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Abstract 

Here, we initiated the Westlake BioBank for Chinese (WBBC) pilot project with 

4,535 whole-genome sequencing individuals and 5,481 high-density genotyping 

individuals. We identified 80.99 million SNPs and INDELs, of which 38.6% are novel. 

The genetic evidence of Chinese population structure supported the corresponding 

geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains. The 

genetic architecture within North Han was more homogeneous than South Han, and 

the history of effective population size of Lingnan began to deviate from the other 

three regions from 6 thousand years ago. In addition, we identified a novel locus 

(SNX29) under selection pressure and confirmed several loci associated with alcohol 

metabolism and histocompatibility systems. We observed significant selection of 

genes on epidermal cell differentiation and skin development only in southern 

Chinese. Finally, we provided an online imputation server 

(https://wbbc.westlake.edu.cn/) which could result in higher imputation accuracy 

compared to the existing panels, especially for lower frequency variants. 
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Introduction 

Understanding the architecture of the human genome has been a fundamental 

approach to precision medicine. Over the past decade, great progress has been made 

to unravel either the genetic basis of complex traits and diseases (Timpson et al., 2018) 

or the human evolutionary history (Nielsen et al., 2017). The in-depth analysis of 

global populations with diverse ancestry could improve the understanding of the 

relationship between genomic variations and human diseases (2019). However, 

genetic studies exhibited a vast imbalance in global population, with individuals of 

European descent took up ~79% of all genome wide association study (GWAS) 

participants (2019; Martin et al., 2019). Similarly, most of the whole-genome 

sequencing (WGS) efforts were predominantly conducted on European populations, 

such as Dutch (Genome of the Netherlands, 2014), UK (Consortium et al., 2015) and 

Icelandic population (Gudbjartsson et al., 2015). Even in larger genomic projects such 

as the Trans-Omics for Precision Medicine (TOPMed) program, which consisted of 

~155k participants from >80 different studies, only 9% of samples were of Asian 

descent (Kowalski et al., 2019). Therefore, large-scale genomic data are required to 

understand the genetic basis in Asian population. Recently, some studies have 

sequenced and analyzed the Asian populations including Japanese (Nagasaki et al., 

2015) and Korean (Jeon et al., 2020). The Singapore SG10K pilot project reported 

4,810 whole-genome sequenced samples, including 903 Malays, 1,127 Indians and 

2,780 Chinese (Wu et al., 2019), and the pilot study of the GenomeAsia 100K Project 

presented a dataset of 1,267 individuals from different countries across Asia 

(GenomeAsia, 2019). 

 

China, as the most populated country, is a multi-ethnic nation, in which the Han 

Chinese accounts for 90% of the population. Generally, the entire territory of the 

country (34 administrative divisions, including provinces, municipalities and special 

administrative regions) could be divided into Northern and Southern area by the 

geographical barrier of the Qinling-Huaihe Line (Shi et al., 2019). The Qinling 
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Mountains are the east-west mountain range that stretch across the south of Gansu and 

Shaanxi provinces. The ~1,000 kilometers long Huaihe River flows through the south 

of Henan province and the middle of Anhui and Jiangsu provinces. To some extent, 

the climate, culture, lifestyle and cuisine between the Northern and Southern regions 

were differed. Lingnan area is the region in the south of Nanling mountains (with five 

ridges) and the southeast of Yunnan-Guizhou Plateau in southern China, which refers 

to the administrative divisions of Guandong, Guangxi, Hainan, Hong Kong and 

Macao (Xie et al., 2020). Although the genetic structure of north-south differentiation 

in the Chinese population was consistently observed in previous studies (Cao et al., 

2020; Chen et al., 2009; Chiang et al., 2018; Liu et al., 2018; Xu et al., 2009), clear 

subgrouping of the population was not always consistent. For example, Cao et al 

distinguished the Han Chinese into 7 population subgroups (Cao et al., 2020), while 

Xu et al clustered the Han Chinese into 3 sub-areas (Xu et al., 2009). 

 

Despite the above efforts, the Chinese population was still underrepresented in human 

genetic studies, which could increase the health disparities if Chinese personal 

genomes were underserved (Martin et al., 2019; Popejoy and Fullerton, 2016; Sirugo 

et al., 2019). In addition, our previous study (Bai et al., 2019) demonstrated that, even 

with the Haplotype Reference Consortium (HRC) reference panel which contained 

64,976 human haplotypes (McCarthy et al., 2016), the imputation of Chinese 

population could not reach the highest accuracy, a population specific reference panel 

was still needed (Bai et al., 2019). Therefore, the genetic study of Chinese population 

has the potential to benefit ~20% of the world population, and provide a comparison 

to the rest of the world. Thus, we initiated the Westlake BioBank for Chinese (WBBC) 

project (Zhu et al., 2020) to characterize the genomic variation and population 

structure in a large-scale cohort aiming to collect ~100,000 samples with deep 

phenotypes. Here, the findings of the pilot project of the WBBC from 10,376 samples 

were described, covering 29 out of 34 administrative divisions of China. 
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Results 

The WBBC Pilot Dataset and Variants Identified 

The WBBC pilot project sampled 10,376 individuals from 29 of 34 administrative 

divisions of the People’s Republic of China (Figure 1A and Table S1). We performed 

whole genome sequencing (WGS) in 4,535 individuals on NovaSeq 6000 platform. 

Hunan (n = 3,203) and Jiangxi (n = 719) provinces accounted for 87% of all WGS 

samples. After removing contaminated and duplicated samples, 4,489 unrelated 

individuals were retained for downstream analyses and statistics. The mean 

sequencing coverage was 13.9 ×, which covered 99.77% of the genome, with a range 

between 9.6 × and 65.2 × (Figure S1 and Table S2). Additionally, 5,841 individuals 

were genotyped by high-density Illumina Asian Screening Array (ASA) with 73.9M 

variants. Shandong (n = 2,801) and Jiangxi (n = 1,730) provinces comprised 77.6% of 

all ASA genotyped samples. 

 

Using BWA (Li and Durbin, 2010) and GATK4 (Van der Auwera et al., 2013) 

recommendation pipeline and analysis strategy (Figure S2), we identified 80,993,588 

variants after filtration from 104.2 million total raw variants (Ts/Tv = 2.15), including 

73,942,614 single-nucleotide variants (SNVs) and 7,050,974 insertions and deletions 

(INDELs, < 50bp in length) (Figure S3A). Of these, 93.3% comprised rare (allele 

frequency, AF < 0.5%) and low-frequency (AF = 0.5-5%) variants, with the majority 

of variants being singletons (44.2 million, 54.5%, Figure 1B and Table S3). 

Additionally, C>T, G>A, A>G and T>C constituted the most common SNV 

substitution types (Figure S4), and the length of INDELs mainly distributed between 

-10bp and 10bp (Figure S5). We provided a database of genetic variations for the Han 

population in four sub-regions (North, Central, South and Lingnan) 

(https://wbbc.westlake.edu.cn/genotype.html). 

 

To assess the SNV variants calling accuracy and sensitivity, 184 individuals from the 

whole genome sequencing samples (13.3 × - 54.7 ×) were also genotyped on ASA 
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chip. After filtration, about 0.5 million common variants in autosomes detected by 

both WGS and SNP array were used to estimate the genotype concordance. We also 

performed LD-based genotype refinement via BEAGLE tools (Browning et al., 2018). 

Supposing the genotype from SNP arrays as the reference allele, the non-reference 

genotype concordance rate extended to 99.88% at 25 × with increasing sequencing 

depth (Figure S6A). The non-reference sensitivity and specificity had an effective 

increase after genotype refinement with BEAGLE from 0.9211 to 0.9924 and from 

0.9931 to 0.9999, whereas it had inconspicuous improvement on homozygote 

genotype concordance (Figures S6B, S6C and S6D). The heterozygote discordance 

rate of genotypes was reduced 6-fold from 0.134 to 0.022 at 13.1 × sequencing depth 

and 4-fold from 0.004 to 0.001 at 25.3 × after genotype refinement (Figure 1C). 

 

Novel Variants and Functional Annotation 

Comparing the variants with the WBBC and other existing databases, 45,894,245 

variants were found not to present in the 1000 Genome Project (1KG) (Genomes 

Project et al., 2015), gnomAD (Lek et al., 2016) and UK10K (Consortium et al., 2015) 

(Figure 1D). Of these, 45.84 (99.878%) million were rare variants (MAF < 0.005), 

45,093 (0.098%) were low frequency variants (0.005 ≤ MAF ≤ 0.05) and 10,836 

(0.024%) were common variants (MAF > 0.05). We found 31.27 (38.6%) million 

novel variants that were not present in dbSNP Build 151 (Sherry et al., 2001), 

including 28,969,267 (92.6%) SNVs and 2,301,842 (7.4%) INDELs (Figure S3B). Of 

these variants, singletons accounted for 83.3%, and 99.95% of the variants (31.26 

million) were rare with MAF < 0.005. 

 

To characterize variants with a biological consequence, we annotated all the variants 

by ANNOVAR tools (Wang et al., 2010). As expected, 77,377,200 (95.5%) variants 

were in intergenic and intronic regions (Table S3). The variants in intergenic and 

intronic regions comprised 89.64% of novel variants (Figure 1E). In coding and splice 

regions, the missense accounted for 54.22% of the novel variants, while synonymous 

and splice variants made up 40.5% of the novel variants (Figure 1E). We also found 
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that the missense, stop-gain, frameshift indels and non-frameshift indels variants were 

markedly increased among rare variants, compared with low frequency and common 

variants, which were signatures of population expansion and weak purifying selection 

(Figure S7). We predicted about 300,000 deleterious variants by SIFT (Kumar et al., 

2009), PolyPhen-2 (Adzhubei et al., 2013) or MutationTaster (Schwarz et al., 2014) in 

4,489 individuals, with the majority of variants being rare alleles with MAF < 0.5% 

(Table S3). Interestingly, we also identified 1,842 pathogenic or likely pathogenic 

variants recorded by ClinVar (Landrum et al., 2014) in our dataset. Of these predicted 

disease-causing variants, 97.4% variants were rare, 1.7% variants were low frequency, 

and 0.9% were common variants, which arose from selection pressure subjected on 

these rare variants. 

