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Abstract Directing spatial attention towards a particular stimulus location enhances cortical10

responses at corresponding regions in cortex. How attention modulates the laminar response11

profile within the attended region, however, remains unclear. In this paper, we use high field (7T)12

fMRI to investigate the effects of attention on laminar activity profiles in areas V1-V3; both when a13

stimulus was presented to the observer, and in the absence of visual stimulation. Replicating14

previous findings, we find robust increases in the overall BOLD response for attended regions in15

cortex, both with and without visual stimulation. When analyzing the BOLD response across the16

individual layers in visual cortex, we observed no evidence for laminar-specific differentiation with17

attention. We offer several potential explanations for these results, including theoretical,18

methodological and technical reasons. Additionally, we provide all data and pipelines openly, in19

order to promote analytic consistency across layer-specific studies, improve reproducibility, and20

decrease the false positive rate as a result of analytical flexibility.21

22

Introduction23

Directing visual attention to a location in the visual field typically improves behavioral sensitivity24

to stimuli presented at that location (Posner, 1980; Lee et al., 1997a; Yeshurun and Carrasco, 1998;25

Carrasco et al., 2004; Baldassi and Verghese, 2005; Ling et al., 2009). It is well known that these26

attentional benefits in behavior are accompanied by increases in BOLD response in early visual27

areas (e.g. Brefczynski and DeYoe (1999); Gandhi et al. (1999); Kastner et al. (1999)), but how28

top-down processes modulate cortical responses at the laminar level remains unknown.29

It is known from anatomical studies that the human cerebral cortex can be subdivided into30

histological layers with different cell types. The cytoarchitectonic structure varies across the brain31

and forms the basis of the Brodmann atlas (Brodmann, 1909). While the precise function of each32

cortical layer remains unclear, their connectivity profile suggests a division in terms of bottom-up33

and top-down processing (Felleman and Van Essen, 1991; Barone et al., 2000; Shipp, 2016). Most34

brain areas have six different histological layers. Specifically, Layer IV and to a lesser extent Layer35

V/VI are commonly associated with receiving feedforward drive from Layer III of lower cortical areas36

or from the thalamus (Jones, 1998; Constantinople and Bruno, 2013). Layers I-II and VI, in contrast,37

are typically implicated in receiving downward information flow (feedback), which often originates38

from layer V (Alitto and Usrey, 2003). This bottom-up versus top-down connectivity profile of each39

of the layers is to some degree also paralleled in functional data. That is, from neurophysiological40

1 of 23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.07.430129doi: bioRxiv preprint 

tim@timvanmourik.com
j.jehee@donders.ru.nl
https://doi.org/10.1101/2021.02.07.430129
http://creativecommons.org/licenses/by/4.0/


and neuroimaging work, it is known that various visual stimuli and tasks can exert differential effects41

on the various layers (Maier et al., 2010; Xing et al., 2012; Self et al., 2013; Vélez-Fort et al., 2014;42

O’Herron et al., 2016). Intracranial work in monkeys, for instance, shows that for selective attention43

and working memory (two functions that are commonly associated with top-down processes),44

current source density is increased in deep and superficial compared to middle layers in primary45

visual cortex (van Kerkoerle et al., 2017). Similar layer specific patterns have been shown in animal46

functional MRI. For instance, whisker stimulation led to an increase in BOLD response in Layer IV of47

rat barrel cortex, before such an enhancement was observed in any of the other layers, suggesting48

that layer IV was the first to receive feed forward drive from upstream areas (Yu et al., 2014). In49

contrast, subsequent cortico-cortical connections in the same task appeared to activate Layers50

II-III and V in the motor cortex and contralateral barrel cortex before this affected any of the other51

layers, suggesting that these layers were the first to receive feedback signals. To what extent these52

results generalize to human cortex, however, remains to be investigated.53

Recent advancements in fMRI have made it possible to also investigate the functional role54

of cortical layers in humans (e.g. Polimeni et al. (2010); Maass et al. (2014); Kok et al. (2016);55

Lawrence et al. (2018); Sharoh et al. (2019)). The human in vivo resolution with fMRI has increased56

to submillimetre voxel size. The thickness of the cerebral cortex varies between 1 and 4.5millimetres57

(Zilles, 1990; Fischl and Dale, 2000), giving sufficient resolution to characterise activity across the58

individual layers. FMRI is now often used to try and measure layer specific activation in, for example,59

the visual system (Muckli et al., 2015; Kok et al., 2016; Lawrence et al., 2018; de Hollander et al.,60

2020), the motor system (Huber et al., 2018), working memory tasks (Finn et al., 2019), and to61

find directional connectivity between language areas (Sharoh et al., 2019). If layer specific analysis62

can make good on its promise of reliably discerning layer specific signals, it can be useful for63

answering questions in a wide range of cognitive domains (Lawrence et al., 2019) and for questions64

of directional connectivity and cognitive network neuroscience (Huber et al., 2020), including65

research questions involving spatial attention.66

While some neurophysiological evidence suggests a differential involvement of the cortical67

layers in top-down attention (Nandy et al., 2017; van Kerkoerle et al., 2017), the effects of attention68

on the different layers in human visual cortex has remained unclear. Here, we examine with fMRI69

the potential influence of spatial attention on BOLD activity in the deep, middle and superficial70

layers in human visual areas V1, V2, and V3. Participants directed their attention to a cued location,71

and performed an attention-demanding task using an orientation stimulus that was shown at72

this location, while an unattended grating appeared at a different location of equal eccentricity.73

On some of the trials, subjects directed their attention to the cued location in anticipation of the74

stimulus, but no stimulus appeared at this location. We took care to optimise the experimental75

paradigm, the acquisition, the preprocessing pipeline, the number of subjects, and the statistical76

analysis to all be state of the art and tailored for an fMRI investigation at laminar resolution. Our77

expectation was to find deep layer activation in a top-down (attention) condition and middle layer78

activation in the bottom-up (stimulus) condition, in line with a substantial body of aforementioned79

histiological, electrophysiological, and fMRI literature. Interestingly, although we observed a reliable80

increase of the overall BOLD response with attention across all layers, both with and without a81

stimulus present, we observed no differences in activation level between the layers due to attention.82

