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Abstract  

 

The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis 

or predicting later outcome. Instead of focusing on describing effects common to the group, comparing 

individual infants against robust normative data offers a powerful alternative to study brain maturation. Here we 

used Gaussian process regression to create normative curves characterising brain volumetric development in 

274 term-born infants, modelling for age at scan and sex. We then compared 89 preterm infants scanned at term-

equivalent age to these normative charts, relating individual deviations from typical volumetric development to 

perinatal risk factors and later neurocognitive scores. To test generalisability, we used a second independent 

dataset comprising of 253 preterm infants scanned using different acquisition parameters and scanner. We 

describe rapid, non-uniform brain growth during the neonatal period. In both preterm cohorts, cerebral 

atypicalities were widespread, often multiple, and varied highly between individuals. Deviations from normative 

development were associated with respiratory support, nutrition, birth weight, and later neurocognition, 

demonstrating their clinical relevance. Group-level understanding of the preterm brain disguise a large degree of 

individual differences. We provide a method and normative dataset that offer a more precise characterisation of 

the cerebral consequences of preterm birth by profiling the individual neonatal brain.  
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Introduction 

 

Preterm birth (or birth before 37 weeks gestational age, GA) affects approximately 10% of pregnancies 

worldwide (Chawanpaiboon et al. 2019), and is a significant risk predisposing to atypical brain development 

and lifelong cognitive difficulties including a higher incidence of neurodevelopmental and psychiatric disorders 

(Nosarti et al. 2012; Agrawal et al. 2018; Thompson et al. 2020). Although early brain correlates of preterm 

birth have been identified at a group level (Volpe 2019), this vulnerable population is highly heterogeneous, 

with individuals following diverse clinical and neurocognitive trajectories (Sled and Nossin-Manor 2013; 

Dimitrova et al. 2020). Indeed, the assumption that prematurity has a homogenous effect on brain development 

might help account for the relatively poor predictive power of neonatal MRI for later outcome (de Bruïne et al. 

2011; Edwards et al. 2018). To better understand brain development, provide accurate prognosis of later 

functionality, and study the effect of clinical risks and interventions, it is important to provide an individualised 

assessment of cerebral maturation (O’Muircheartaigh et al. 2020). Comparing individuals against robust 

normative data avoids the requirement to define quasi-homogenous groups in a search for effects common to the 

group, and offers a powerful alternative to investigate brain development with high sensitivity to pathology at an 

individual infant level (Towgood et al. 2009; Holland et al. 2014; O’Muircheartaigh et al. 2020). 

 

In this study, we used Gaussian process regression (GPR) to create normative charts of typical volumetric 

development using a large sample of healthy term-born infants scanned cross-sectionally within the first month 

of life. Analogous to the widely employed paediatric height and weight growth charts, this technique allows the 

local imaging features of individuals to be referred to typical variation while simultaneously accounting for 

variables such as age and sex (Marquand et al. 2016, 2019). Having established normative values for brain 

growth of 14 brain regions, we aimed to (i) quantify deviations from typical development in individual preterm 

infants, (ii) investigate the heterogeneity of these deviations, and (iii) examine the association between 

individual deviations, perinatal clinical factors and later neurocognitive abilities. To test generalisability, we 

used a second large independent preterm dataset acquired on a different MR scanner using different imaging 

parameters.  

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2020.08.05.228700doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.228700
http://creativecommons.org/licenses/by/4.0/


Materials and methods 

 

Participants  

This study utilised data from two cohorts. 363 (89 preterm) infants recruited for the developing Human 

Connectome Project (dHCP; http://developingconnectome.org/) were scanned at term-equivalent age (TEA, 37-

45 weeks postmenstrual age, PMA) during natural unsedated sleep at the Evelina London Children’s Hospital 

between 2015 and 2019. The second cohort comprised of further 253 preterm infants born before 33 weeks GA 

that underwent MRI between 37 and 45 weeks PMA at the neonatal intensive care unit (NICU) in Hammersmith 

Hospital between 2010 and 2013 for the Evaluation of Preterm Imaging (EPrime) study. Detailed description of 

these studies and the scanning procedure used has been previously reported (dHCP (Hughes et al. 2017), EPrime 

(Edwards et al. 2018)). All MRI images were examined by a neonatal neuroradiologist. Exclusion criteria for 

term-born infants are described in Supplementary Methods. There were no exclusion criteria for the preterm 

infants, except for major congenital malformations and data included infants from nonsingleton pregnancies. 