 

Variants in Individual Genome 

We selected 1,151 healthy individuals for the autosomal variants’ statistic of a 

personal genome. On average, an individual carried 2,936,012 SNVs and 191,333 

INDELs, including 8,915 missense, 10 stop loss, 70 stop gain and 126 frameshift or 

non-frameshit indels (Table 1). In total, 96.5% of the variants were located in 

intergenic and intronic regions. For the disease-associated variants predicted in silico, 

about 1,623 variants were deleterious by SIFT (Kumar et al., 2009), 1,714 variants 

were probably or possibly damaging by Polyphen2 (Adzhubei et al., 2013), and 8,591 

variants were disease-causing by MutationTaster (Schwarz et al., 2014). In these 

pathogenic and deleterious variants, we observed the higher ratio of heterozygote and 

non-reference homozygote (Het/Hom) (Table 1). The proportions of Het/Hom were 

also very high in novel SNVs and INDELs variants, which indicated that the majority 

of novel variants occurred as heterozygotes in the Han Chinese population. 

 

The homozygous pathogenic variants are responsible for recessive Mendelian 

disorders. To measure the prevalence of pathogenic variants in a healthy individual, 

we annotated the variants by ClinVar (Landrum et al., 2014). In total, we identified 

757 pathogenic variants in all the healthy population, and in average each individual 
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carried 11 pathogenic variants (het/hom = 2.08) (Tables 1 and Table S4). Each 

genome carried 3.6 ± 2.1 (mean ± SD) pathogenic homozygote variants in Han 

Chinese population. Additionally, we found that 19 pathogenic variants existed in all 

four sub-regions (North, Central, South and Lingnan population) were mainly relevant 

to the immune system, metabolic, and hearing impairment diseases, and 16 out of the 

19 (84.2%) variants had a higher frequency (MAF > 0.01) in the Han Chinese 

population (Table S4), and lower frequency (MAF < 0.001) in 1KG (Genomes Project 

et al., 2015) and gnomAD database (Lek et al., 2016). 

 

Genetic Evidence Supported the Geographical Boundaries of the Qinling-Huaihe 

Line and Nanling Mountains 

To explore the Chinese population structure, we performed principal component 

analysis (PCA) on 2,056 Han Chinese individuals and 205 minority individuals from 

29 of 34 administrative divisions of China (Figure 2A). PC1 and PC2 revealed the 

main genetic structure of the Chinese population, with PC1 displaying a significant 

population stratification along the north-south cline, reflecting the geographical 

locations (Figure 2B). The genetic difference of the Han population corresponded to 

the geographical boundaries of the Qinling-Huaihe River Line and Nanling Mountains. 

Based on the PCA analysis, the Han Chinese could be classified into four clusters: 

North Han (Gansu, Hebei, Heilongjiang, Henan, Inner Mongolia, Jilin, Liaoning, 

Ningxia, Qinghai, Shaanxi, Shandong, Shanxi and Tianjin) (Figure 2B and Figure S8), 

Central Han (Anhui and Jiangsu) (Figure 2B and Figure S9), where Central Han were 

closed to North, but embedded in both North and South Han, South Han (Chongqing, 

Fujian, Guizhou, Hubei, Hunan, Jiangxi, Sichuan, Yunnan and Zhejiang) (Figures 2B 

and S10), and Lingnan Han (Guangxi, Guangdong and Hainan) (Figures 2B and S11). 

When the 104 JPT (Japanese in Tokyo, Japan) and 99 KHV (Kinh in Ho Chi Minh 

City, Vietnam) samples from the 1000 Genomes Projects (1KG) were included, the 

KHV population formed a cluster overlapping with Lingnan Han, while the JPT 

population was closer to the North Han Chinese (Figure S12). 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430086


 10 

We estimated ancestral composition in the Han Chinese population from 27 provinces 

using the ADMIXTURE program (Patterson et al., 2012). The average number of 

presumed ancestral populations were calculated in each province with the optimal K = 

3. When the value of component 1 was sorted, the four regions were arranged from 

northern to southern China (Figure 2C). The ancestry fractions of the North Han 

accounted for about 66% on component 3. The ancestral component of the Central 

Han was closer to the North Han with 52.1% on component 3, while the admixture 

components in the South Han were 46.3% on component 1 and 40% on component 3 

respectively, which did not show the predominant ancestral components. We found a 

distinctly higher proportion of component 1 in Lingnan Han, at 78% of ancestry 

composition compared to other ancestral components. 

 

We also combined the 1KG data (CHB, CHS, CDX, JPT and KHV) and conducted 

ADMIXTURE analysis from K = 2 to K = 8 to explore the admixture with Asian 

population (Figure S13). At K = 4, the cross-validation error was the lowest. North 

Han, South Han, and Lingnan Han showed significantly different clusters, while 

central Han embodied the ancestral components of both northern and southern 

populations. In southern China, South Han and Lingnan Han were clearly 

distinguished from each other, which was consistent with the PCA results. Based on 

the outcome of the admixture analysis, individuals from the Guangdong province 

displayed a complex genetic pattern consisting of Lingnan Han and South Han. There 

were no significant components difference among the Northern provinces. Most 

components of the CHB population were consistent with North Han, except for part of 

samples originating from South Han, while the CHS population mainly came from 

South Han. From K = 2 to K = 6, the JPT population and Han Chinese population 

were classified into different groups, but more close to the North Han at K = 2. KHV 

population clustered with Lingnan Han at K = 2, whereas from K = 3 onwards, the 

KHV population and Lingnan Han clustered separately. 
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Population Genetic Structure and Demographic History in Four Sub-regions of 

the Han Chinese Population 

Weir-Cockerham FST is an allele frequency-based metric to measure the population 

differentiation due to genetic structure. We calculated pairwise FST and performed 

hierarchical clustering for 27 administrative divisions of China and 26 populations of 

the 1KG. The 27 administrative divisions were mainly clustered into three groups and 

showed an association with geography (Figure 3A and Table S5). Anhui and Jiangsu 

provinces, which we designated as Central region of China, were clustered with 

Northern provinces, indicative of a closer genetic relationship. The other two groups, 

South and Lingnan, aligned with the regions we designated. Besides, the hierarchical 

branches suggested that the population differentiation between South and North was 

smaller than that between the South and Lingnan (Figure 3A), reflecting the relatively 

shorter genetic distance. The two most remote regions in geography, North and 

Lingnan, were also found to have the largest population differentiation (Figure 3A). 

Not surprisingly, the pairwise FST clustering results between the WBBC and 1KG 

populations showed that the four designated regions were clustered into the EAS 

group (Figure S14 and Table S6). In particular, North and Central were clustered with 

CHB, while South and Lingnan were clustered with CHS (Figure S14). Using the four 

1KG continent-level ancestry groups (AFR, EUR, AMR and SAS) as the 

Non-Chinese population reference, we further investigated the geographical patterns 

of FST in 27 administrative divisions of China. The AFR group showed the largest FST 

that ranged from 0.14 to 0.15 (Figure S15B and Table S7), indicative of the greatest 

population differentiation to the WBBC, while the SAS and AMR group yielded the 

least value (Figure S15A and S15C). The geographical patterns of FST across the four 

sub-regions were similar to each other. On average, the Han Chinese in Northern 

provinces had the relatively closer genetic structure to the Non-Chinese populations 

of the 1KG. Interestingly, Qinghai province was conspicuously highlighted in the 

geographic heatmaps, as its pairwise FST value was obviously smaller than that of 

other administrative divisions (Figure S15), indicative of the genetic structure 

particularity of the Qinghai Han Chinese. 
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Next, we detected the IBD segments with the logarithm of the odds (LOD) score > 3 

across individuals in the WBBC (Lander and Schork, 1994). Unlike the 

Weir-Cockerham FST, IBD analysis is a haplotype-based approach to reveal the 

genetic structure and investigate the common ancestry of populations. The total IBD 

segment counts in each pair of administrative divisions were normalized by the 

corresponding sample size (see Methods). We then performed the hierarchical 

clustering based on the matrix of normalized pairwise IBD counts. Similar to the 

results of FST clustering, 27 administrative divisions were also mainly clustered into 

three groups, and individuals from Anhui and Jiangsu provinces were clustered in 

North (Figures 3A and 3B). Besides, the results showed that most Southern provinces 

shared more IBD segments with Northern provinces than with Lingnan (Figure 3B), 

just as observed in the Fst analysis (Figure 3A), suggesting that the Han Chinese in 

South and North shared more common ancestry than South and Lingnan. The Fujian 

and Hunan, which we designated as the Southern province, had been found that joined 

up with Lingnan provinces by the multiple hierarchical branches, indicating that they 

were more close to Lingnan in ancestry (Figure 3B), and contiguous to Lingnan 

geographically (Figures 3C and S15). 

 

We inferred the history of effective population size for the Han Chinese, and the 

results across the four regions were shown in Figure 3D. In the period from 1 million 

years ago to ~ 6 thousand years ago (kya), the Han Chinese size histories of four 

regions experienced almost identical dynamics. From 200 kya to ~10 kya, the 

effective population size experienced a steep decline and then grew rapidly, with the 

lowest point reached at ~60 kya, which was indicative of a bottleneck, consistent with 

previous demographic history studies (Genomes Project et al., 2015; Terhorst et al., 

2017; Wu et al., 2019). Around 6 kya, the size histories of the Han Chinese from the 

Lingnan began to deviate from the other three regions, potentially reflecting the 

existence of a population substructure within the Lingnan Han Chinese (Figure 3D). 
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Using the Han Chinese in the most northern province (Heilongjiang) of China as the 

reference, we estimated relative genetic drifts and inferred a rooted maximum 

likelihood tree between 27 administrative divisions by TreeMix software (Pickrell and 

Pritchard, 2012). In the result shown in Figure 3C, the relative drift of the provinces 

and municipalities were in line with the geographic location. To gain a better 

understanding of the result, we further drew a geographic heatmap that suggested a 

general genetic drift trend from the North to Lingnan, with the drift parameter 

increasing as the latitude decreased (Figure 3C). To judge the confidence in the trend 

and tree topology, we performed ten bootstrap replicates by resampling blocks of 

SNPs. The trend was repeated in all replicate results (Figure S16). Besides, we found 

that the tree topology of administrative divisions in Central, South and Lingnan was 

stable. In the North, however, the tree topology was slightly different across the 

replicates, indicating that the genetic structures of the Northern administrative 

divisions were very similar and could not be precisely presented in the tree topology 

(Figure S16).  