We provide several reasons for these findings in the Discussion.83

To facilitate reproducibility of our results, we further include a reproducible and openly ac-84

cessible processing pipeline for layer-specific analyses (https://doi.org/10.5281/zenodo.342860385

(Van Mourik et al., 2018)). The toolbox includes benchmark tests for interactive visualisation of high86

resolution coregistration, cortical lamination, and cardiac and respiratory noise filtering. To enhance87

transparency, the data analysis pipeline is furthermore presented as an online visual workflow88

that can be easily inspected, shared, and adapted to fit any laminar study’s needs. As a result of89

the relative novelty of fMRI investigations into individual cortical layers, previous work has used a90

large variety of high-resolution toolboxes and analyis pathways (LAYNII in Huber et al. (2017, 2018);91
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OpenFmriAnalysis in Lawrence et al. (2018); Nighres in Huntenburg et al. (2018); BrainVoyager in92

Goebel (2012)), which has made direct comparison between studies difficult. We hope our analysis93

pipeline will help ameliorate this issue, although we readily recognize that other toolboxes and94

solutions could similarly achieve such goals.95

Results96

We first describe the overall task effects that form the basis for our laminar specific fMRI analysis.97

Our experimental paradigm is depicted in Figure 4 and described in detail in Methods and Materials.98

In brief, we used an orientation discrimination task in order to investigate the (laminar specific)99

effects of a visual stimulus and directed spatial attention. Analysis of the behavioural results showed100

that subjects generally performed well on the task. The mean orientation discrimination threshold101

across participants was 6.6°.102

Spatial attention increases fMRI response amplitudes103

The experiment consisted of four experimental conditions: a two-by-two design in which we104

manipulated the effect of bottom-up visual stimulation combined with an attentional manipulation105

across the two hemifields. The stimulus consisted of two orientation gratings presented to the left106

and right side of fixation. Participants were cued to attend to one location at either side of fixation.107

They performed a two-alternative-forced-choice task on the stimulus at the attended location,108

indicating whether its orientation was rotated clockwise or counter clockwise with respect to the109

nearest diagonal orientation. They maintained fixation on a central bull’s-eye stimulus throughout110

the experiment. The design is described in detail in the Methods and Materials and in Figure 4.111

To benchmark the data, we first determined whether directing attention to a spatial location112

led to a stronger overall response in the visual cortex. Regions of interest consisted of voxels that113

were significantly activated by the stimulus in all layers of areas V1, V2, and V3 (see Methods). We114

compared the amplitude of the BOLD response with and without attention, for trials in which a115

stimulus was presented and those in which no stimulus appeared on the screen (see Figure 3). Data116

were analyzed using a General Linear Model (GLM) with area, attention (attended vs. unattended),117

and stimulus (present vs. absent) as factors (see Methods).118

We first focused on the effects of attention per se. Attention significantly enhanced the BOLD119

response at the attended location in areas V1-V3 (effect of attention, F (1, 16) = 121.3, p = 7.07 ⋅ 10−9).120

The mean effect sizes (in percent signal change) were 1.01%, 1.09% and 0.96% for V1, V2, and V3121

respectively, and slightly stronger to those reported before (e.g.,Murray (2008); Jehee et al. (2011);122

Sprague and Serences (2013)). To account for potential variation in baseline response between123

visual areas, and facilitate direct comparison with previous studies, we computed an Attentional124

Modulation Index (AMI; (Kastner et al., 1999). The AMI is defined as attentional effects normalised125

by the summed activity of both attended and unattended conditions. We found AMIs (� ± �) of 0.18126

± 0.05 for V1, 0.24 ± 0.07 for V2, and 0.24 ± 0.09 for V3. Direct comparison between areas revealed127

that although the absolute contribution of attention did not change, the relative contribution128

of attention differed significantly between regions (AMI: F(2,32)=10.53, p = 3.07 ⋅ 10−4. Post-hoc129

comparison showed significant differences in V1 compared to V2: T (16) = −4.69, p = 2.44 ⋅ 10−3 and130

in V1 compared to V3 T (16) = −3.17, p = 5.89 ⋅ 10−3, but not in V2 compared to V3: T (16) = −0.14,131

p = 0.89). Altogether, these results are in line with previously reported effects of attention on132

coarse-level BOLD activity in visual cortex (Somers et al., 1999; Gandhi et al., 1999), and show that133

the cortical response for a spatial location is enhanced when attention is directed to that location.134

Next, we investigated whether the effects of attention depended on the presence of a visual135

stimulus. Also in the absence of visual stimulation, there was a significant attention effect (T (16) =136

9.80, p = 3.64⋅10−8), withmean effect sizes of 0.93%. We furthermore observed a slight negative BOLD137

response in the absence of visual stimulation and when the location was ignored (T (16) = −3.12,138

p = 0.0066). This result should be interpreted with caution, however, as the experiment did not139

include an attention-neutral condition and responses were computed with respect to an implicit140
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Figure 1. The fitted BOLD response for each experimental condition. The shaded area represents the standard

error of the mean over subjects. Results were obtained by fitting a Finite Impulse Response function of 18 time

points to the BOLD data, starting at 2 seconds before and running until 15 seconds after stimulus onset. The

dashed line indicates an HRF that was fitted to the FIR results of a pilot session. The obtained parameter values

were used in the modelled HRF across layers in our GLM analyses (see Methods). These results are collapsed

over hemisphere.