Both studies were approved by the National Research Ethics Committee (dHCP, REC: 14/Lo/1169; EPrime, 

REC: 09/H0707/98). Informed written consent was given by parents prior to scanning.  

 

MRI acquisition and preprocessing 

MRI data for the dHCP were collected on a Philips Achieva 3T (Philips Medical Systems, Best, The 

Netherlands) using a dedicated 32-channel neonatal head coil (Hughes et al. 2017). T2-weighted scans were 

acquired with TR/TE of 12s/156ms, SENSE=2.11/2.58 (axial/sagittal), 0.8x0.8mm in-plane resolution, 1.6mm 

slice thickness (0.8mm overlap). Images were motion corrected and super-resolution reconstructed resulting in 

0.5mm isotropic resolution (Makropoulos et al. 2018). MRI data collected for EPrime were acquired on a 

Philips 3T system using an eight-channel phased array head coil. T2-weighted turbo spin echo was acquired with 

TR/TE of 8670/160ms, in plane resolution 0.86×0.86mm, 2mm slice thickness (1mm overlap). 

 

Both datasets were preprocessed using the dHCP structural pipeline (Makropoulos et al. 2018). In brief, motion-

corrected, reconstructed T2-weighted images were corrected for bias-field inhomogeneities, brain extracted and 

segmented. Tissue labels included cerebrospinal fluid (CSF), white matter (WM), cortical grey matter (cGM), 

deep grey matter (dGM), ventricles (including the cavum, a transient fluid-filled cavity located in the midline of 

the brain between the left and right anterior horns of the lateral ventricles, which if present, usually disappears 
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during the neonatal period), cerebellum, brainstem, hippocampus and amygdala. dGM was further parcellated 

into left/right caudate, lentiform and thalamus. Total tissue volume (TTV) incorporated all brain GM and WM 

volumes; total brain volume (TBV) included TTV and ventricles; intracranial volume (ICV) included TBV and 

CSF (Table 1.). Given the high correlation between TTV and TBV (ρ=0.98), we reported only TTV. Due to 

their size and lower tissue contrast in the neonatal brain, the amygdala and the hippocampus are prone to 

segmentation errors and higher partial voluming, especially in the EPrime dataset, where the image resolution 

was lower (1mm) compared to dHCP (0.5mm). Therefore, these structures were excluded from the present 

analyses. The quality of the preprocessing was visually evaluated using a scoring system detailed elsewhere 

(Makropoulos et al. 2018) to ensure no images severely affected by motion or with poor segmentation were 

included (Supplementary Methods & Supplementary Figure 1).  

 

We estimated regional volumes in absolute (cm3) and relative (%) values. Relative volumes were calculated as 

the proportion of each tissue volume from TTV, the ventricles from TBV and CSF from ICV (Table 1). To 

capture the effect of preterm birth, we used relative volumes to (i) ensure results are not driven by extreme 

individual differences in non-brain intracranial volume, often seen in preterm infants, (ii) partially alleviate 

differences in data acquisition. 

 

Table 1. Brain regions of interest, the structures they include and what global brain measures they are taken as a 
proportion from when calculating relative brain volumes.  
 

Brain regions Brain structures included Relative volume 
(% from) 

cortical Grey Matter (cGM) - TTV 
White Matter (WM) - TTV 
Cerebellum - TTV 
Brainstem - TTV 
Cerebrospinal fluid (CSF) - ICV 
Ventricles  Lateral ventricles + cavum  TBV 
Caudate (left/right) - TTV 
Lentiform (left/right) Pallidum + Putamen TTV 
Thalamus (left/right) - TTV 
Total tissue volume (TTV) All brain GM + WM tissue - 
Total brain volume (TBV) All brain GM + WM tissue + ventricles  - 
Intracranial volume (ICV) All brain GM + WM tissue + ventricles + CSF - 

 

Modelling volumetric development using Gaussian Process Regression  

To characterise neonatal volumetric development, we used GPR, a Bayesian non-parametric regression, 

implemented in GPy (https://sheffieldml.github.io/GPy/). GPR simultaneously provides point estimates and 
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measures of predictive confidence for every observation representing the distance of each individual observation 

from the normative mean at that point on the ‘curve’ accounting for modelled covariates (Marquand et al. 2016). 