 

Enlightened by the genetic drift estimation results, we further investigated the 

homogeneity degree in the genetic structure of the Northern and Southern Han 

Chinese respectively. We performed the Wilcoxon rank-sum tests (Wilcoxin, 1947) 

for Northern and Southern administrative divisions using their respective pairwise FST 

values, normalized IBD segments counts and relative drift parameters. The results 

showed that the Han Chinese from North had smaller population differentiation 

(p-value = 4.6e-10) and genetic drifts (p-value = 2.5e-11), and shared more IBD 

segments with each other (p-value = 1.9e-13) than those from South (Figure 3E). 

These results suggested that the genetic structure of the Han Chinese in North was 

significantly homogeneous than those in South. 

 

Whole Genome-wide Singleton Density Score Analysis 

We inferred recent allele frequency changes at SNVs of the Han Chinese population 

by calculating singleton density score (SDS) using the WGS data. In total, 4,259,171 
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biallelic SNVs and 17,943,790 singletons from 4,395 Han individuals were conducted 

for the SDS computation. On chromosome 16p, we found novel significant selection 

signatures in SNX29 gene (Figure 4A), which encoded the sorting nexin-29 protein 

and was ubiquitously expressed in the kidney, lymph node, ovary and thyroid gland 

tissues (Fagerberg et al., 2014). In SNX29 gene, more than 30 SNPs showed strong 

selection signatures (p < 510-8), which indicated significant enrichment of selection 

in this genomic region. Relatively higher DAF was observed on the top SNP 

rs75431978 (DAF = 0.176, p = 1.3110-15) in the Han Chinese population, compared 

to the values obtained in 1000 Genome Project EUR (DAF = 0.003) and AFR (DAF = 

0.002) populations. SNX29 was reported to be a biomarker for vasodilator-responsive 

Pulmonary Arterial Hypertension (Thayer et al., 2020). Although the function of the 

SNX29 gene remained unknown, it could be considered a biological target of nature 

selection pressure in the Han population. 

 

We also confirmed several significant natural selection signals at ADH gene clusters 

(rs1229984, p = 5.5110-16), the MHC region (rs9380181, p = 2.0410-10), and 

BRAP-ALDH2 (rs3782886, p = 4.2910-12) (Figure 4A). These three selection 

signature regions have also been identified in the Japanese population, but the 

strongest signal loci were at different variants (Okada et al., 2018). The 

alcohol-metabolizing enzymes such as the alcohol dehydrogenase (ADH) genes, 

including ADH1A, ADH1B, ADH4, ADH5, ADH6, and the aldehyde dehydrogenase 

(ALDH2) gene, had an effective impact on the alcohol metabolism pathway and the 

consequent alcoholism protective effect, which strongly indicated diverse 

ethnic-specific alcohol consumption patterns (Bierut et al., 2012; Choi et al., 2005; 

Druesne-Pecollo et al., 2009; Edenberg, 2007; Ehlers et al., 2012). Similarly, the high 

derived allele frequency (DAF) in this genomic loci, particularly rs1154414 (ADH5 

gene), rs4148887 (ADH4 gene), rs2156733 (ADH6 gene), rs975833 (ADH1A gene), 

rs1229984 (ADH1B gene), and rs4646776 (ALDH2 gene) (0.729, 0.734, 0.763, 0.789, 

0710 and 0.241, respectively), illustrated corresponding alleles associated with 

alcoholism in the Han Chinese, when compared with other non-East Asian (Figure 4B 
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and Table S8). Interestingly, we observed a higher-level DAF in these SNVs in South 

and Lingnan regions compared to the North and Central Han, which reflected the 

recent regional DAF changes and adaptation in this populous ethnicity and articulated 

different drinking habits or specific-alcohol consumption. The top SNP rs12374406 in 

LOC100507053 gene, as the strongest selection signature on chromosome 4, showed 

a higher DAF in non-East Asian population, which was also an alcohol dependence 

risk gene in European-American and African-American populations (Gelernter et al., 

2014). In addition, we identified other selection signals in chromosome 12, including 

rs11066280 (p = 1.2210-13) in HECTD4 gene, rs11066015 (p = 2.3010-12) in 

ACAD gene and rs3782886 (p = 4.2910-12) in BRAP gene, which were limited to 

EAS ancestry populations. The SNP rs11066280 showed a potential association with 

blood pressure level (Eom et al., 2017), while rs3782886 may cause a predisposition 

to an alcohol dependence disorder (Kim et al., 2019). The SNP rs11066015 indicated 

a strong linkage disequilibrium with rs671 (p = 4.5910-11), which was a well-studied 

variant relevant to alcohol metabolism in East Asian populations (Igarashi et al., 

2019). These three genes adjacent to the ALDH2 gene in chromosome 12q were 

within a large linkage disequilibrium (LD) block (Levy et al., 2009), revealing that the 

region had been under positive selection for a long time. 

 

Signatures of Recent Positive Selection 

We employed the iHS test to identify recent natural signatures of positive selective 

sweeps in the North, Central South, and Lingnan Han populations (Voight et al., 

2006). For the iHS test, we computed the fraction of SNVs with |iHS| >2 in the 200 kb 

non-overlapping genomic windows (Pickrell et al., 2009). The top 1% of genomic 

clusters were identified as the candidate regions under natural selection. We 

determined the adaptive candidate genes near SNVs within the 100 kb regions. In 

total, 130 genomic regions with higher |iHS| scores were found in each population 

(Table S9-S12). The numbers of overlapping genomic windows of selective sweep 

regions across the four populations were shown in Figure S17. Only 34 (26%) sweep 

regions were found in all the four populations. Most regions were shared in two or 
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three of the four subgroups. Averagely, 23.2% of the regions were independent in 

North, Central and South Han. However, the Lingnan Han had distinctly excess 

independent sweeps (50, 38.5%), which might be inherited from separate ancestral 

components, consistent with the conclusion from our demographic history analysis. 

Importantly, we found the EDAR gene in the first three sweep regions in all four 

subgroups, which have showed the strong signatures of positive selection in East 

Asians (Mou et al., 2008; Riddell et al., 2020; Tan et al., 2013). 

 

In addition, we conducted Gene Ontology (GO) and KEGG pathway analysis for 

candidate genes in the top 1% genomic regions with signals of recent selection 

(Tables 2 and S13). The terms were selected according to p-value (< 0.05). The results 

of the GO analysis showed a significant enrichment of positively selected genes for 

ethanol metabolic process and ethanol oxidation in four sub-regions, consistent with 

the selective signatures by whole genome-wide singleton density score (SDS) analysis 

in the Han Chinese population. We also observed intriguing enrichment of 

keratinocyte differentiation, epidermal cell differentiation and skin development 

(CTSL, COL7A1, PKP3, SEC24B, SLITRK6, WNT10A, KRT10, KRT12, KRT20 and 

KRT23) in the South and Lingnan Han, which were not present in the North and 

Central Han populations. KEGG analysis found that 23 pathways were enriched in the 

Han population with adjusted p-values < 0.05 (Table S13). Of these pathways, 

Southern individuals displayed significantly enriched terms more than the northern 

population. Tyrosine metabolism and retinol metabolism and fatty acid degradation 

were identified in four sub-regions. 

 

Imputation in the Chinese Population 

We evaluated the genotype imputation accuracy of the WBBC, 1KG (Phase 3, v5a) 

(Genomes Project et al., 2015), CONVERGE (CONVERGE, 2015), and two 

combined reference panels (WBBC+EAS and WBBC+1KG) in the Chinese 

population (Figure S18). For the comparison purpose, we extracted 729,958 imputed 

variants that were shared by the five panels. The variants were then grouped into nine 
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MAF bins (< 0.1%, 0.1%-0.2%, 0.2%-0.3%, 0.3%-0.5%, 0.5%-1%, 1%-2%, 2%-5%, 

5%-20% and 20%-50%) to differentiate the detailed imputation performance for 

variants with different MAF, especially for low-frequency and rare variants, which are 

usually difficult to impute accurately (Das et al., 2018). We obtained average 

R-square values (Rsq) from Minimac4 info files (Das et al., 2016) and counted the 

well-imputed variants (Rsq ≥ 0.8) in each MAF bin. The results showed that the 

WBBC panel, with almost fifteen-fold more Chinese samples than the 1KG Project, 

yielded substantial improvement for imputation for low-frequency and rare variants 

(Figure 5A). The two combined panels, WBBC+EAS and WBBC+1KG, almost tied 

and possessed both the highest Rsq and well-imputed variant counts for variants with 

a MAF range of 0.2% to 50%, followed by the WBBC, 1KG and CONVERGE 

(Figure 5A). For the rare variants with MAF less than 0.2%, WBBC+EAS panel 

showed the best performance, and the WBBC panel performed roughly the same as 

the WBBC+1KG (Figure 5A). This result indicated that merging EAS individuals of 

the 1KG to increase the haplotype size of the WBBC could improve panel’s 

performance across all MAF bins, but merging the whole 1KG cannot yield more 

improvement than merging-EAS-only and even not equal to it when the imputed 

variants were quite rare. Taking all shared variants together, the WBBC+EAS yielded 

the most well-imputed variants, while the CONVERGE panel imputed the least 

(Figure 5B). The proportion of imputed variants with Rsq ≥ 0.8 for CONVERGE was 

the only one under 50% across five panels, even it was population-specific to Chinese 

(Figure 5C), indicative of the importance of coverage sequencing depth of a reference 

panel. 

 

To comprehensively evaluate the imputation accuracy for the five panels, we further 

calculated the genotype concordance rate between imputed and genotyped variants by 

chip array and WGS respectively (imputation vs. chip array and imputation vs. WGS). 

Since the reference allele was not informative for the evaluation of imputation 

accuracy, the concordance rate was only calculated in the non-reference (NR) alleles. 

We randomly masked one-fifteenth sites on QCed chip array for 5,679 individuals, 
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resulting in 2,600 SNPs (chromosome 2 only). The concordance rates of NR alleles 

were then computed for each sample after imputation. To gain a better understanding 

of the distribution of the genotype concordance, we separated the NR alleles into 

homozygote and heterozygote. The result was shown in Figure 5D, with each dot 

representing an individual and the density plots around the scatter diagram showing 

the distributions for both NR allele homozygote and heterozygote concordance rates. 