Figure 1–Figure supplement 1. The results for the left and right hemisphere separately are displayed in the

supplementary figures

baseline response. We next compared attentional effects between trials in which observers were141

expecting a stimulus but none was presented, and trials in which the stimulus did appear on142

the screen. We found that the effect of attention in areas V1-V3 was significantly different in the143

presence compared to absence of visual stimulation (two-way interaction between attention and144

stimulus, F (1, 16) = 6.63, p = 0.0204). Specifically, in the presence of a stimulus, the attentional effect145

was slightly higher (T (16) = 2.87, p = 0.0060), with no reliable difference between areas (three-way146

interaction between stimulus, attention and area, F (2, 32) = 0.324, p = 0.726). Thus, attending to a147

spatial location clearly enhances the BOLD response at that location, even in the absence of visual148

stimulation, albeit that attentional effects were sightly reduced when no stimulus was presented to149

the observer.150

To qualitatively assess the shape of the BOLD response over time and confirm the param-151

eters of our GLM approach, we additionally conducted a Finite Impulse Response (FIR) anal-152

ysis. The FIR analysis can be inspected and reproduced online in a Jupyter Notebook (https:153

//github.com/TimVanMourik/LayerAttention/blob/master/Notebooks/LayerFir.ipynb). We extracted154

BOLD response curves for each experimental condition (see Figure 1), and observed clear and reli-155

able effects of attention on the BOLD response that were fully consistent with our previous analyses.156

Because of the left-right modulation of attention, attentional effects were reversed in the left and157

right hemisphere, as observed before and further illustrated in Figure Supplement 1. Moreover,158

the cortical response over time for each condition was very well described by the canonical Hemo-159

dynamic Response Function (HRF) (r2 = 0.982 with attention and r2 = 0.985 without attention). Thus,160

the HRF model presented a fair description of the cortical responses observed in our experiment.161

Spatial attention increases responses across the layers162

Next, we asked whether attention led to changes in the pattern of activity across cortical layers.163

For each attention and stimulus condition, we first characterized the BOLD response over time for164

each of three distinct cortical layers in areas V1-V3 combined. Specifically, we used a FIR analysis to165

obtain the temporal laminar BOLD response profiles shown in Figure 2. The analysis revealed clear166

hemodynamic response profiles that were well captured by the canonical HRF. In the presence of167

a stimulus, there appeared to be a progressive increase in response from the deep to the middle168

to the top layers, for both the stimulus and attention. In the absence of a stimulus, however, the169
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layer-specific hemodynamic responses did not appear to show noticeable differences.170

To assess the significance of these effects, data were analyzed using a temporal general linear171

model with attention, stimulus, area, and layer as factors (see Methods). We found a reliable172

increase in BOLD response from white matter to pial surface (see Figure 3, overall effect of cortical173

depth, F (2, 32) = 87.5, p = 1.07 ⋅ 10−13). This increase in BOLD response with decreasing distance174

to the pial surface was reliably larger in the presence of a stimulus (two-way interaction between175

layer and stimulus, F (2, 32) = 85.6, p = 1.43 ⋅ 10−13)). Attention also led to reliable increases in BOLD176

response with decreasing distance to the pial surface (two-way interaction between layer and177

attention, F (2, 32) = 43.10, p = 8.34 ⋅ 10−10). This increase in BOLD response from lower to higher178

layers has been observed (e.g. Koopmans et al. (2010); Polimeni et al. (2010); Koopmans et al.179

(2011); Olman et al. (2012); Huber et al. (2018)) and modeled (Markuerkiaga et al., 2016; Havlicek180

and Uludağ, 2020) previously, and is consistent with the blood flow from the gray-white matter181

boundary to the pial surface. That is, any change in BOLD response that arises in the deep layers182

will automatically affect responses in downstream layers, simply because blood flows from deeper183

to more superficial layers. The accumulation of blood in downstream layers can result in a larger184

slope of BOLD activation across the layers, even when there is no change in neural activity in these185

layers.186

Next, we determined whether the layer-specific increase in BOLD signal was different for187

attention-based effects compared to those of the visual stimulus. If so, then this would be consistent188

with a targeted effect of attention on one of the layers. Interestingly, the attention-based increase in189

activity was reliably different from stimulus-driven changes in layer response (post hoc comparison190

between layer by stimulus effect and layer by attention effect; T (16) = 9.28, p=7.64 ⋅ 10−8). This191

could potentially reflect a specific effect of attention on one of the layers. However, there is also an192

alternative interpretation, as the magnitude of an interaction effect is tightly coupled to the strength193

of its main effects in layer-specific analyses. This is because the interaction effect can be interpreted194

as a difference in slope (signal by depths) between two lines. Due to cortical signal leakage as a195

result of physiological (blood flow) and methodological reasons (errors in depth measurement), a196

higher visual stimulus response than an attentional response will be visible in both the main effect197

and the cortical slope of the response (see also above). Any reliable difference in slope is picked up198

as a significant difference between layer by stimulus effect and layer by attention effect. However,199

this difference in slope would also arise if there was no layer-specific change in neural activity, so200

this finding alone does not indicate conclusive layer specific activation. Such conclusions might be201

made if a reliable three-way difference between the effects of attention and stimulus between any202

of the three layers would be present. However, we did not find a significant three-way interaction203

(three-way interaction between layer, stimulus and attention, F (2, 32) = 0.96, p = 0.393), making it204

difficult to draw any firm conclusions regarding the layer-specific effects of the stimulus versus205

attention.206

While we observed no clear and unambiguous laminar differences across visual areas, could207

there be a change within a given area? When analyzing stimulus activity, the pattern of activity208

across the layers was, indeed, significantly different between the three areas (three-way interaction209

between layer, stimulus, area: F(4, 64)=3.10, p=0.021)). Post hoc analyses revealed that the stimulus210

response across layers was slightly steeper in V1 than V2 (stimulus by layer effect in area V1211

compared to V2, T (16) = 2.26, p = 0.038), while no significant difference was observed for area V1212

compared to area V3 (T (16) = 1.35, p = 0.196), or V2 compared to V3 (T (16) = −1.43, p = 0.172). This213

might reflect a slightly higher top layer activation in V1 compared to V2. On the other hand, it could214

also reflect the stronger main effect of stimulus in V1, leading to an increased slope of activation215

over layers, in line with expectations based on blood flow. We then focused on the layer-specific216

effects of attention in each individual area. Attention does not vary layer specifically per region217