 

We first trained a GPR model to describe typical development in the term-born dataset (274 infants) using PMA 

at scan and sex to predict 14 brain structures separately. Regions included ICV, TTV, cGM, WM, cerebellum, 

brainstem, CSF, ventricles and left/right caudate, lentiform and thalamus. Model accuracy was tested under 5-

fold cross-validation, with each fold stratified to cover the whole PMA range (37-45 weeks). The relationship 

between the volume outputs and model predictors was estimated with a sum of radial basis function, linear and 

white noise covariance kernels. Model hyperparameters were optimised using log marginal likelihood. 

Prediction performance was evaluated using the mean absolute error (MAE) between the predicted and the 

observed value derived from the 5-fold cross-validation. 

 

To assess the effects of preterm birth, we retrained the model on the entire term-born dataset and applied the 

model to 89 dHCP preterm infants scanned at TEA. To assess generalisability, we applied the same model to 

253 preterm infants from the EPrime study. A Z-score was derived for every infant by estimating the difference 

between the model prediction and the observed value normalised by the model uncertainty (the square root of 

the predicted variance). To quantify extreme deviations, prior to analyses, we chose a threshold of |Z|>2.6 

(corresponding to p<0.005) following the convention adopted in previous GPR analyses modelling adult brain 

development (Wolfers et al. 2019). We examined the proportion of infants with volumes lying more than 2.6 

standard deviations (sd) above/below the model mean (indicating the top/bottom 0.5% of the typical group 

values, hereafter described as extreme positive or negative deviations, respectively).   

To quantify the effect of image spatial resolution differences between the dHCP and EPrime, we first 

downsampled the dHCP data to 1mm isotropic resolution using FSL flirt (-applyisofxm, spline interpolation), 

reran the tissue segmentation on the new dHCP resolution data and trained the GPR model. We examined the 

difference in (i) model means and (ii) the number of EPrime infants who deviated significantly from the 

predicted model means. 

 

Deviations from normative development, perinatal risks and later neurocognition 

We tested the association between deviations from normative development (in relative volumes) and recognised 

perinatal clinical risks (Boardman and Counsell 2019), including GA at birth, birth weight Z-score, total days 
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receiving mechanical ventilation, continuous positive airway pressure (CPAP) and total parenteral nutrition 

(TPN, available only for EPrime). Birth weight Z-scores were calculated using the population data from the 

uk90 growth charts implemented in sitar R package (Cole et al. 2010). Oxygen/respiratory support and nutrition 

were administered at the NICU. These data were obtained from electronic hospital records and days were 

counted if the infant spent any part of the day on ventilation, CPAP or TPN, with higher number of days 

indicative of poorer health. Bayley III Scales of Infant Development (BSID-III) (Bayley 2006) assessment was 

carried out by trained developmental paediatricians/psychologists at 18 months for the dHCP and at 20 months 

for EPrime (corrected age). We used the composite scores for motor, cognitive and language development 

(mean(sd)=100(15)). Associations were examined using Spearman rho (r) or Mann-Whitney U test combined 

with Cliff’s delta (d, ranging from -1 to 1), under Bonferroni-Holm multiple comparison corrections.  

 

Data availability 

Normative term-born data and the GPR code used in this study are freely available on GitHub 

(https://github.com/ralidimitrova). All imaging data collected for the dHCP will be publicly available in early 

2021 at http://developingconnectome.org/.   

 

 

 

Results 

The perinatal, demographic and neurocognitive characteristics are presented in Table 2. EPrime infants were 

born earlier (p<0.05, d=0.28) and had lower birth weight (p<0.05, d=0.19) compared to dHCP preterm infants. 

On average, they had poorer motor (p<0.05, d=0.22) skills at follow-up (language p=0.1; cognition p=0.12). 

There were no differences in days on CPAP (p=0.57), but dHCP preterm infants required mechanical ventilation 

for longer (p<0.05, d=0.16). The two preterm cohorts did not differ in punctate WM lesions (PWMLs, p=0.09) 

or cerebellar haemorrhages (p=0.82) incidence, nor in proportion of infants with intrauterine growth restriction 

(IUGR, p=0.15); yet haemorrhagic parenchymal infarction (HPI) and periventricular leukomalacia (PVL) were 

observed only in the EPrime cohort (Table 2.).  
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Table 2. Perinatal, demographic and neurocognitive characteristics of the study sample.  
 