Two combined panels had the most promising distributions of the concordance rates, 

which were almost coincident with each other, indicating that the concordance rates 

for Chinese imputation could barely benefit from the extra population-diverse 

haplotypes of the reference panel (Figure 5D). Besides, we could know that the peaks 

of two combined panels in density plots were higher than other panels, indicating that 

the distributions of concordance rates were more concentrated in the two combined 

panels (Figure 5D). The performance of the WBBC panel was slightly behind the two 

combined panels, but was superior to the 1KG and CONVERGE (Figure 5D). We also 

calculated the NR allele concordance rate between the imputed genotypes and the 

directly sequenced genotypes. There were 184 samples that were used for both the 

chip array genotyping and WGS of which 179 met our quality control criteria. All of 

them had been held-out from the WBBC to avoid the potential artifacts. We divided 

the variants that shared by the five panels into three variant groups, including rare, 

low-frequency and common variants. Not surprisingly, the two combined panels 

performed best and were approximately coincident and very closely followed by the 

WBBC (Figure 5E). This result suggested that the improvement provided by the EAS 

and 1KG were unremarkable. Considering all variants together, the WBBC+EAS 

panel showed the highest NR allele concordance rate, followed by the WBBC+1KG, 

WBBC, 1KG and CONVERGE (Figure 5F). 

  

Overall, we employed Rsq, and NR allele concordance rate for both WGS and array 

genotype to measure the imputation accuracy for the five panels. Our results 

demonstrated the superiority of the WBBC as a reference panel for Chinese 

population imputation. Compared to the 1KG and CONVERGE, WBBC panel greatly 
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improved the imputation accuracy, especially for the rare and low-frequency variants. 

Besides, we found that merging EAS haplotypes into the WBBC could improve the 

imputation accuracy, while the extra diverse haplotypes of the 1KG could barely 

contribute to it. 

 

The WBBC Genotype Imputation Server 

To facilitate genotype imputation in Chinese population, we developed an imputation 

server with user-friendly website interface for public use 

(https://imputationserver.westlake.edu.cn/). Users can register and create imputation 

jobs freely by uploading their bgzipped array data (VCF-formatted) to our server 

under a strict policy of data security. To ensure the integrity of array data for next 

phasing and imputation, some basic QC should be performed, such as removing 

mismatched SNPs, monomorphism and duplicate SNPs. The server provided a choice 

of four reference panels to conduct the imputation, including the WBBC, 1KG Phase3, 

WBBC combined with EAS, and WBBC combined 1KG Phase3. All panels in both 

GRCh37 and GRCh38 were built to meet different needs. Besides, service of phasing 

was also provided in our server for users who cannot afford the corresponding heavy 

computational load. An email of reminder will be sent to the user when the imputation 

job is finished, and then user can download the imputed genotype data and the 

corresponding statistics file with an encrypted link. The SHAPEIT v2 (Delaneau et al., 

2011) and MINIMAC v4 (Das et al., 2016) were employed in our server for phasing 

and imputation, respectively. More details including the policy of data security, 

statistics of four reference panels, and the reference manual were specified in our 

website. 

 

Discussion 

We initiated the Westlake BioBank for Chinese (WBBC) pilot project and performed 

the whole genome sequencing at 13.9 × coverage of 4,535 individuals from 29 of 34 

administrative divisions of China. We described a comprehensive map of the whole 
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genomic variation in the Chinese population (https://wbbc.westlake.edu.cn) and 

identified 31.27 (38.6%) million novel variants. Together with 5,841 individuals 

genotyped by high-density Illumina Asian Screening Array (ASA), we have 

investigated into the structure of Chinese population, and found that the genetic 

evidence supported the geographical boundaries of the Qinling-Huaihe Line and 

Nanling Mountains, which separated the Chinese into four sub-regions (North Han, 

Central Han, South Han and Lingnan Han). The genetic architecture within North Han 

was more homogeneous than South Han. We found novel significant selection 

signatures around SNX29 gene in the Han Chinese, and confirmed several significant 

natural selection signals at ADH gene clusters and MHC region. We observed 

enriched positive selective sweeps of keratinocyte differentiation, epidermal cell 

differentiation and skin development in the South and Lingnan Han. We provided a 

comprehensive reference panel for genotype imputation for Chinese and Asian 

population, and an online imputation server (https://imputationserver.westlake.edu.cn/) 

is publicly available now for genotype imputation. 

 

The genetic structure of a population defines the level and extent of genetic variation 

within its constituent subpopulations. Our finding demonstrated that the Han Chinese 

populations were divided into four sub-regions (North, Central, South and Lingnan), 

which corresponds to the geographical boundary, the Qinling-Huaihe Line and 

Nanling Mountains (Five Ridges). Our data did not support the classification of seven 

subgroups in the Han Chinese as reported previously (Cao et al., 2020). Shuhua Xu et 

al showed that the Han Chinese was distinguished with three clusters corresponding 

roughly to northern Han, central Han and southern Han (Xu et al., 2009). Notably, the 

administrative divisions of North Han and Central Han by Xu et al were consistent 

with our results, however, the southern Han would be accurately separated into South 

Han and Lingnan Han by the geographical barrier of the Nanling Mountains and 

Yunnan-Guizhou Plateau, which had been confirmed by our PCA and ADMIXTURE 

results. Additionally, the genetic architecture within North Han were distinctly 

homogeneous, while the ancestral components of admixture in South Han were more 
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diverse. Due to the absence of Han samples in seven administrative divisions (Beijing, 

Shanghai, Tibet, Xinjiang, Taiwan, Hong Kong and Macao), we have not inferred the 

population structure in these areas. 

 

Modern Han Chinese have a genetic imprint of early migration patterns and 

geographical segregation. In ancient times, geographical barriers and 

inconvenient transportation blocked human migrations. As a result, population 

subgroups inevitably adapted to local environments in a long period of time, leading 

to population diversity. Advantageous biological traits were more likely to be passed 

on to the next generation, influencing the positive selection of ancestral and derived 

alleles within a population. Adaptive evolution would remove deleterious mutations 

and increased the beneficial allele frequencies within the gene pool, owing to linkage 

disequilibrium (LD). The selective pressures acting on the population could result in 

favorable local adaptive traits. In our study, we identified a novel significant selection 

signature around SNX29 gene in the Han Chinese and confirmed several positive 

selection signatures using the singleton density-based and haplotype-based methods. 

The ethanol oxidation was the most significant enrichment in the Han Chinese 

population, which included the ADH gene cluster and ALDH gene cluster. The two 

shared selective events were maintained by positive selective pressures during Asian 

population evolution, resulting in a variation in genotype prevalence of these genes in 

different Asian ethnic groups (Eng et al., 2007). The major histocompatibility 

complex (MHC) genes carried the significant selection signatures for adaptive 

autoimmune and infectious diseases in all populations shaped by natural selection 

over a long time (Meyer and Thomson, 2001). The ectodysplasin A1 receptor (EDAR) 

encodes a member of the tumor necrosis factor receptor family, which was involved in 

the development of hair, teeth and glands (Fujimoto et al., 2008a; Fujimoto et al., 

2008b; Schmidt-Ullrich et al., 2001). The SNV rs3827760 (NM_022336: c.1109T>C 

p.Val370Val) in EDAR gene had been under strong natural selection in the Han 

Chinese population with a very high allele frequency (0.93). This non-synonymous 

SNV displayed a higher |iHS| score in four groups (North: 3.08, Central: 3.15, South: 
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3.15 and Lingnan: 3.65), which indicated a strongest signal of positive selection in 

this genomic region. 

 

In addition, epidermis is the outermost layer of the skin, which protects the body 

against pathogens and ultraviolet radiation, and is under adaptive pressure from 

sunlight duration and intensity. The Qinling-Huaihe line is a geographical dividing 

line between northern China and southern China, which is the boundary between 

semi-humid warm temperate continental monsoon climate and humid subtropical 

monsoon climate in China. Most areas of northern China are dry and cold in winter, 

whereas there are mild in winter and hot and muggy in summer in southern provinces. 

The enrichment differences of candidate genes on skin development related traits 

between northern and southern Han Chinese population might be the results of 

adaptive pressures selection, including the effects of geography, climate and human 

migration. 

 

Finally, using R-square and NR-allele concordance rate metrics, we evaluated and 

compared the genotype imputation performance of the WBBC pilot with two existing 

panels, the 1KG Phase3 and CONVERGE. Besides, given that the haplotype size of a 

panel and the genetic background between the panel and array are two crucial factors 

for imputation accuracy (Bai et al., 2019; Das et al., 2018), we built and evaluated two 

more combined panels that merged the WBBC with the 1KG and EAS group by the 

reciprocal imputation approach (Huang et al., 2015). The 1KG Project, which 

consisted of 2,504 individuals from 26 worldwide populations, is the most diverse and 

commonly used panel for genotype imputation due to its high quality (Genomes 

Project et al., 2015). The CONVERGE is the largest and population-specific reference 

panel for Chinese imputation so far. The quality of variants, however, is not very 

reliable because of the low-coverage sequencing depth (CONVERGE, 2015). In our 

study, the WBBC panel yielded substantial improvement for imputation accuracy for 

low-frequency and rare variants than these two existing panels. The WBBC+EAS and 

WBBC+1KG panels performed better than WBBC panel alone, and the WBBC+EAS 
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panel yielded highest imputation accuracy for rare variants, the most well-imputed 

variants and the highest proportion of well-imputed variants. This observation was 

consistent with and further expanded our previous finding that population-specificity 

between reference panel and the imputed array was reasonably rigorous for the Han 

Chinese genotype imputation, and the accuracy benefited from the increasing of 

haplotype size via extra diverse individuals was limited, especially for rare variants 

(Bai et al., 2019). Here, to maximize utilization of the WBBC pilot, we provided a 

large population-specific Genotype Imputation Server, which included the WBBC, 

1KG and the two combined reference panels for Chinese sample imputation. 

 

In summary, we characterized large-scale genomic variations in Chinese population. 

Our finding provided the comprehensive genetic evidence for the geographical 

boundaries of the Qinling-Huaihe line and Nanling Mountains to divide the Han 

Chinese population into four subgroups. We elucidated the regional genetic structure 

and signatures of recent positive selection differences among the Han Chinese ethnic. 

We also created a user-friendly website and high-performance genotype imputation 

server for Asian samples. The online resource would practically be important for the 

genomic variants filtration of monogenic diseases and consequent association with 

complex traits in the population genetics field. 
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Methods 

Samples 

The WBBC pilot has enrolled 14,726 individuals with diverse traits across 29 of 34 

administrative divisions in China (Provinces, Municipalities and Special 

Administrative Regions), following the regulations of the Human Genetic Resources 

Administration of China (HGRAC). A total of 4,535 individuals were whole genome 

sequenced and 5,841 individuals were genotyped by high-density Illumina Asian 

Screening Array (ASA) with 73.9 million variants (Table S1). All the participants 

signed the consent forms. The research program was approved by the Institutional 

Review Board of the Westlake University. 