(attention by layer by region effect F (64, 4) = 0.998, p = 0.416).218

Thus, while the overall effects on BOLD activity of both visual stimuli and attention were robust219

and similar to previously reported values for visual cortex (e.g. (Kastner et al., 1999; Jehee et al.,220
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Figure 2. The fitted BOLD response for each experimental condition for three cortical layers. The shaded area

represents the standard error of the mean over subjects. The horizontal axis represents time (in seconds) from

stimulus onset.
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2011; Koopmans et al., 2010)), both across and within layers, it proved more difficult to interpret221

the layer-specific pattern of activity for the two conditions. Although at first sight, it may appear222

that the stimulus affected the layers in a manner different from attention (when analyzed across223

areas), the effect should be interpreted with caution because the stimulus also led to a stronger224

coarse-level cortical response than attention. We wanted to rule out that some important parameter225

choices obscured true effects. We verified robustness of our main results by changing the size226

of the region of interest and by varying the most important parameters of our layer extraction227

technique. We reprocessed the data and recomputed our layer and region specific statistical228

analysis for the experimental conditions. The control analyses established that the results were229

not strongly affected by the number of voxels included in the analyses (Figure Supplement 1 and230

Figure Supplement 2), nor by the number of layers analyzed (Figure Supplement 3). In addition,231

the results did not qualitatively change when layer activation profiles were defined using volume232

interpolation (Figure Supplement 4) as opposed to using a laminar spatial GLM as we did in the233

main analyses (see Methods). The control analyses and their comparison with the main analysis is234

further described in the supplemental materials.235

All figures and reported statistics are available as Jupyter Notebooks (https://doi.org/10.5281/236

zenodo.3428603). The (fully anonimised) BOLD time courses are included such that all results can237

be readily reproduced.238

Discussion239

This study investigated the effects of spatial attention on the BOLD signal measured from individual240

layers in early visual cortex. Focusing first on the overall amplitude of the BOLD response in241

all layers combined, we found that attending to a stimulus reliably and substantially increased242

the BOLD signal in early visual areas, both when a stimulus was presented to the observer and243

in the absence of physical stimulation (cf. (Kastner et al., 1999; Murray, 2008; Li et al., 2008)).244

Moreover, and much in line with earlier results on layer-specific activation patterns in visual cortex245

(Koopmans et al., 2010; Polimeni et al., 2010), we observed a general increase in activation towards246

the superficial layers, which is likely caused by greater susceptibility to draining veins on the pial247

surface (Koopmans et al., 2011). Interestingly, and much to our surprise, we observed no forthright248

differential activity in the individual layers when comparing between top-down (attention-driven)249

and bottom-up (stimulus-driven) activity - a finding that stands in notable contrast to some previous250

observations. We discuss several potential reasons for the discrepancy in findings below, and251

suggest a more standardized approach to laminar fMRI analysis as a potential solution that could252

boost agreement in research findings.253

Why did we not find a targeted effect of attention on one of the layers? One possibility is that254

our data are simply insufficiently robust to show a significant difference in activity across depth255

between the two conditions. It is well known that the BOLD signal includes multiple sources of noise256

related to both MRI scanner and participant, and this holds especially true for signals recorded257

at the sub-millimeter scale. For example, at a resolution this high, even the smallest movement258

of the participant may cause additional blurring of the data, with potentially detrimental effects259

on the signal-to-noise ratio. For this reason, we collected data from 17 participants - a sample260

size much larger than typical in attention-based fMRI studies at standard spatial resolution (cf.261

N=4-6 in Kastner et al. (1999); Kamitani and Tong (2005); Jehee et al. (2011)), and on the high end262

compared to layer-based fMRI studies at high resolution (cf. N=6 in Polimeni et al. (2010), N=4 in263

Muckli et al. (2015), N=10 in Kok et al. (2016), N=12 in (Klein et al., 2018), N=21 in (Lawrence et al.,264

2018), N=22 in (Sharoh et al., 2019)). To minimize the effects of various sources of noise, we took265

great care in measuring and removing physiological artifacts, and further improved existing layer266

extraction techniques by developing a novel technique to separate laminar signal from different267

layers (VanMourik et al., 2019). Indeed, the combined success of these procedures is well illustrated268

by the effect sizes observed in the current study for both stimulus presentation (4.5%, 3.3%, 2.8% in269

V1, V2 and V3) and attention (0.41%, 0.64%, 0.59% in V1, V2 and V3), which are comparable or higher270
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Figure 3. Layer-specific amplitude of the BOLD response in areas V1-V3, for stimuli and locations that were

either attended or ignored. Circles indicate when a grating was presented, squares depict when no grating was

presented, at either the attended (red) or unattended (blue) location. When a stimulus was presented, activation

reliably increased across all layers. Also attention significantly enhanced the BOLD response across all layers.
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to those reported in previous work (Murray, 2008; Jehee et al., 2011). We also ensured that similar271

results were obtained using more conventional layer-extraction procedures, and that the results272

were robust to changes in signal extraction method or number of layers. There are, however, some273

differences in experimental design between our study and previous laminar investigations that274

could potentially account for the incongruity in results. Because we were interested in the degree to275

which top-down processes could be dissociated from feed forward stimulation with fMRI, we directly276

contrasted between these two conditions in our analyses. Previous studies, on the other hand,277

have focused on top-down activity in isolation (e.g. Muckli et al. (2015), Kok et al. (2016), Lawrence278

et al. (2018)). Two-by-two experimental designs are surprisingly rare in layer-specific analysis and279

have only been recently employed by de Hollander et al. (2020). We emphasise that a multifactorial280

design is important to account for changes due to, for example, cortical depth and signal leakage281

per se, as opposed to true layer-based changes in activity due to the experimental manipulations.282

Alternate strategies are to compare between layers and conditions in terms of information content283