 

 Term (dHCP) 
n = 274 

Preterm (dHCP) 
n = 89 

Preterm (EPrime) 
n = 253 

GA at birth (wks), median (IQR) 40.3 (39.1 – 41) 31.6 (28.7 – 34) 30.3 (28 – 31.6) 

PMA at scan (wks), median (IQR) 
40.7 (39.4 - 

41.4) 41.3 (40.1 - 42.7) 42.4 (41 – 43.4) 

Female, No. (%) 129 (47%) 43 (46%) 115 (45%) 

HC at scan (cm) median (IQR) 35 (33.5 - 36) 35 (33.7 - 36.1) 36.3 (35 – 37.2) 

Weight at scan (kg) median (IQR) 3.4 (3 – 3.8)  3.1 (2.7 – 3.7) 3.4 (2.8 – 3.8) 

Weight at birth (kg), median (IQR) 3.4 (3 – 3.7) 1.6 (1 - 2) 1.3 (1 – 1.59) 

Nonsingleton, No. infants, (%) .. 25 (28%) 62 (25%) 

Days of ventilation, No. infants, (%) 
median (IQR)* 

.. 
45 (51%) 

6 (2.5 - 20) 
116 (46%) 

2 (1 - 5) 

Days of TPN, No. infants, (%) 
median (IQR)* 

.. .. 
160 (63%) 
10 (6 - 15) 

Days of CPAP, No. infants, (%) 
median (IQR)* 

.. 
63 (71%) 
7 (1 - 30) 

204 (81%) 
11 (4 - 30) 

IUGR, No. infants, (%) .. 22 (25%) 43 (17%) 

PWMLs, No. infants, (%) 34 (12%) 27 (30%) 52 (21%) 

Cerebellar haemorrhages, No infants, (%) .. 5 (6%) 16 (6%) 

Haemorrhagic Parenchymal Infarction 
(HPI), No. infants, (%) 

.. .. 11 (4%) 

Periventricular leukomalacia (PVL),  
No. infants, (%) 

.. .. 6 (2%) 

Behavioural follow-up, No. infants (%) 222 (81%) 68 (76%) 237 (94%) 

      Age (months), median (IQR) 18.4 (18 – 18.7) 18.5 (18 - 19.1) 20.1 (20 – 20.6) 

      BSID-III Motor, median (IQR) 103 (97 - 107) 100 (94 – 107) 95 (85 - 100) 

      BSID-III Language, median (IQR) 97 (88 - 106) 97 (86 - 106) 91 (79 - 103) 

      BSID-III Cognition, median (IQR) 100 (95 - 105) 100 (90 - 105) 95 (88 - 103) 

 
GA – Gestational age at birth; IQR – interquartile range; PMA – Postmenstrual age at scan; HC – head 
circumference; TPN – total parenteral nutrition; CPAP – continuous positive airway pressure; IURG – 
intrauterine growth restriction; PWMLs – punctate white matter lesions; BSID-III – Bayley Scales of Infant 
Development III; Missing data: Birth HC – 11 preterm infants; birth weight - 1 preterm. TPN data were not 
available for dHCP preterm infants. *median (IQR) calculated only for infants on ventilation/CPAP/TPN. 
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Typical volumetric development in term-born infants during the neonatal period 

We found an increase in all absolute volumes except the ventricles, where no change was detected (Fig. 1A, 

Supplementary Figure 2). The increase was greatest in cGM (10.4% per week, pw) and cerebellum (9.9% pw) 

compared to ICV (6.1% pw), TTV (6% pw) and CSF (7% pw). Subcortical structures increased between 4 and 

6% pw (caudate L:4.1%, R:4.3%; lentiform L:6.6%, R:5.3%; thalamus L:4.1%, R:4.7% pw) with smaller 

increases in brainstem (3.9% pw) and WM (2% pw).  

 

The greatest changes in relative volumes were observed in cGM and WM (Fig. 1B, Supplementary Figure 2). 

cGM represented 36% of TTV at 37 weeks PMA, and increased to 44% at 44 weeks PMA, while the relative 

WM volume decreased from 48% to 38% of TTV. The relative cerebellar volume increased from 6% to 7%. 