 

Whole genome sequencing and variants calling 

Genomic DNA was extracted from peripheral blood samples collected from all the 

participants using the blood DNA extraction kit (TianGen Biotech, China). We 

performed the whole genome sequencing on Illumina NovaSeq 6000 system (150 bp 

paired-end reads) following the standard Illumina library construction and instructions 

at the KingMed Diagnostics Co. Ltd. The target depth was ~13× per individual, with 

about 40 Gb sequencing data. 

 

Variants calling were conducted on all the samples via BWA version 0.7.17 (Li and 

Durbin, 2010) and GATK4 version 4.1.4.0 (Van der Auwera et al., 2013) (Figure S2). 

The clean reads in each lane were aligned to the GRCh38 and GRCh37 human 

reference genome via the BWA mem tool to produce the SAM files, respectively. We 

used SAMtools (v1.7) view tool to convert SAM format files into BAM files (Li, 

2011) and GATK4 MergeSamFiles tool to sort and merge multiples lanes data into 

one bam. The MarkDuplicates was used to mark the PCR duplicates with a 

REMOVE_DUPLICATES parameter setting of false. BaseRecalibrator generated the 

recalibration table by the known sites dbSNP and 1000G VCF resources. ApplyBQSR 

outputted the recalibrated final BAM files for HaplotypeCaller. We first obtained the 

GVCF file for each sample and combined all the GVCF files into a single VCF files 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430086


 25 

using GATK4 GenomicsDBImport and GenotypeGVCFs following the suggested 

pipelines. VariantFiltration was used for filtering excessively heterozygous variants 

(ExcessHet >54.69) marked with ExcessHet. We calculated the VQSLOD value of 

each SNV and INDEL variant by setting the max-Gaussians value to 5 and annotating 

with ReadPosRankSum, MQRankSum, DP, QD, FS and SOR for SNVs, with 

ReadPosRankSum, DP, QD and FS for INDELs. In the ApplyVQSR filtration, 99.0 

was applied for the truth sensitivity level for INDELs and 99.6 for SNPs. All the 

passed variants were retained for the downstream analyses. 

 

For the X chromosome, we called the genotype in the pseudo-autosomal region (PAR) 

and non-pseudo-autosomal region (non-PAR), separately. We defined the parameter 

ploidy with 2 for females and 1 for males in non-PAR, while the parameter was 2 for 

all individuals in PAR. Then we merged the data together. We only called the 

genotypes on the Y chromosome for males as the haploid chromosome. 

 

Sample and variant filtrations 

The sex estimation and confirmation were analyzed by the ratio of sequencing depths 

aligned to the X chromosome and autosomes (Wu et al., 2019). The inferred sex was 

consistent with the self-reported sex for each sample. The FREEMIX scores were 

used to estimate DNA contamination by verifyBamID version1.1.3 with --maxDepth 

100 --precise --minMapQ 20 --minQ 20 --maxQ 100 and the allele frequencies 

inferred from our genotyped data (Jun et al., 2012). In total, 15 samples with 

FREEMIX scores > 0.05 were excluded (Figure S19). We identified the duplicates 

samples by KING version 2.2.4 --duplicate and removed 31 duplicated individuals or 

MZ twins (Manichaikul et al., 2010). Finally, 4,489 samples were retained in the final 

cohort. 

 

In the raw calling set (GRCh38 build), 99,958,705 SNVs and INDELs on autosomes, 

4,194,725 SNVs and INDELs on sex chromosomes were identified. Of these, 

1,067,527 variants were excluded by ExcessHet. At a truth sensitivity of 99.6% for 
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SNVs and 99% for INDELs, 11,183,295 SNVs and 2,694,079 INDELs were removed. 

We used the bcftools filter to remove the 2,938,593 SNVs and 2,645,756 INDELs 

variants closer to INDEL with SnpGap 3 and IndelGap 5. Then we filtered 10,462 

INDELs with a length more than 50 bp. Finally, we excluded 1,953,082 variants with 

a HWE p value < 10-6 by VCFtools (v 0.1.13) (Danecek et al., 2011). 

 

Variant annotations 

The functional annotation of variants were performed with the ANNOVAR tool 

(Wang et al., 2010). We annotated the gene name, protein change, location and 

function for all the variants. The pathogenic or benign of variants were annotated by 

SIFT (Danecek et al., 2011), PolyPhen-2 (Adzhubei et al., 2013), MutationTaster 

(Schwarz et al., 2014) and ClinVar version 20200728 (Landrum et al., 2014).  

 

Genotyping 

The 5,841 samples of the WBBC Project and 184 individuals (13.3×-54.7×) 

sequenced by WGS were genotyped by ASA-750K (Asian Screening Array) 

BeadChip designed for the East Asian population. The genotype call rates for each 

sample were more than 95%. We computed the allele frequencies in the Chinese 

population using 5,841 samples and 484,554 SNP variants passed the filtrations 

(--geno 0.05 --hwe 0.000001 and --maf 0.01) by Plink version 1.9 (Chang et al., 2015) 

and were consequently retained for further analyses. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Evaluation of genotype concordance 

We applied the sequencing and genotype data from 184 individuals to estimate the 

whole genome sequencing calling accuracy. The genotype from SNP arrays were 

considered as the reference allele and our calling variants were test set. We also 

conducted the LD-based genotype refinement for the low confidence genotypes and 

missing sites via BEAGLE 5.1 with default settings (Browning et al., 2018). We 

computed the heterozygote disconcordance, non-reference genotype concordance, 
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homozygote genotype concordance, specificity and non-reference sensitivity for the 

shared variants (Figure S20) (Linderman et al., 2014). 

 

PCA, ADMIXTURE and effective population size inference  

We removed the variants in imputed dataset by Rsq ≤ 0.95, and merged it with our 

sequencing dataset by GATK v4.1.4.0 (McKenna et al., 2010), resulting in 9,996 

individuals and 2,016,533 bi-allelic SNPs. We further merged the WBBC dataset with 

the 1KG Project. After filtering SNPs by MAF ≤ 0.01, a total of 1,857,766 bi-allelic 

SNPs with 100% call rate were left for subsequent analysis. We noted that the 

participants of the WBBC Project mainly came from three provinces of China, 

including Jiangxi (23.8%), Shandong (26%) and Hunan (31.4%). To avoid the 

potential bias of oversampling certain provinces (McVean, 2009), we randomly 

extracted 150 samples from each of the three provinces. Finally, 2,056 Han population 

individuals, 205 Minority population individuals, and 2,504 1KG individuals were 

included. We then performed PCA (Menozzi et al., 1978), ADMIXTURE (Alexander 

et al., 2009) and inference of effective population size. Note that the minority 

population individuals were held-out from each province group. 

 

We excluded the SNPs with HWE p value < 1x10-6, MAF < 0.05 and genotype 

missing > 0.05 using the Plink software (Chang et al., 2015). Then we performed the 

linkage disequilibrium based SNP pruning with --indep-pairwise 50 10 0.5. The final 

data sets had 338,275 bi-allelic SNPs for PCA and ADMIXTURE analyses. We used 

the smartpca command from the software EIGENSOFT (v6.1.4) (Price et al., 2006) 

and calculated the components for the first ten PCs. PC1 and PC2 were selected for 

the genetic diversity comparison, which were plotted by in-house R scripts. 

 

ADMIXTURE analysis were conducted with 2,056 Han individuals, 103 CHB (Han 

Chinese in Beijing, China), 105 CHS (Han Chinese South, China), 93 CDX (Chinese 

Dai in Xishuangbanna, China), 104 JPT (Japanese in Tokyo, Japan) and 99 KHV 

(Kinh in Ho Chi Minh City, Vietnam) individuals from combined dataset by 
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ADMIXTURE version 1.3.0 using default parameters (Patterson et al., 2012). To 

obtain the optimal K value, we analyzed the ADMIXTURE with 10 random seeds for 

each K ranging from 2 to 8. The default 5-fold cross-validation procedure was carried 

out to estimate prediction errors. The K value with the highest log-likelihood was 

selected as the most probable model. We further estimated the history of effective 

population size for four regions using SMC++ (Terhorst et al., 2017). Using the 

ancestral components analyzed by ADMITURE with K = 4, we designated 10 most 

representative samples with the high sequence-depth as the distinguished lineage 

sample for each region. We followed the suggestion of SMC++ authors and masked 

all low-complexity regions of the genome using the 1KG Phase3 supported data 

(Genomes Project et al., 2015), and kept all left bi-allelic SNPs for next analysis. For 

each region, we repeated SMC++ 10 times according to each distinguished lineage 

sample. The combined results were used to form the composite likelihood for the final 

estimation. The per-generation mutation rate was set at 1.25e-8 and a generation time 

of 29 years was used to convert coalescent scaling to calendar time (Terhorst et al., 

2017; Wu et al., 2019). 

 

FST statistics, IBD analysis and genetic drift estimation 

We next performed FST statistics (Weir and Cockerham, 1984), genetic drift 

estimation and identity-by-descent (IBD) analysis. We calculated weighted 

Weir-Cockerham FST estimates for each pair of the WBBC provinces and 1KG 

populations using VCFtools v0.1.13 (Danecek et al., 2011) based on 1,857,766 

bi-allelic SNPs. The window size was set to 50,000 and step size to 5,000. We built 

FST values matrix and performed hierarchical clustering with it using 

complete-linkage method implemented in the hclust function in the pheatmap package 

in R. 

 

The IBD analysis was based on haplotypes of individuals. The genome-wide IBD 

segments were identified for all pairwise Han Chinese from 27 administrative 

divisions of China using Refined IBD software (Browning and Browning, 2013) with 
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default settings. We built the IBD counts matrix for each pair of administrative 

divisions. Given that the sample size of 27 administrative divisions were different, we 

normalized the total IBD counts by sample size. For the IBD segment counts within 

administrative divisions (for example, province ‘A’), IBDnormalized counts of A = IBDtotal 

counts of A / comb(NA), where comb was the combination function in math and NA was 

the sample size of province ‘A’. For the IBD segment counts between two 

administrative divisions (for example, province ‘A’ and ‘B’), IBDnormalized counts of A vs. B 

= IBDtotal counts of A vs. B / NA * NB, where NA and NB were the sample size of province ‘A’ 

and ‘B’ respectively. The hierarchical clustering was then performed based on the 

matrix by using the same method as FST clustering. 

