeline here: 20210112T114411_ft_timelockgrandaverage_input_varargin_4.mat 208
 209
cfg = []; 210
cfg.tracktimeinfo = 'yes'; 211
cfg.trackmeminfo = 'yes'; 212
cfg.inputfile = { 213
'reproduce_Group/20210112T114411_ft_timelockgrandaverage_input_varargin_1.mat', 214
'reproduce_Group/20210112T114411_ft_timelockgrandaverage_input_varargin_2.mat', 215
'reproduce_Group/20210112T114411_ft_timelockgrandaverage_input_varargin_3.mat', 216
'reproduce_Group/20210112T114411_ft_timelockgrandaverage_input_varargin_4.mat' 217
}; 218
cfg.outputfile = { 'reproduce_Group/20210112T114415_ft_timelockgrandaverage_output_grandavg.mat' }; 219
ft_timelockgrandaverage(cfg);220

References

1. Open Science Collaboration. Estimating the reproducibility of psychological science. Science.

2015 Aug 28;349(6251):aac4716–aac4716.

2. Simmons JP, Nelson LD, Simonsohn U. False-Positive Psychology: Undisclosed Flexibility in Data

Collection and Analysis Allows Presenting Anything as Significant. Psychol Sci. 2011

Nov;22(11):1359–66.

3. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, et al. Power failure: why

small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013

May;14(5):365–76.

4. Gilmore RO, Diaz MT, Wyble BA, Yarkoni T. Progress Toward Openness, Transparency, and

Reproducibility in Cognitive Neuroscience. Ann N Y Acad Sci. 2017 May;1396(1):5–18.

5. Szucs D, Ioannidis JPA. Empirical assessment of published effect sizes and power in the recent

cognitive neuroscience and psychology literature. PLoS Biol [Internet]. 2017 Mar 2 [cited 2020

May 6];15(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333800/

6. Gleeson P, Davison AP, Silver RA, Ascoli GA. A Commitment to Open Source in Neuroscience.

Neuron. 2017 Dec;96(5):964–5.

7. Zwaan RA, Etz A, Lucas RE, Donnellan MB. Making Replication Mainstream. Behavioral and

Brain Sciences. 2017 Oct 25;1–50.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

8. Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, et al. Good practice for

conducting and reporting MEG research. NeuroImage. 2013;65:349–63.

9. LeVeque RJ, Mitchell IM, Stodden V. Reproducible Research for Scientific Computing: Tools and

Strategies for Changing the Culture. Computing in Science & Engineering. 2012;14(4):13–7.

10. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The Galaxy platform for

accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids

Research. 2018 Jul 2;46(W1):W537–44.

11. Bellec P, Lavoie-Courchesne S, Dickinson P, Lerch JP, Zijdenbos AP, Evans AC. The pipeline

system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine

for scientific workflows. Front Neuroinform [Internet]. 2012 [cited 2020 Jan 8];6. Available

from: http://journal.frontiersin.org/article/10.3389/fninf.2012.00007/abstract

12. Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, et al. Nipype: A

Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python. Front

Neuroinform [Internet]. 2011 [cited 2020 Jan 9];5. Available from:

http://journal.frontiersin.org/article/10.3389/fninf.2011.00013/abstract

13. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, et al. Taverna: a tool for the

composition and enactment of bioinformatics workflows. Bioinformatics. 2004 Nov

22;20(17):3045–54.

14. Pestilli F, Hayashi S, Caron B, Vinci-Booher S. Brainlife. 2017.

15. Rex DE, Ma JQ, Toga AW. The LONI Pipeline Processing Environment. NeuroImage. 2003

Jul;19(3):1033–48.

16. The FIL Methods Group. SPM12 Manual. 2020.

17. Defaix F, Doyle M, Wetmore R. Version Control System for Software Development. Waterloo,

ON; US 7,680,932 B2, 2010. p. 17.

18. Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain imaging data

structure, a format for organizing and describing outputs of neuroimaging experiments. Sci

Data. 2016 Dec;3(1):160044.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

19. Haikin JS. Version control system for software code [Internet]. Fremont, CA; US6757893B1,

2004 [cited 2020 Jan 6]. Available from:

https://patentimages.storage.googleapis.com/d0/4e/da/739afdc74e1bc0/US6757893.pdf

20. Spinellis D. Version Control Systems. IEEE Softw. 2005 Sep;22(5):108–9.

21. Ram K. Git can facilitate greater reproducibility and increased transparency in science. Source

Code Biol Med. 2013 Dec;8(1):7.

22. Brown NCC, Wilson G. Ten quick tips for teaching programming. Ouellette F, editor. PLoS

Comput Biol. 2018 Apr 5;14(4):e1006023.

23. Dudley JT, Butte AJ. A Quick Guide for Developing Effective Bioinformatics Programming Skills.

PLoS Computational Biology. 2009;5(12):7.

24. Andersen LM. Group Analysis in FieldTrip of Time-Frequency Responses: A Pipeline for

Reproducibility at Every Step of Processing, Going From Individual Sensor Space

Representations to an Across-Group Source Space Representation. Front Neurosci. 2018 May

1;12:261.

25. van Vliet M. Seven quick tips for analysis scripts in neuroimaging. Markel S, editor. PLoS

Comput Biol. 2020 Mar 26;16(3):e1007358.

26. Van Noorden R. The Trouble with Retractions. Nature. 2011 Jun 10;478(7367):26–8.

27. Niso G, Gorgolewski KJ, Bock E, Brooks TL, Flandin G, Gramfort A, et al. MEG-BIDS, the brain

imaging data structure extended to magnetoencephalography. Sci Data. 2018 Dec;5(1):180110.

28. Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C, Delorme A, et al. EEG-BIDS, an

extension to the brain imaging data structure for electroencephalography. Sci Data. 2019

Dec;6(1):103.

29. Clyburne-Sherin A, Fei X, Green SA. Computational Reproducibility via Containers in Psychology.

MP [Internet]. 2019 Nov 12 [cited 2020 Feb 14];3. Available from:

https://open.lnu.se/index.php/metapsychology/article/view/892

30. MATLAB. Natick, Massachusetts: The Mathworks Inc.; 2020.

31. Knuth DE. Literate Programming. Center for the Study of Language and Information; 1992.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

32. Live Scripts and Functions [Internet]. MathWorks; 2020 [cited 2020 Dec 2]. Available from:

https://uk.mathworks.com/help/matlab/live-scripts-and-functions.html

33. Potse M. matlabweb [Internet]. CTAN; [cited 2020 Dec 2]. Available from:

https://ctan.org/pkg/matlabweb?lang=en

34. Jupyter Notebook [Internet]. Jupyter; 2020 [cited 2020 Dec 2]. Available from:

https://jupyter.org/

35. Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, et al. rmarkdown: Dynamic

Documents for R. [Internet]. R Studio; 2020 [cited 2020 Dec 2]. Available from:

https://github.com/rstudio/rmarkdown

36. Xie Y. knitr: A General-Purpose Package for Dynamic Report Generation in R [Internet]. 2020.

Available from: https://yihui.org/knitr/

37. Kery MB, Radensky M, Arya M, John BE, Myers BA. The Story in the Notebook: Exploratory Data

Science using a Literate Programming Tool. In: Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems - CHI ’18 [Internet]. Montreal QC, Canada: ACM Press;

2018 [cited 2020 Jan 9]. p. 1–11. Available from:

http://dl.acm.org/citation.cfm?doid=3173574.3173748

38. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced

Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and

Neuroscience. 2011;2011:1–9.

39. Oostenveld R. Wakeman-and-Henson-2015 [Internet]. Github; 2016. Available from:

https://github.com/robertoostenveld/Wakeman-and-Henson-2015

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.05.429886doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.05.429886
http://creativecommons.org/licenses/by-nc-nd/4.0/