There was an increase in relative lentiform volume, a subtle decrease in caudate and no change in thalamus. We 

observed a slight increase in CSF proportion of ICV and a steady decrease in the proportion that ventricles 

contributed to TBV. MAE for all models is shown in Supplementary Table 1.  
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Figure 1. Normative modelling of volumetric development during the neonatal period. The model means for 
both female and male term infants are shown in purple and blue respectively together with ±1, ±2 and ±3 
standard deviations from the model means for absolute (A) and relative (B) volumes (tissue volumes 
represented as a proportion from TTV, ventricles from TBV and CSF from ICV). Normative charts are 
shown only for right dGM structures (left structures are shown in Supplementary Figure 2).  
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Image resolution and volumetric development 

Overall, the majority of observations in both dHCP and EPrime preterm samples fit within 2.6 sd of the term-

born model, indicating good agreement between the two studies (Fig. 2A). Differences were most profound in 

fluid-filled structures, likely attributable to partial voluming of high T2-signal CSF. In agreement, when 

compared to the models built using the original dHCP resolution of 0.5mm, the matched 1mm resolution models 

showed a mean shift (increase) for the CSF and ventricular volumes (Fig. 2B; Supplementary Figure 3 & 4). As 

a result, when using the lower resolution normative charts, the proportion of extreme positive deviations in 

EPrime decrease from 53% to 29% for CSF and from 44% to 32% for ventricles (Fig. 2C). All infants who 

showed extreme deviations in the matched 1mm resolution showed extreme deviations in the original 0.5mm 

resolution. Changes in the proportion of extreme deviations associated with image resolution for the rest of the 

structures were more subtle. Unless stated otherwise, data are presented for the 0.5mm resolution models. The 

overall proportion of extreme deviations in the term-born sample was very low in all brain structures, with no 

more than 2% of the sample with Z-scores > |2.6| in the original 0.5mm resolution. 

 

Infants with reduced total tissue volumes suffered more extreme prematurity 

Six dHCP preterm infants (7%) and eight EPrime (3%) infants showed extreme negative deviations in TTV 

(Fig. 2C), all of which (except one EPrime infant) were born at GA<30 weeks and weighed less than 1 kg at 

birth. Significantly reduced TTV was accompanied by enlarged CSF and ventricles (dHCP: 3/6; EPrime: 7/8). 

Four infants (dHCP: 1/6; EPrime 3/8) also had associated reduction in cerebellar volumes. A further three 

preterm infants (dHCP: 1/6; EPrime 2/8) had associated reduction in the thalami, bilaterally. All infants required 

oxygen support after birth. Infants who had TTV 2.6 sd above the model mean (dHCP: 4 (5%); EPRIME: 18 

(7%)), were born GA>30 weeks and had no incidental findings, other than PWMLs, and short need for oxygen 

support and TPN after birth.  
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Figure 2. Characterising the effects of preterm birth on the developing brain. (A) Deviations from normative 
volumetric development in preterm infants. Observations for individual preterm infants from both dHCP 
and EPrime cohorts are shown with model means for both female and male term-born infants together 
with ±1, ±2 and ±3 standard deviations. Intracranial brain volume (ICV), total brain volume (TBV) and 
total tissue volume (TTV) are in cm3; cGM, WM, cerebellum, brainstem and subcortical structures 
shown as a proportion of TTV; CSF as a proportion of ICV and ventricles as a proportion of TTV. 
Horizontal --- lines show Z > |2.6|, the threshold used to define extreme deviations. The normative curves 
for the ventricles show data within 10 sd from the mean, full range is shown in Fig. 4 and discussed 
below. (B) Mean differences in fluid filled structures between GPR models build using 0.5mm and 1mm 
dHCP imaging resolution. (C) Proportion (%) of extreme deviations from the normative model in 
preterm infants. Extreme negative deviations (Z < -2.6) are depicted in blue, while extreme positive 
deviations (Z > 2.6) are shown in orange.  
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Infants with reduced thalamic volume also had PWMLs  

In the dHCP preterm sample, all eight infants with extreme negative thalamic deviations had PWMLs, seven of 

eight had multiple lesions. Four out of these seven infants had lesions involving the corticospinal tract (Fig. 3). 