(Muckli et al., 2015), retinotopic preference (Klein et al., 2018), or by focusing on inter-regional284

laminar communication (Sharoh et al., 2019). For example, Klein et al. (2018) recently observed285

a cortical depth-dependent shift in population receptive fields with spatial attention. This raises286

the intriguing possibility that, in our study, spatial attention led to a depth-dependent shift in the287

strength of relatively fine-grained orientation-selective responses – indeed, previous coarse-scale288

fMRI studies have observed that orientation selectivity can change even when there is no change in289

amplitude across the population (Jehee et al., 2011, 2012).290

We initially hypothesised that attention provides additional information about the stimulus291

(e.g. knowledge about its location). This information would come from higher level areas, and292

would presumably affect the deep or superficial layers. This was suggested by previous work using293

high-resolution fMRI focussing not on spatial attention, but rather figure-ground segmentation (Kok294

et al., 2016), and other extra-classical receptive field effects in cortex (Muckli et al., 2015). However,295

our results are incongruent (insofar that they are comparable) and do not find similar effects for296

spatial attention. It is conceivable, however, that processes of perceptual grouping operate on the297

individual cortical layers in a manner different from the spatial attentional mechanisms studied298

here. It is known from primate studies, for example, that attention increases the response gain299

of neurons in visual cortex (Treue and Trujillo, 1999;Martinez-Trujillo and Treue, 2004a) - such an300

increase in attentional gain could lead to general enhancements in neural activity irrespective of301

cortical layer, as we have observed here.302

Regardless of the potential reasons for the disparity between current and previous results,303

we believe our study presents an important message to a field that is currently in its nascent304

stages of development. We hope that the results and procedures detailed here will help move the305

field forward and resolve which experimental parameters are paramount to detecting differential306

activity between individual layers in human visual cortex with high-resolution fMRI. To facilitate307

comparison between results, and provide loose analysis guidelines for future laminar studies, we308

have furthermore provided all our analysis code and data online (see Data Avalibility section), in309

a format that is visually insightful and analytically meaningful. We hope that our software and310

analysis pathways will prove to be a useful resource, and boost the comparability and replicability311

of future results.312

Methods and Materials313

Participants314

Nineteen healthy adults (aged 22-27, eight female), with normal or corrected-to-normal vision,315

participated in this study. All participants provided written informed consent in accordance with the316

guidelines of the local ethics committee (CMO region Arnhem-Nijmegen, the Netherlands, and ethics317

committee of the University Duisburg-Essen, Germany). Two subjects were excluded from analysis;318

one subject was excluded due to insufficient performance on the orientation discrimination task319
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Figure 4. Stimuli and experimental procedure. Example of a trial sequence from the experiment. Subjects

fixated a central bull’s eye target while gratings of independent orientation (± 45°) appeared in each hemifield.
A compound black/white cue indicated whether subjects should attend to the left or right stimuli; in this

example, the white circle indicates ‘attend right.’ Subjects had to discriminate near-threshold changes in

orientation of the attended grating with respect to the closest diagonal. In one-third of trials, no stimuli

appeared at either location. Red circles depict the attended location and were not present in the actual display.

(their behavioral performance was at chance-level), and another due to weak retinotopic maps. The320

remaining data from 17 subjects were analyzed.321

Experimental design and stimuli322

Observers viewed the visual display through a mirror mounted on the head coil. Visual stimuli were323

generated by a Macbook Pro computer running MATLAB and the Psychophysics Toolbox software324

(Brainard, 1997; Pelli, 1997), and displayed on a rear-projection screen using a luminance-calibrated325

EIKI projector (resolution 1,024 X 768 pixels, refresh rate 60 Hz). Participants were required to326

maintain fixation on a central bull’s-eye target (radius: 0.25°) throughout each experimental run.327

Each run consisted of an initial fixation period (3000 ms) followed by 32 stimulus trials (average trial328

duration: 4.7 seconds). Trials were separated by inter-trial intervals of variable duration (1000-2500329

ms, uniformly distributed across trials). Each trial started with the presentation of a central attention330

cue (800 ms). This was followed by a delay period of variable duration (0-5000 ms; drawn from an331

exponential distribution to ensure a constant hazard rate), after which the two orientation stimuli332

appeared on the screen (500 ms; two-thirds of trials). The orientation stimuli were followed by a333

response window (1300 ms), in which the fixation target turned orange, and observers indicated334

their response by pressing a button with their right index or middle finger. On one-third of the335

trials, no orientation stimuli appeared and the screen remained blank for the remainder of the trial.336

A single trial of the experiment is illustrated in Figure 4.337

Stimuli were two counterphasing sinusoidal gratings of independent orientation ~45°or ~135°;338

size: 7°; spatial frequency: 1 cycle per °; randomized spatial phase; contrast: 50%; contrast339

decreased linearly to 0 towards the edge of the stimulus over the last degree), centered at 5°to340

the left and right of fixation. We used a compound white/black cue consisting of two dots (dot341
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size 0.25°) that straddled the fixation point (0.8°to the left and right of fixation) to indicate with342

100% validity which of the two gratings should be attended (Jehee et al., 2011). Subjects were343

instructed to attend to the same side of fixation as either the white or black dot in the compound344

cue. Participants were instructed to detect a small clockwise or counterclockwise rotation in the345

orientation of the grating at the attended location with respect to a base orientation at 45°or 135°.346

The size of rotation offset was adjusted with an adaptive staircase procedure using QUEST (Watson347

and Pelli, 1983), such that participants detected approximately 80% of the offsets correctly.348

All but one participant completed 18 stimulus runs. The remaining participant completed 12349

runs due to equipment failure. Retinotopic maps of visual cortex were acquired in a separate scan350

session at a 3T scanner using conventional retinotopic mapping procedures (Sereno et al., 1995;351

DeYoe et al., 1996; Engel et al., 1997).352

MR data acquisition353

Functional images were acquired on a Magnetom Siemens 7T scanner with a 32-channel head coil354

(Nova Medical, Wilmington, USA) combined with dielectric pads (Teeuwisse et al., 2012), using a355