 

We computed relative genetic drift estimates between each province using TreeMix 

v1.13 with default settings on the same SNPs as the FST analysis used (Pickrell and 

Pritchard, 2012). The genetic drift was represented by a ‘drift parameter’ in TreeMix, 

more details were described elsewhere in the study (Pickrell and Pritchard, 2012). A 

maximum likelihood tree for the Han Chinese population from 27 administrative 

divisions was then plotted. Note that the Heilongjiang province, which was located in 

the northern most part of China, was set as the reference point. For judging the 

confidence in our tree topology, ten bootstrap replicates were generated by setting the 

-bootstrap -k flag ranging from 10 to 100 (step-size = 10) to resample blocks of 

contiguous SNPs for drift parameter estimation. Plink version 1.9 was used in this 

part to calculate allele counts of SNPs for reformatting of input data that the software 

required (Chang et al., 2015). 

 

Calculation of the singleton density score 

The Singleton Density Score (SDS) can be applied to infer recent allele frequency 

changes in the past 2,000-3,000 years by calculating the distance between the nearest 

singletons on either side of a test-SNP using whole-genome sequence data (Field et al., 

2016). In our data set, 73.91 million autosomal variants were identified in 4,395 Han 

Chinese samples, of which 68,492,157 were bi-allelic SNVs in all individuals. We 
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filtered the SNVs by Hardy-Weinberg equilibrium (p < 1×10-6). We downloaded the 

Homo sapiens ancestral annotation information from the Ensembl release-98. SNVs 

without defined ancestral allele were subsequently removed. Additional SNPs were 

excluded by MAF <5% and less than 5 individuals for each of the three genotypes. 

The final data set included 4,259,171 SNVs and 17,943,790 singletons for the SDS 

computation. 

 

Gamma-shape was estimated with Gravel_CHB as a demographic model for each 

derived allele frequency (DAF) bin by 0.005 from 0.05 to 0.95. The haplotypes was 

set to 8,790, twice the number of individuals. We excluded the centromeres and 

heterochromatic regions with chromosome boundaries files. The skip boundary 

missing singletons fraction threshold was 0.5. The raw SDS scores were computed 

using recommended scripts and standardized within each 1% bin of DAF for each 

chromosome by calculating z-scores. Two-tailed p-values were converted by whole 

genome-wide standardized SDS z-scores. 

 

Calculation of iHS values 

To detect the genomic signatures of recent positive selection, we computed the 

integrated haplotype score (iHS) using the R package rehh v3.1.0 (Gautier et al., 2017; 

Voight et al., 2006). The data from 2,860 North, 148 Central, 5,274 South and 92 

Lingnan Han Chinese individuals were extracted from the imputed and phased files. 

In total, 1,967,791, 1,897,093, 1,981,861 and 1,853,882 biallelic SNVs were obtained 

in all autosome chromosomes in four Han populations respectively. The SNVs were 

further filtered by Hardy–Weinberg equilibrium (--hwe 0.000001) and minor allele 

frequency (--maf 0.01) using the Plink software (Chang et al., 2015). The ancestral 

allele of SNVs were defined by the data downloaded from Ensembl release-98. We 

removed SNVs without an ancestral allele state. 

 

In total, 1,725,164 SNVs in North population, 1,712,580 SNVs in Central population, 

1,720,051 SNVs in South population and 1,685,839 SNVs in Lingnan population 
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passed quality control and were retained for statistical analysis. We performed iHS 

statistics independently for the population. The absolute values of the iHS scores were 

taken to analyze the data. We calculated the fraction of SNVs with |iHS| > 2 in 200 kb 

non-overlapping genomic windows (N|iHS|>2 / Ntotal) and filtered the windows with < 20 

SNVs (Pickrell et al., 2009). The genes located in the top 1% of windows were 

considered to be significant regions. The genes or genomic regions were defined 

within 100 kb of the identified non-overlapping SNVs. We performed the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analysis for the adaptive candidate genes using R package clusterProfiler 

v3.16.0 (Yu et al., 2012). 

 

Reference panel construction 

The multi-allelic sites were split into bi-allelic sites via the BCFtools norm tool 

version 1.7 (Li et al., 2009). We filtered the variants with --max-missing 0.9 and 

--hwe 0.000001 using VCFtools version 0.1.13 (Danecek et al., 2011). In total, 

508,196 variants were excluded. BEAGLE version 5.1 was used to perform haplotype 

phasing of all 4,489 samples with default settings. We conducted the haplotype 

re-phasing with SHAPEIT version 2 (r900) by windows 0.5, states 200 and 

effective-size 14,269 (Delaneau et al., 2013). Finally, the SHAPEIT haplotypes were 

converted into VCF format files. 

 

Quality control, pre-phasing and imputation 

The rigorous variant-level and sample-level quality control were then performed as 

following steps: we kept autosome bi-allelic SNPs and calculated genetic relationship 

matrix across all individuals using variants with MAF > 0.01 by GCTA v1.91 (Yang et 

al., 2011), and then samples with the pairwise genetic relationship coefficient > 0.025 

were thought to be cryptically related and removed; the variants and samples with a 

missing call rate > 5% were excluded by Plink version 1.9 (Chang et al., 2015); the 

variants deviating from Hardy-Weinberg equilibrium at p < 10e-6 or with MAF < 0.01 

were also excluded. Finally, 5,679 individuals and 470,279 bi-allelic SNPs on 
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autosomes passed the filters and QC. We pre-phased the array dataset by SHAPEIT v2 

setting the effective-size parameter to 14,269 as the software recommended for the 

Asian population (Delaneau et al., 2011). Imputation was then performed with our 

own haplotype reference panel, which consisted of 8,978 haplotypes at 34,948,874 

SNPs (no singleton), by MINIMAC v4 (Das et al., 2016). The length of chunks was 

set to 20MB with a 4MB overlap between contiguous chunks for the imputation. We 

employed R-square (Rsq) to control the quality of imputed results and filtered out 

variants with Rsq ≤ 0.95. 

 

Reference panel evaluation for imputation in the Chinese population 

We evaluated the accuracy of genotype imputation for five reference panels in the 

Chinese population. These panels included the most widely used panel, the 1KG 

(Genomes Project et al., 2015), and the largest Chinese-specific panel CONVERGE 

(CONVERGE, 2015), and our own WBBC panel, and two combined panels that 

merged the WBBC datasets with the 1KG and EAS respectively. The imputation 

accuracy of these panels was then compared with each other by three different metrics. 

The design for the entire evaluation was detailed in Figure S18. 

 

The 1KG Project reference panel (Phase 3, v5a) was downloaded from the ftp sites 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/), and the CONVERGE Project 

reference panel was downloaded from the European Variation Archive 

(http://ftp.ebi.ac.uk/pub/databases/eva/PRJNA289433/). For the 1KG, CONVERGE 

and WBBC reference panels, we split multi-allelic variants into multiple bi-allelic 

variants and removed singletons and doubletons (minor allele counts, MAC ≤ 2) by 

using BCFtools. Besides, there were 184 samples that were included in both the WGS 

and DNA array genotyping for the evaluation purpose. These samples were held-out 

from the current WBBC panel. Finally, we obtained 3,284,591 variants and 5,008 

haplotypes for the 1KG, 1,115,342 variants and 23,340 haplotypes for the 

CONVERGE, and 2,089,508 variants and 8,610 haplotypes for the WBBC. Note that 

all the manipulations were conducted on chromosome 2 (Huang et al., 2009; Wu et al., 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430086


 33 

2019). For two combined reference panels, the WBBC+1KG and WBBC+EAS, we 

employed the reciprocal imputation approach to implement the combination to 

preserve maximal variants (Huang et al., 2015). The EAS dataset was directly 

extracted from the 1KG, and sites with MAC equals zero were removed subsequently. 

We reciprocally conducted imputation for the WBBC/1KG and WBBC/EAS, and then 

respectively excluded 2,663 and 2,142 INDELs with incompatible alleles in panels 

that could fail the next panel-merging. BCFtools was used to finally merge the 

reference panels (Li et al., 2009). Eventually, the WBBC+1KG combined panel 

consisted of 13,618 haplotypes at 4,450,989 variants, with 917,784 variants shared by 

both panels. The WBBC+EAS combined panel consisted of 9,618 haplotypes at 

2,411,382 variants, between them, 849,281 variants were shared. We extracted 

chromosome 2 from our QCed chip array dataset and randomly masked one fifteenth 

SNPs (Huang et al., 2009; Wu et al., 2019), a total of 5,679 individuals were included 

and 2,600 SNPs were masked for the next evaluation. 

 

We transformed the format of five panels into M3VCF and performed genotype 

imputation by jointly using Minimac3/4 (Das et al., 2016). The length of chunks for 

imputation was set to 20MB with 4MB overlapped between contiguous chunks. The 

accuracy of different reference panels was evaluated by three metrics. In the first one, 

the estimated value of the squared correlation between imputed genotypes and true, 

unobserved genotypes (i.e., R-square) (Das et al., 2016), was calculated based on the 

imputed dosage and produced with the imputation results by Minimac4. This value 

was also the most commonly used metric. In this study, an imputed variant with the 

Rsq ≥ 0.8 was considered as ‘well-imputed’. The second metric was non-reference 

allele (NR-allele) concordance. The variants that had been masked in the beginning 

were imputed by different panels. We then calculated the NR-allele concordance 

between imputed genotypes and the original ones in chip array for each individual 

(Imputed vs. Array) (Huang et al., 2009). The third metric was similar to the second, 

but the NR-allele concordance was calculated between imputed genotypes and WGS 

genotypes by the samples that we hold-out (Imputed vs. WGS). The definition of 
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concordance and corresponding formula was specified in Figure S20 (Linderman et 

al., 2014). 