Seven out of the eight infants were on CPAP, but none of them for a long period of time (five infants <4 days; 

one infant 11 days; one infant 18 days) and all seven did not require ventilation. None of these infants had a 

birthweight of less than 1kg. In EPrime 17 infants had bilateral reduced thalamic volume and 10 unilateral 

extreme deviations (with structure in the other hemisphere close to but not reaching Z<-2.6). 78% of these 

infants had PWMLs compared to 16% incidence in the rest of the sample. Overall, across the whole cohort, 

infants with PWMLs had significantly reduced left (d=0.56) and right (d=0.53) thalamic volumes, compared to 

infants without (both p<0.05). In EPrime, infants with reduced thalamic volumes, often had CSF or ventricular 

volumes significantly bigger than the normative values for their age/sex. In five infants, this was associated with 

PVL and in a further two, with HPI.  

 

Figure 3. Extreme negative deviations in thalamic volume were often accompanied by punctate WM lesions in 
the preterm brain. Depicted are four infants (A-D) with bilateral thalamic volumes significantly below 
the model mean. Thalamic segmentation (dark blue) is overlaid onto the T2-weighted images. T1-
weighted images are shown with and without the manual outlined punctate WM lesions (light blue). Note 
T1-weighted images were not used in the preprocessing but are shown here due to better contrast for 
detecting PWMLs. 
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Atypical ventricular development in preterm infants: frequent but highly heterogeneous  

Widening of the fluid-filled structures was the most frequently observed deviation from normative development 

in both cohorts. In the dHCP 29% and 17% of the preterm infants showed extreme deviations in ventricular and 

CSF volumes, respectively. This number was higher in EPrime where increased ventricles and CSF were seen in 

44% and 53% of infants with the original 0.5mm dHCP resolution and in 29% and 32% with the downsampled 

1mm resolution. Figure 4 shows the most extreme cases where infants’ ventricles were 10 sd above the model 

mean. These extreme deviations in ventricular volume were associated with overt focal brain injuries including 

haemorrhagic parenchymal infarction (infants 1,2,4,6) and periventricular leukomalacia (infants 5,7). In all of 

these infants we also observed significant negative deviations in TTV or thalamus and increased CSF. These 

infants performed poorly at follow-up (Fig. 4).  

 

 

Figure 4. Capturing heterogeneity and extreme deviations in ventricular development in the preterm brain at 
term-equivalent age. (A) Normative curves are shown for both female and male infants (in upper right 
corner – curves excluding the outliers, also shown in Fig. 2A). The figure also depicts the T2-weighted 
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images for infants with ventricular volume lying 10 sd above the mean, separate for females (top) and 
males (bottom), together with their neurocognitive scores (M – motor, C – cognitive, L – language). 
Ventricular development in EPrime preterm infants is highly heterogeneous both in shape and size as 
illustrated in (B) showing ventricular volumes of various Z-scores.  

 

 

Association between perinatal risks and deviations from normative development  

In the dHCP cohort, decreased GA at birth related to reduced TTV (ρ=0.45) and increased proportion of CSF 

(ρ=-0.44), while in EPrime to reduced TTV (ρ=0.27) and increased relative ventricular volumes (ρ=-0.26) (all 

pcorr<0.05) (Fig. 5; Supplementary Table 2). In both samples, greater birth weight Z-score was related to bigger 

ICV (dHCP: ρ=0.41, EPrime: ρ=0.36) and TTV (ρ=0.40, ρ=0.37) at TEA and in EPrime alone, to reduced 

relative brainstem (ρ=-0.26) and bilateral thalamic volumes (right: ρ=-0.28, left: ρ=-0.25) (all pcorr<0.05; 

Supplementary Table 3). 

 

In the dHCP preterm sample, longer requirement for CPAP related to smaller TTV (ρ=-0.47), and ICV (ρ= -

0.37) as well as to increased proportion CSF (ρ=0.39) and ventricles (ρ=0.37). Longer need for mechanical 

ventilation was associated with reduced TTV (ρ=-0.44) and relative left caudate volume (ρ=-0.34) as well as 

with increased relative CSF (ρ=0.39) and ventricular volumes (ρ=0.42) (all pcorr<0.05). Consistent with this, in 

EPrime, longer requirement for both CPAP and mechanical ventilation were related to reduced TTV (ρ=-0.30, 

ρ=-0.38, respectively) and increased relative ventricular volume (both at ρ=0.22) (all pcorr<0.05). Increased 

number of days requiring TPN were related to reduced TTV (ρ=-0.43, pcorr<0.05) and increased relative 

ventricular volume (ρ=0.25, pcorr<0.05; Supplementary Table 4).   
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Figure 5. Association between degree of prematurity and deviations from normative brain development. In the 
dHCP preterm sample, increased degree of prematurity (lower GA at birth) was related to reduced TTV 
and increased CSF. In the EPrime sample, increased degree of prematurity was associated with reduced 
TTV and increased ventricular volume. Individual preterm observations are plotted against the normative 
model mean for female (purple) and male (blue) term infants. The plots also show ±1, ±2 and ±3 
standard deviations from the normative means together with --- lines indicating Z > |2.6|, the threshold 
used to define extreme deviations. Ventricular data are shown only for infants with volume ±10 standard 
deviations from the model mean.  