T ∗
2 -weigthed 3D gradient-echo EPI sequence (Poser et al., 2010) (TR/TE/�=3060 ms/20 ms/14°, 72356

slices oriented orthogonally to the calcarine sulcus, voxel size [0.8 mm]3, FOV: [192 mm]2, GRAPPA357

factor 8).358

Gradient maximum amplitude was 40 mT/m (in practice, however, this maximum was not359

reached) and the maximum slew rate was 200 T/m/s. Shimming was performed using the standard360

Siemens shimming procedure for 7T. There were 18 runs of 72 ± 4 volumes. As the lengths of the361

events and the inter trial interval were of unequal length, there was a small variation in the number362

of volumes per run.363

Finger pulse was recorded using a pulse oximeter affixed to the index finger of the left hand.364

Respiration was measured using a respiration belt placed around the participant’s abdomen.365

Anatomical images were acquired using an MP2RAGE sequence (Marques et al., 2010) [0.75366

mm]3, yielding two inversion contrasts (TR/TE/TI1/TI2 = 5000 ms/1.89 ms/900 ms/3200 m).367

In a separate session prior to the main experiment, a retinotopy session was conducted at a368

Siemens 3T Magnetom Trio scanner. A high-resolution T1-weighted anatomical scan was acquired369

(MPRAGE, FOV 256 X 256, 1 mm isotropic voxels) at the start of the session. Functional images were370

subsequently collected using T ∗
2 -weighted gradient echo EPI, in 30 slices oriented perpendicular to371

the calcarine sulcus (TR/TE/� = 2000 ms/30 ms/90°, FOV = 64 X 64, [2.2 mm]3 isotropic resolution).372

Functional MRI preprocessing373

Data preprocessing374

Data were corrected for subject motion using SPM with the mean functional volume across time375

as a reference (Friston et al., 1995). Residual motion-induced fluctuations in the BOLD signal376

were removed through linear regression, based on the alignment parameters (3 translation and 3377

rotation parameters, no derivatives) of SPM. Scanner drifts were corrected via linear regression378

with high-pass filter regressors to filter out frequencies below 1/64 Hz. Pulsating signals as a result379

of the respiratory and cardiac cycle were removed as follows. The cardiac/respiratory peaks were380

automatically detected from the physiological recordings using in-house interactive peak-detection381

software, and manually corrected where needed. With a custom MATLAB implementation of382

RETROICOR (Glover et al., 2000), fifth order Fourier regressors were constructed for heart rate and383

respiration and subsequently removed from the functional images via linear regression. A small384

part (10% of respiratory measurements, and 18% of heart rate measurements) was of insufficient385

quality and could not be used in this analysis. Functional data for these time frames were used in386

the main analysis but uncorrected for cardiac and respiratory noise.387

The functional and anatomical scans were brought to the same space by registering the anatom-388

ical surface from the retinotopy session to the mean functional volume using boundary based389

registration (BBR), implemented in FreeSurfer’s bbregister (Greve and Fischl, 2009). All registration390
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results were inspected and manually refined when necessary. Where needed, registration was391

improved by an additional pass of BBR using an in-house MATLAB implementation. Local distortions392

in EPI due to field inhomogeneity were corrected by means of recursive boundary registration393

(Van Mourik et al., 2019), which recursively applies BBR to small portions of the cortical surface to394

correct topology locally by means of optimizing the grey-white matter contrast along the surface.395

We used 7 layers of recursion and only looked for translations and scalings in the phase encoding396

direction. Note that this procedure displaces the surface mesh and not the volume, so this has no397

smoothing effect on the (layer) signal.398

Because of temporal changes in magnetic field inhomogeneity, local topology slightly changed399

over the course of the entire session. For this reason, the 18 functional runs obtained for each400

subject were first divided into three groups of each 6 contiguous runs, and then each group was401

pre-processed separately. Time courses were subsequently concatenated before entering the main402

analyses.403

Regions of Interest404

Regions of interest (areas V1, V2, V3) were defined on the reconstructed cortical surface using405

standard retinotopic mapping procedures (Sereno et al., 1995; DeYoe et al., 1996; Engel et al.,406

1997). After identifying areas V1-V3, data from the main experiment were smoothed along the407

reconstructed cortical surface with a Gaussian kernel (FWHM: 4 mm). The smoothed version of408

the data was only used in region of interest selection, and not in the main analysis. In each area,409

we then selected the 600 vertices that responded most strongly to the stimulus (shown on the410

cortical surface in Figure Supplement 1). The selected vertices were resampled from the cortical411

surface back to subject space by means of FreeSurfer’s label2vol. T-values of selected voxels (�±�)412

were V1: T=2,989 ± 0.854, V2: T=2.317 ± 0.689 and V3: T=2.117 ± 0.713). Note that the selection of413

voxels based on visual activation per se is orthogonal to the analysis of interest, which addresses414

the effects of attention on individual layers in cortex. Control analyses verified that our results415

were not strongly affected by the number of vertices selected for subsequent analysis (See Figure416

Supplement 1).417

Cortical profile extraction418

Layer specific signals were obtained by means of a layer specific spatial General Linear Model419

(GLM) as described in detail and proposed by (Van Mourik et al., 2018). In brief, we obtained three420

equivolume layers, following the procedures described in (Waehnert et al., 2014). We took the421

reconstructed cortical surface as determined by FreeSurfer (Dale et al., 1999) as a basis for this422

analysis. We used a custom implementation ofWaehnert et al. (2014) with mild adaptations: the423

gradient and the curvature of the cortex were defined as a function of Laplacian streamlines in the424

grey matter as this more naturally follows the structure of cortical columns (Leprince et al., 2015).425

Partial volume inaccuracies were adjusted for by explicitly taking into account the orientation of the426

voxel with respect to the cortex (Van Mourik et al., 2019).427

The procedure enabled us to divide the gray matter in three equivolume cortical layers, which428

amounts to roughly one voxel per layer. We additionally defined a volume on either side of these429

three cortical layers to capture signals for white matter and cerebrospinal fluid. On the basis430

of these definitions, we then computed a laminar mixing matrix of layer signal over the voxels431