 

Genotype imputation server 

Using the WBBC Phase 1 WGS data and 1KG Phase 3 data (Genomes Project et al., 

2015), we developed a genotype imputation server for public use. We included the 

WBBC and 1KG reference panel in the server and re-constructed two combined 

panels, the WBBC+EAS and WBBC+1KG. All panels were built in both GRCh37 

and GRCh38 version, and singletons were excluded. MINIMAC v3 (Das et al., 2016) 

was used here to build genotype data in the M3VCF format to save the computational 

memory. We developed the pipeline in Python and Shell, and employed MySQL for 

the management of data. For the VCF-formatted array data uploaded by users, validity 

of data would be checked first. Before the actual imputation, there were some basic 

filtering steps conducted by BCFtools (Li et al., 2009), including removing all 

mismatched SNPs, monomorphism, and duplicate SNPs. The 1KG was used here as 

the allele reference. The next phasing and imputation were performed using 

SHAPEIT v2 and MINIMAC v4 (Das et al., 2016; Delaneau et al., 2011). We 

specified a policy of data security to protect the user’s data across the entire 

interaction process with the server. Also, we wrote a help manual and illustrated all 

processes of our pipeline to facilitate users. Detailed information could be found in 

our website (https://wbbc.westlake.edu.cn). 

 

Data and Code Availability 

The allele frequencies of all variants and genotype imputation server are available via 

the website (https://wbbc.westlake.edu.cn). Raw sequencing data have been deposited 

to the CNGB Sequence Archive (CNSA) of China National GeneBank (CNGBdb) 

with accession number (CNP0001516) (https://db.cngb.org/cnsa/). The application 

forms are required for researchers and the study must conform to the regulations of 

the Human Genetic Resources Administration of China (HGRAC). Researchers who 

request access to the raw genetic data must get permission from Ministry of Science 
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and Technology of the People’s Republic of China and the Institutional Review Board 

of the Westlake University. 
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Table 1. The average number of autosomal variants in each genome of four regions. 

 Han Chinese 

(n = 1151,  

Depth = 16.65) 

North 

(n = 213,  

Depth = 16.56) 

Central 

(n = 42,  

Depth = 16.67) 

South 

(n = 845,  

Depth = 16.66) 

Lingnan 

(n = 51,  

Depth = 16.89) 

Annotation No. Het/Hom No. Het/Hom No. Het/Hom No. Het/Hom No. Het/Hom 

Type 

SNVs 2,936,012 1.27 2,942,027 1.28  2,935,356 1.26  2,934,641 1.26  2,934,137 1.26  

Novel SNVs (not in dbSNP151) 7,855 346.65 8,876 422.91  8,544 392.03  7,602 326.45  7,212 361.04  

Novel SNVs (not in 1000G) 222,462 1.52 223,170 1.54  222,604 1.52  222,298 1.51  222,107 1.51  

INDELs 191,333 2.87 191,636 2.86  191,214 2.84  191,212 2.87  192,163 2.87  

Novel INDELs (not in dbSNP151) 1,453 82.6 1,497 85.05  1,486 85.07  1,440 81.79  1,452 83.74  

Novel INDELs (not in 1000G) 79,853 5.93 79,342 5.86  79,593 5.87  79,953 5.95  80,556 5.96  

Location 

Exon 31,419 1.36 31,480 1.38  31,401 1.36  31,408 1.36  31,356 1.35  

Intron 1,335,361 1.34 1,337,888 1.35  1,334,826 1.34  1,334,788 1.34  1,334,732 1.33  

Splice-site 3,221 1.44 3,223 1.46  3,212 1.43  3,220 1.44  3,219 1.44  

UTR 35,272 1.36 35,355 1.38  35,327 1.36  35,247 1.35  35,281 1.36  

Upstream 19,367 1.3 19,412 1.32  19,382 1.31  19,356 1.30  19,353 1.29  

Downsteam 20,326 1.37 20,382 1.39  20,369 1.37  20,309 1.36  20,330 1.36  

Intergenic 1,682,380 1.31 1,685,921 1.33  1,682,052 1.31  1,681,525 1.31  1,682,029 1.30  

Function 

Synonymous 10,209 1.34 10,214 1.36  10,182 1.34  10,211 1.34  10,184 1.34  

Missense 8,915 1.36 8,938 1.38  8,918 1.36  8,910 1.35  8,911 1.36  

Stoploss 10 1.49 10 1.50  10 1.53  10 1.49  10 1.43  

Stopgain 70 2.46 70 2.48  67 2.24  70 2.46  70 2.45  

Frameshift insertion 24 2.22 25 2.24  25 2.30  24 2.21  24 2.21  
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Frameshift deletion 33 4.9 33 5.01  33 6.08  33 4.85  32 4.51  

Non-frameshift insertion 25 1.88 26 1.92  26 2.01  25 1.87  26 1.87  

Non-frameshift deletion 44 4.56 45 4.74  44 5.20  43 4.46  43 4.91  

Disease-associated 

SIFT:deleterious 1,623 2.86 1,625 2.90  1,627 2.82  1,623 2.85  1,622 2.85  

Polyphen2:probably damaging 956 3.32 958 3.38  958 3.25  955 3.31  951 3.22  

Polyphen2:possibly damaging 758 2.92 761 2.96  758 2.88  757 2.92  756 2.91  

MutationTaster:disease causing 8,591 1.24 8,617 1.26  8,593 1.24  8,585 1.24  8,575 1.24  

ClinVar:Pathogenic 11 1.9 11 1.75  11 2.58  11 1.90  11 2.08  

10bp from exon-intron boundary as splice variants 
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Table 2. Gene Ontology (GO) analysis of candidate genes in top 1% genomic 

regions with positive selection by iHS. 

GO term Categories North Central South Lingnan 

GO biological process 

GO:0006067 ethanol metabolic 

process 

0.0010230 0.0154944 0.0022526 0.0005998 

GO:0006069 ethanol oxidation 0.0008038 0.0154944 0.0018229 0.0000114 

GO:0008544 epidermis development - - 0.0000594 0.0008144 

GO:0009913 epidermal cell  

differentiation 

- - 0.0000091 0.0003389 

GO:0016999 antibiotic metabolic 

process 

- 0.0154944 0.0008874 - 

GO:0017000 antibiotic biosynthetic 

process 

- 0.0045203 0.0001621 - 

GO:0030216 keratinocyte differentiation - - 0.0000079 0.0000755 

GO:0031424 keratinization - - 0.0000002 0.0000073 

GO:0043588 skin development - - 0.0000790 0.0001520 

GO:0050665 hydrogen peroxide 

biosynthetic process 

- 0.0096893 0.0007227 - 

GO cellular component 

GO:0005882 intermediate filament - - 0.0000001 0.0000004 

GO:0045095 keratin filament - - 0.0000079 0.0000755 

GO:0045111 intermediate filament 

cytoskeleton 

- - 0.0000002 0.0000003 

Benjamini and Hochberg (BH) correction was applied to enrichment p values for multiple testing. 

“-” represents that the adjusted p-value is >0.05. 
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Figure 1. The statistics of samples and variants in the WBBC-cohort. 

(A) Sample distribution and statistics by geography. The pie chart shows the number 

of samples in each administrative division. The proportion of samples sequenced by 

whole-genome sequencing (WGS) and those genotyped by high-density Illumina 

Asian Screening Array (ASA) were marked in red and green, respectively. The values 

were converted into Log10. 

(B) The number of SNV and INDEL variants identified in the WBBC cohort in six 

frequency bins: AC = 1, AC = 2, AC > 2 & AF < 0.005, 0.005 ≤ AF ≤ 0.05, and AF > 

0.05. 

(C) The estimated heterozygote discordance rate versus sequencing depth for 184 

samples. The red dots indicate the average proportion of post-genotype refinement via 

Beagle tools and the green dots denote the raw genotype calls. 

(D) The number of variants in 22 autosomes and X chromosome in the WBBC, 1000 

Genome Project (1000G), gnomAD, and UK10K datasets. The horizontal bar plot 

shows the total number of variants in each of the four datasets. The individual dots 

and connected dots indicate each dataset and a combination of two or more datasets, 
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respectively. Each vertical bar represents the number of variants in each dataset or 

overlapping variants in those datasets. 

(E) Functional annotations of all novel variants were absent in dbSNP Build 151. The 

proportion of each category was filled with a different color. The upper pie chart 

showed all the 20 classification terms. The bottom pie chart only displayed the 

variants in the coding and splice regions (10bp from exon-intron boundary). 

 

 

Figure 2. PCA and ADMIXTURE analysis of the Han Chinese populations.  

(A) A map of the People’s Republic of China showing its 34 administrative divisions. 

“NA” indicates that the Han Chinese samples were not recruited from that region, 

which included Beijing (BJ), Hong Kong (HK), Macao (MO), Shanghai (SH), Taiwan 

(TW), Tibet (XZ), and Xinjiang (XJ). The Qinling-Huaihe River line lies in central 

China, while the Nanling Mountains are in southern China.  

(B) Principal Component Analysis (PCA) of the Han and Minority Chinese 

individuals from four regions. The administrative divisions are shown by the distinct 

letters. Minority people are marked with “M”. The first two components show the 

main differentiation between Northern and Southern structures. The Han Chinese 
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populations can be classified into four subgroups: North Han (cyan color), Central 

Han (dark-red color), South Han (purple color), and Lingnan Han (golden color).  

(C) ADMIXTURE analysis of 2,056 Han Chinese individuals from 27 administrative 

divisions for the optimal K value = 3. Each vertical bar represents the average 

proportion of ancestral components in the regions. The length of each color indicates 

the percentage of inferred ancestry components from ancestral populations. Provinces 

are arranged by the value of hypothetical ancestral components 1 in each group. The 

upper pie charts denote the average proportion of components across individuals from 

the four subgroups. 

 

 

Figure 3. FST, IBD, genetic drift, and effective population size of the Han Chinese 

populations. 
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(A) A heatmap of pairwise FST between any two of the 27 administrative divisions in 

China. The bars on the top and left show the classification of administrative divisions 

in the four regions. The hierarchical clustering is implemented by the hclust function 

in the pheatmap R package. 

(B) A heatmap of pairwise IBD segments count between administrative divisions in 

China. The number of IBD segments is normalized by the sample size of each 

province (see Methods). The hierarchical clustering is implemented by the same 

method as the FST clustering used.  

(C) A maximum likelihood tree of the Han Chinese in 27 administrative divisions. 

The plot is rooted in the northernmost province, and the x-axis represents estimated 

genetic drift. All administrative divisions in the tree are colored by different regions. 

The scale bar shows ten times the average standard error of the entries in the sample 

covariance matrix for estimating the drift parameter. The map shows the 

corresponding geographical distribution. Note that the tree topology for the Northern 

provinces has a slight difference across the bootstrap replicates due to the extreme 

homogeneity. 