 
 

Association between deviations from normative development and neurocognitive outcome 

In the dHCP preterm sample, increased ventricular volume was related to poorer motor (ρ=-0.40) and language 

(ρ=-0.37) scores at 18 months (all pcorr<0.05). In EPrime, increased CSF (ρ=-0.22) and cGM (ρ=-0.21), and 

reduced WM (ρ=0.20) were associated with poorer language abilities, while reduced TTV (ρ=0.20), increased 

CSF (ρ=-0.25) and cGM (ρ=-0.20) were linked to poorer cognitive performance (all pcorr<0.05). While most of 

these association were of similar effect size in the dHCP, they did not survive multiple comparison correction 

(Supplementary Table 5).  

 

 

Discussion 

 

The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis 

or predicting later neurocognitive outcomes. Focusing on individuals and their unique cerebral development can 

offer new insights. In this study, we first characterised normative volumetric development during the neonatal 

period, to then describe the effect of preterm birth at an individual infant level. We showed deviations from the 
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normative curves consistent with previous studies but with marked variability among individuals. These 

individual deviations were associated with perinatal risks and later neurocognition. 

 

We previously demonstrated that GPR could be used to detect subtle WM injury with high sensitivity 

(O’Muircheartaigh et al. 2020), and to characterise the heterogeneous consequences of preterm birth on the 

developing brain microstructure (Dimitrova et al. 2020). The present application of GPR to volumetric data 

offers more straightforward clinical translation. GPR provides normative charts describing typical volumetric 

development and can detect and quantify atypical maturation in individual infants (Ou et al. 2017). The GPR 

approach generalised to a cohort of infants with MRI data collected on a different MR scanner with different 

acquisition parameters. In the future, this method could be integrated into automatic tools that complement 

radiological decisions regarding infant development (Duerden and Thompson 2020). Our method and normative 

dataset are freely available for researchers to use for understanding pathogenesis, trialling interventions and 

defining neurocognitive prognosis for vulnerable preterm infants.  

 

We quantified rapid postnatal brain growth consistent with previous imaging and post-mortem studies 

describing change in the size, organisation and complexity of the brain during the perinatal period (Huttenlocher 

and Dabholkar 1997; Hüppi et al. 1998; Knickmeyer et al. 2008; Kersbergen et al. 2016; Makropoulos et al. 

2016). This dramatic growth is a sum product of a number of heterochronous developmental processes that take 

place in the developing brain including synaptogenesis, dendritic arborization and early stages of myelination 

(Huttenlocher 1990; Huttenlocher and Dabholkar 1997; Travis et al. 2005; Petanjek et al. 2008; Lebenberg et al. 

2019). Abrupt preterm extrauterine exposure represents a significant stressor to these events and may lead to 

widespread deviations from the normative trajectories in any or many of these processes as seen in pathology 

and pre-clinical models (Elovitz and Mrinalini 2004; Burd et al. 2012; Volpe 2019) associated with atypical 

trajectory of brain growth and a wide range of neurodevelopmental consequences (Inder et al. 2005; Bora et al. 

2014; Ball et al. 2017; Gui et al. 2019). However, these alterations are not a result of loss of intrauterine 

environment alone but are a product of the cumulative effects of clinical and genetic factors creating 

individualised circumstances for every infant. GPR applied to a large normative dataset offers a powerful 

approach to study how preterm birth shapes the brain at an individual infant level and offers the means to 

capture important differences in single infants that may be missed by analysis of the means/medians of quasi-

homogenous groups which ‘averages-out’ personal effects. 
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By quantifying this inter-individual variability, our analysis clarified the relationship between reduced global 

brain growth and preterm birth. Many but not all studies show group-level differences in TTV between preterm 

and term-born infants (Boardman et al. 2007). We report a subset of infants in both preterm cohorts that 