(Van Mourik et al., 2018). This was used as a spatial design matrix to unmix the layer signal. By432

means of a spatial regression of this matrix against the functional data within the ROIs, we obtained433

laminar time courses.434

In separate control analyses, we verified that our laminar results did not qualitatively depend435

on the specific methods that were used to extract the laminar activation profile. We varied several436

parameters: the number of layers that we extracted and the method of obtaining laminar signal. For437

the former, we computed the cortical layers with the spatial GLM for four layers instead of three. For438
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the latter, we computed the laminar signal based on a more conventional interpolation approach:439

by means of interpolating the fMRI volumes at three points in between the cortical surfaces we440

obtained laminar signal. This may contain contamination from other layers, but is impervious to441

potential estimation errors as a result of the laminar spatial regression. The difference between442

approaches is described in detail in Van Mourik et al. (2018).443

Temporal analysis444

Temporal linear regression was used to compare between the experimental conditions. Regressors445

were created as follows. The stimuli appeared during the stimulus window on 2/3rds of trials, which446

were modeled with a single regressor (stimulus on). The remaining stimulus windows were also447

modeled with a regressor (stimulus off). In addition, attention could either be directed to the left448

or right visual field; these conditions were each modeled with a regressor. We so obtained four449

regressors for each of the conditions of interest. Thus, for a given retinotopic region of interest,450

the four different conditions were: stimulus, no stimulus, attended, and unattended. We used451

a double-gamma function, as defined by SPM (parameters: time-to-peak first gamma: 5 second,452

time-to-peak second gamma: 10 seconds, amplitude ratio: 2:1), to model the fMRI responses. These453

parameters were established based on an initial finite impulse response (FIR) analysis (Friston et al.,454

1998) using the visual stimulus response from four pilot subjects (not included in the current study).455

Based on the observed fMRI response in this pilot data set, temporal or dispersion derivatives were456

not included into the statistical model of the main experiment. The baseline signal of each run457

was captured by adding a regressor column of ones for each run separately. As described above,458

the data were pre-processed by means of nuisance regression. This was performed by adding the459

nuisance regressors to the design matrix, effectively adjusting for the statistical loss in degrees of460

freedom as a result of nuisance regression. The reference of one percent signal change was the461

height of a peak of a two-second-long isolated event (Mumford, 2007).462

We additionally performed a Finite Impulse Response (FIR) analysis to qualitatively assess the463

BOLD response over time for each of the four conditions. This was used to confirm that the used464

HRF would accurately describe the true BOLD response. To visualize the cortical response over465

time for each of the four conditions, we analyzed the data using FIR filters (Friston et al., 1998),466

applied to each layer. Specifically, we constructed FIR regressors for each of the four experimental467

conditions, each containing 18 time points that represented a time window of 1 second, starting 2468

seconds before stimulus onset and running until 15 seconds thereafter.469

We started at the level of the cortical region, initially with no further specification into layers.470

The temporal regressions were performed on the previously extracted time course of V1, V2, and471

V3. The obtained parameter estimates were divided by their baseline estimates, in order to convert472

them to percent signal change. The values in percent signal were compared at the group level473

by means of ANOVAs and t-tests as appropriate. As the experiment was left-right symmetric and474

we found no differences between hemispheres in the analyses of interest, the hemispheres were475

treated as two measurements per participant.476

We subsequently focused on the laminar level. For a qualitative assessment of the layer specific477

BOLD response, we repeated the FIR analysis for each experimental condition and each layer. These478

qualitative results are shown in Figure 2. The BOLD responses do not seem to vary per layer beyond479

a general intensity increase towards the pial surface. To further investigate this quantitatively, we480

repeated the region specific analysis with the addition of the ’layer’ factor. By means of an ANOVA,481

we ascertained layer specific effects and their interactions with the stimulus and the region effects.482

These were followed by t-tests where appropriate, to further inspect significant results. As the483

experiment was left-right symmetric and we found no differences between hemispheres in the484

analyses of interest, we took the hemisphere data as two measurements per participant.485
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Code and data availability486

All code and data can be found online: https://doi.org/10.34973/bf42-rx14 for a full data set for487

a single subject and all raw files from the scanner https://doi.org/10.34973/eb4d-md15. Layer-488

specific analysis were performed using custom-written software available online https://github.489

com/TimVanMourik/OpenFmriAnalysis. This pipeline can be inspected graphically (Van Mourik490

et al., 2018) (https://giraffe.tools/workflow/TimVanMourik/LayerAttention). Moreover, it can readily491

be applied to custom data; we prepared data from a representative subject to be used as a template492

pipeline.493

Preprocessing of the data and construction of design matrices was performed in MATLAB. The494

FIR analysis, the region of interest analysis, and the layer specific analyses were performed in an495

openly available Jupyter notebook (available at https://doi.org/10.5281/zenodo.3428603).496
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Appendix 1852

Layer specific HRF for all conditions and layers853

To assess the degree to which the results are robust to different analysis choices, we

additionally analysed the data using a variety of alternative methodological parameters. This

section discusses the obtained results. Our main analysis was done on a region of interest

of 600 vertices. The method of extracting cortical signal was the spatial GLM (Van Mourik
et al., 2019) with three cortical layers. We redid the main analysis with a smaller region of
interest (300 vertices) and a larger one (900 vertices), other factors remaining equal. We

further wanted to make sure that changing the number of layers did not qualitatively change

our interpretation and recomputed the main analysis with four instead of three cortical

layers. For comparison with traditional studies that use signal interpolation for obtaining

laminar signal, we also employed this technique in an additional control analysis. All results

(p-values) of the main analysis, the ANOVA of the factors stimulus, attention, layer, and

region, are included in one table ( 1).