(D) Dynamics of effective population sizes of the Han Chinese in four regions. The 

left panel shows the results on a log–log scale from 1 million to 1,000 years ago and 

the right panel shows the results on a linear scale over the past 20,000 years. A 

generation time of 29 years was used to convert coalescent scaling to calendar time. 

(E) Wilcoxon rank-sum test results for the FST (left panel), normalized IBD segments 

(middle panel), and relative genetic drift (right panel) between pairwise Northern 

provinces and pairwise Southern provinces. 
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Figure 4. Whole-genome-wide recent selection signatures of the Han Chinese 

population by singleton density score (SDS) analysis.  

(A) A Manhattan plot of the natural selection signatures from the WGS data of the 

Han Chinese individuals. In the x-axis are the 22 autosomes. The y-axis represents the 

-log10 (P) of the two-tailed p-values for standardized SDS z-scores. The horizontal 

red line indicates the significance threshold (p < 5 × 10-8).  

(B) The derived allele frequency (DAF) of SNVs with significant selection signatures 

in each gene for different populations. The WBBC-Han is all the Han Chinese 

individuals sequenced by whole-genome sequencing (WGS) in the WBBC cohort. 

North, Central, South, and Lingnan are the four Han subgroups. EAS, SAS, EUR, 

AMR and AFR come from the 1000 Genome Project (1KG). 
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Figure 5. Imputation performance of five reference panels in the Han Chinese. 

(A) The average R-square (Rsq) and number of well-imputed (Rsq ≥ 0.8) variants in 

each MAF bin for Chinese imputation by five reference panels. (B) The cumulative 

number and (C) proportion of well-imputed variants. (D) Non-reference allele 

(NR-allele) concordance rate distribution (imputed variants vs. array variants). Each 

dot represents an individual. The x-axis and y-axis denote heterozygote and 

homozygote, respectively. The plots on the top and right are the corresponding density 

distributions. The NR-allele genotype concordance rate for (E) rare, low-frequency, 

and common variants and (F) overall variants (imputed variants vs. WGS variants). 

The 1KG means 1000G Phase3 and EAS means East Asian group in 1000G Phase 3. 

All imputations were conducted on chromosome 2. 
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Figure S1. The sequencing depth of all 4,489 samples.  

The central red dot lines are the median. The inner chart represents the sequencing 

depth by sorted samples. The area plot indicates the density of sequencing depth. 

 

Figure S2. Schematic representation of whole-genome sequencing analysis 

pipelines. 
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The BWA and GATK4 recommendation pipeline and variant analysis strategy were 

performed on the WBBC-cohort dataset with the GRCh38 and GRCh37 human 

reference genome, respectively. 

 

Figure S3. The distribution of variants per chromosome.  

Green represents the SNVs and red denotes the INDELs. (A) The total number of 

variants detected in each chromosome. (B) The novel variants based on dbSNP build 

151 and their distribution in each chromosome. 
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Figure S4. Histogram of the SNVs substitute types in all chromosomes. 

The x-axis indicated the substitution types. The y-axis represented the number of 

variants. 

 

Figure S5. Distribution of the length of INDELs variants. 

The x-axis was the length of variants from -50 to 50 bp, in which deletion variants 

were filled with red color and insertion variants with green color. The y-axis 

represented the number of variants. 
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Figure S6. A comparison of the genotype concordance between WGS and SNP 

array data. 

(A) Non-reference genotype concordance, (B) homozygote genotype concordance, (C) 

non-reference sensitivity, and (D) specificity. The LD-based genotype refinement was 

conducted by BEAGLE software version 5.1. The red dots indicate the average 

proportion of post-genotype refinement and the green dots denote the raw genotype 

calls. 
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Figure S7. Functional annotation and distribution of variants in three frequency 

bins. 

Rare allele (< 0.5%), low-frequency allele (0.5% ≤ AF ≤ 5%), and common allele 

(AF > 5%) are from left to right. The x-axis represents the functional categories, while 

the y-axis indicates the variants count. (A) Missense and Synonymous variants. (B) 

frameshift insertion, frameshift deletion, non-frameshift insertion, and non-frameshift 

deletion. (C) Stoploss vs. Stopgain. (D) Pathogenic and likely pathogenic variants 

annotated by ClinVar. 
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Figure S8. PCA of North Han Chinese samples.  

Each letter represents one administrative division. The individuals are highlighted in 

cyan color in north regions, including Gansu (g), Hebei (h), Heilongjiang (r), Henan 

(O), Inner Mongolia (I), Jilin (j), Liaoning (L), Ningxia (N), Qinghai (Q), Shaanxi (a), 

Shandong (D), Shanxi (t) and Tianjin (T).  
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Figure S9. PCA of Central Han Chinese samples.  

Each letter represents one administrative division. The individuals are highlighted in 

dark-red for the central regions of Anhui (A) and Jiangsu (R). 
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Figure S10. PCA of South Han Chinese samples.  

Each letter represents one administrative division. The individuals are highlighted in 

purple c for the southern regions of Chongqing (C), Fujian (F), Guizhou (U), Hubei 

(W), Hunan (V), Jiangxi (n), Sichuan (d), Yunnan (Y) and Zhejiang (Z). 
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Figure S11. PCA of Lingnan Han Chinese samples.  

Each letter represents one administrative division. The individuals are highlighted in 

golden color for the Lingnan regions of Guangxi (E), Guangzhou (G) and Hainan (H). 

 

Figure S12. PCA of Chinese, JPT, and KHV individuals from the 1000 Genomes 

Projects. The blue “J” represents the JPT individuals, while “K” indicates the KHV 

individuals. 
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Figure S13. ADMIXTURE analysis of the Han Chinese, CHB, CHS, CDX, KHV 

and JPT individuals from the 1000 Genomes Projects.  

The Han Chinese (2,056 individuals) was selected from our WBBC cohort. CHB (103 

individuals) is a Han Chinese in Beijing. CHS (105 individuals) is Han Chinese from 

southern China. CDX (93 individuals) is Chinese Dai in Xishuangbanna. KHV (99 

individuals) is Vietnamese from Kinh in Ho Chi Minh City. JPT (104 individuals) is 

Japanese in Tokyo. The provinces and regions are shown on the left.  
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Figure S14. Pairwise FST between the WBBC and 1KG Project populations. 

Numbers in each rectangle mean the pairwise FST value times 1,000. The bars on the 

top and left show the population classifications. SAS, AMR, AFR, EUR, and EAS are 

five continent-level ancestry groups of the 1KG Project. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430086


 64 

 

Figure S15. Geographic patterns of pairwise FST using the 1KG as a reference. 

Using the four non-Chinese continent-level ancestry groups of the 1KG Project as the 

reference, including (A) AMR, (B) AFR, (C) SAS, and (D) EUR, we further 

investigated the geographic patterns of FST in the 27 administrative divisions. Regions 

in grey were not sampled. 
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Figure S16. Bootstrap replicates for the tree topology in 27 administrative 

divisions. 

The bootstrap replicates were generated by the -bootstrap -k flag of TreeMix software. 

The plots were y-axis free. The scale bar shows ten times the average standard error 

of the entries in the sample covariance matrix for the estimated drift parameter. 
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Figure S17. Sharing of genomic regions with higher iHS signals among four 

subgroups. 

The number listed within the Venn Diagram indicates the numbers of 200 kb 

non-overlapping genomic windows in the top 1% of the fraction of SNVs with 

|iHS| >2. 
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Figure S18. Imputation evaluation workflow.  

Rsq: R-square value calculated by Minimac4. NRC rate: non-reference allele 

genotype concordance rate. 1000G included 3,284,591 variants and 5,008 haplotypes; 

CONVERGE included 1,115,342 variants and 23,340 haplotypes. The WBBC 

included 2,089,508 variants and 8,610 haplotypes. The WBBC+1000G combined 

panel consisted of 13,618 haplotypes with 4,450,989 variants. The WBBC+EAS 

combined panel consisted of 9,618 haplotypes with 2,411,382 variants 
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Figure S19. The distribution of the FREEMIX scores was inferred by 

verifyBamID version1.1.3. 

The red dots denoted the samples removed by the FREEMIX scores (> 0.05). 

 

Figure S20. Definition of genotype concordance, specificity, and sensitivity 

Letter A represents reference allele while B represents non-reference (NR) allele. The 

dot means missing called allele. For each metric, the value equals to the 

corresponding red rectangles divided by all rectangles with a blue border. 
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Table S1. The geographic distribution of all the WBBC cohort samples. The 

individuals were recruited from 29 of the 34 administrative divisions of the People's 

Republic of China (PRC). 

 

Table S2. The summary of autosomal variants in each individual in the WBBC 

cohort. 

 

Table S3. The statistics of variants in 4,489 individuals. 

 

Table S4. The pathogenic and likely pathogenic variants were recorded by Clinvar in 

the 1,151 healthy individuals. 

 

Table S5. Pair-wise Fst values for 27 provinces of the China in WBBC 

 

Table S6. Pair-wise Fst values for 26 populations in the 1KG Phase3 and 4 regions of 

the China in WBBC 

 

Table S7. Pair-wise Fst values for 27 provinces of the China in WBBC and 4 

continent groups in the 1KG Phase3 

 

Table S8. SNVs with significant selection signatures by SDS analysis in the Han 

Chinese population. 

 

Table S9. The top 1% of non-overlapping genomic windows was identified for 

positive selection in the North Han Chinese population using the iHS statistic. The 

adjacent regions, including the same genes, were merged. The clusters were sorted by 

the fraction of SNVs with |iHS| > 2. 

 

Table S10. The top 1% of non-overlapping genomic windows was identified for 

positive selection in the Central Han Chinese population using the iHS statistic. The 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430086


 70 

adjacent regions, including the same genes, were merged. The clusters were sorted by 

the fraction of SNVs with |iHS| > 2. 

 

Table S11. The top 1% of non-overlapping genomic windows was identified for 

positive selection in the South Han Chinese population using the iHS statistic. The 

adjacent regions, including the same genes, were merged. The clusters were sorted by 

the fraction of SNVs with |iHS| > 2. 

 

Table S12. The top 1% of non-overlapping genomic windows was identified for 

positive selection in the Lingnan Han Chinese population using the iHS statistic. The 

adjacent regions, including the same genes, were merged. The clusters were sorted by 

the fraction of SNVs with |iHS| > 2. 

 

Table S13. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 

candidate genes in the top 1% genomic regions with positive selection by iHS. The 

terms were selected according to the p-value (< 0.05). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.06.430086doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.06.430086