deviated significantly from normative brain volumes. These infants were born very early, very small and had 

prolonged need for supplemental oxygen. Consistent with this, lower GA at birth, birthweight Z-score, longer 

requirement for respiratory support and TPN were related to reduced TTV and enlarged CSF/ventricles in both 

preterm cohorts. Longitudinal studies suggest that these effects are not only evident at TEA but might persist to 

childhood and later life (Nosarti 2002; Allin et al. 2004; Ment et al. 2009; de Kieviet et al. 2012; El Marroun et 

al. 2020). Not all extremely preterm infants had TTV deviations significantly below the model mean, which 

could explain the discrepancies found between previous group analyses studying the association between 

preterm birth and reduced brain volume. An individualised approach is now possible to address the important 

question of which protective factors or lack of adverse perinatal risks, lead to typical global brain growth in 

these at-risk infants. 

 

The period encompassing mid gestation and the last trimester of pregnancy is a critical phase for the 

development and establishment of the thalamocortical network (Kostović et al. 2014). During this short period, 

there are dynamic changes in thalamocortical efferent fiber organisation and cortical lamination, including rapid 

axonal growth and the dissolution of the subplate (Kostovic and Rakic 1990; Vasung et al. 2011; Kostović et al. 

2014). This makes the thalamus and connecting WM projections particularly vulnerable to injury as a result of 

preterm birth (Boardman et al. 2006; Ball et al. 2015) with studies suggesting abnormal development may 

persist beyond TEA (Lin et al. 2001). We reported a subset of preterm infants with thalamic volumes 

significantly below the model mean (Z<-2.6). These infants had a high load of PWMLs, and five of the EPrime 

infants had PVL, supporting previous findings of a close link between thalamic development and WM 

abnormalities, including a previous group analysis of the EPrime dataset (Boardman et al. 2006; Pierson et al. 

2007; Ligam et al. 2009; Volpe 2009; Ball et al. 2015; Wisnowski et al. 2015; Tusor et al. 2017). The exact 

mechanisms that underlie reduced thalamic growth, possibly including neuronal loss and/or atypical 

developmental trajectory triggered by preterm extrauterine exposure, however remain elusive (Volpe 2009). 
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Compared to the dHCP preterm cohort, the EPrime study comprised extremely preterm infants, that were sicker 

during clinical care, had overall poorer motor outcomes, and were scanned using different acquisition 

parameters. These factors in combination likely underlie some of the differences in associations between 

extreme deviations and later neurocognitive scores observed between the two datasets. The lower spatial 

resolution in EPrime in particular, contributed to the mean shift (increase) in CSF and ventricular volumes 

observed in the EPrime. With all this in mind, it was reassuring that deviations in brain development and their 

association with perinatal risks found in the dHCP broadly replicated in EPrime, indicating good generalisation 

of the model to independent data collected on a different MRI scanner. We chose to use volumetric measures 

that are easy to calculate in research studies or routine clinical examinations. This could offer a direct clinical 

application, though given the regional heterochrony of early brain development (Lebenberg et al. 2019), future 

work should focus on more finely-parcellated regions or more sophisticated MRI-derived features, including 

cortical thickness and surface area. We reported an association between deviations from normative brain 

development at TEA and behaviour at 18-20 months. An important step for future research is to investigate 

whether these early brain deviations persist in later life and are predictive of childhood and later 

neurodevelopment (Boardman et al. 2020; George et al. 2020). 

 

The argument that every brain is different is not novel, and the expectation that the effects of preterm birth are 

homogeneous and exactly alike in every infant is equally untenable. Individualised methodologies have been 

successfully applied in other fields (e.g. neuropsychology (Towgood et al. 2009), ageing (Ziegler et al. 2014)) 

and hold significant promise for the preterm infant. Although a group-mean difference is detectable using the 

conventional case-control approach, the significant heterogeneity would not be captured and effects of clinical 

significance to individual infants would be averaged out (Sled and Nossin-Manor 2013). Additionally, visually 

subtle effects may have prognostic significance when combined with other deviations from normative brain 

growth, for example reduced thalamic volume, and further analytic power may be gained by including 

covariates in the GPR model.  

In summary, our approach offers a readily interpretable, generalisable and more precise understanding of the 

cerebral consequences of preterm birth by focusing on the individual rather than the group average atypicality, 

and in future might improve the predictive power of neuroimaging. 
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