854

855

856

857

858

859

860

861

862

863

864

865

For further inspection, the results are also included as figures, analogous to Figure 3 in
the main text. Figure Supplement 1 and Figure Supplement 2 show stimulus and attention-
based effects across layers after selecting, respectively, the 300 and 900 most activated

vertices (cf. Figure 3 in the main text, based on 600 vertices). Note that, per this selection,
these results should (and do) show higher and lower activation values for the top 300 and

900 vertices, respectively. Figure Supplement 3 shows results after defining four cortical
layers, rather than three, and Figure Figure Supplement 4 depicts results obtained from
interpolation instead of a laminar spatial GLM. Error bars indicate ±1 SEM. In all Figures,
presenting a stimulus (circles) resulted in a reliable increase in BOLD response from deep

to superficial layers. The BOLD response was significantly enhanced for the attended (red)

compared to unattended location (blue) across layers, both when a stimulus was presented,

and in the absence of visual stimulation (see Table 1 for statistics).
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We repeated the main analysis four additional times. Thus, it is to be expected that some

p-values that are around the significance threshold in the main analysis, fall slightly below or

rise slightly above it in some of the control analyses. There were only two instances where

significance (p < 0.05) changed compared to the layer analyses that are presented in the
main text.

878

879

880

881

882

While we observed a trending effect for the stimulus by attention interaction in the main

laminar analysis (trending, with p = 0.0733), it was significant for the analysis with a larger ROI
(p = 0.0272) and with four extracted layers (p = 0.0118), but not for the smaller ROI (p = 0.271)
and trending for the signal extraction by means of interpolation (p = 0.0552). These results
are all close together and hovering around the significance threshold of p = 0.05. A stimulus
by attention effect ought to be interpreted as a multiplicative effect of stimulus and attention,

i.e. an additional signal increase when the presented stimulus is attended compared to

when the location per se (i.e. no stimulus) is attended. However, this trending effect does not

affect any of our conclusions regarding the layer-specific effects of stimulus and attention.
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887

888

889

890

891

While the Stimulus by Layer by Area interaction was significant in the main analysis (p =

0.0214), this interaction was not significant after selecting the 300 most activated vertices (p

= 0.2056). However, in the three other control analyses, the effect became more pronounced

(larger ROI: p = 8.89 ⋅ 10−3, interpolation: p = 2.78 ⋅ 10−5, and four layers: p = 6.19 ⋅ −4).
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Appendix 1 Table 1. The p-values for the ANOVA as described in the body of the paper. The five columns are

the main analysis (first column, bold face), and four control analyses: an analysis based on a smaller ROI (300

vertices); on a larger ROI (900 vertices); the same ROI but laminar signal extracted by means of interpolation

instead of a GLM; and a GLM but with four layers instead of three. P-values above 0.05 are marked in black.

P-values between 0.05 and 0.01 are marked in red. P-values below 0.01 are marked in green.

GLM, 600 vertices GLM, 300 vertices GLM, 900 vertices Interpolation GLM, 4 Layers

Stimulus 1.648436e-12 5.954187e-13 1.290311e-11 3.726032e-12 2.496749e-13

Attention 1.032463e-08 3.833341e-08 4.175371e-09 9.482100e-09 9.216548e-09

Layer 1.067460e-13 2.851381e-11 7.013292e-13 1.890989e-15 3.237563e-15

Area 1.134083e-08 2.712885e-08 1.114299e-07 1.019932e-08 4.101310e-09

Hemisphere 9.914955e-01 9.461482e-01 9.101537e-01 9.177039e-01 9.029095e-01

Stimulus:Attention 7.331790e-02 2.710442e-01 2.720432e-02 5.523979e-02 1.179676e-02

Stimulus:Layer 1.433143e-13 6.233730e-12 7.235421e-14 8.002511e-15 2.812629e-18

Attention:Layer 8.335165e-10 3.172532e-08 1.934224e-10 7.100456e-12 2.061512e-11

Stimulus:Area 9.424679e-10 2.786488e-08 7.976153e-09 7.472970e-10 1.449285e-10

Attention:Area 7.253885e-02 1.208362e-01 7.744268e-02 1.406810e-01 8.801709e-02

Layer:Area 8.137692e-04 3.749919e-03 7.251511e-03 1.577094e-05 9.033174e-02

Stimulus:Attention:Layer 3.936910e-01 7.659098e-01 1.507279e-01 7.908435e-02 5.661013e-01

Stimulus:Attention:Area 7.370581e-01 6.246065e-01 7.617405e-01 7.980477e-01 7.956297e-01

Stimulus:Layer:Area 2.136465e-02 2.055745e-01 8.894002e-03 2.779890e-05 6.190268e-04

Attention:Layer:Area 4.155126e-01 2.893327e-01 3.384936e-01 2.462276e-01 3.289884e-01

Stimulus:Attention:Layer:Area 8.124587e-01 8.742156e-01 7.084470e-01 9.209281e-01 1.570871e-01
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Figure 1–Figure supplement 1. The fitted BOLD response for each experimental condition, sepa-

rated by hemisphere. The shaded area represents the standard error of the mean over subjects.

Results were obtained by fitting a Finite Impulse Response function of 18 time points, starting at 2

seconds before and running until 15 seconds after stimulus onset. The dashed line indicates an

HRF that was fitted to the responses in a pilot session (see Methods). The same HRF parameter

values were used in other statistical analysis.
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Figure 3–Figure supplement 1. A control analysis that is identical to the main analysis, but

repeated with a smaller region of interest. Only the 300 highest activated vertices were included in

the analysis.
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Figure 3–Figure supplement 2. A control analysis that is identical to the main analysis, but

repeated with a larger region of interest. Only the 900 highest activated vertices were included in

the analysis.
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Figure 3–Figure supplement 3. A control analysis that is identical to the main analysis, but

repeated with four extracted layers instead of three.
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Figure 3–Figure supplement 4. A control analysis that is identical to the main analysis, but

repeated with a different way of obtaining laminar signal.
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Figure 4–Figure supplement 1. Example of Regions of Interest on the inflated cortical surface for

a representative subject. The label contours from top to bottom show dorsal V3, V2, and V1 and

ventral V1, V2, and V3, in both hemispheres. The 600 most activated vertices (coloured area) per

region were selected for the main analysis. The 300 and 900 vertices were used for control analyses

in order to show that the effects are independent of size of region of interest.
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