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Abstract 28 

Skin Marker (SM) based motion capture is the most widespread technique used for motion 29 

analysis. Yet, the accuracy is often hindered by Soft Tissue Artifact (STA). This is a major 30 

issue in clinical gait analysis where kinematic results are used for decision-making. It also 31 

has a considerable influence on the results of rigid body and Finite Element (FE)  32 

musculoskeletal models that rely on SM-based kinematics to estimate muscle, contact and 33 

ligament forces. Current techniques designed to compensate for STA, in particular multi-34 

body optimization methods, assume anatomical simplifications to define joint constraints. 35 

These methods, however, cannot adapt to subjects’ bone morphology, particularly for patients 36 

with joint lesions, nor easily can account for subject- and location-dependent STA. In this 37 

perspective, we propose to develop a conceptual FE based model of the lower limb for STA 38 

compensation and evaluate it for 66 healthy subjects under level walking motor task.  39 

 Both hip and knee joint kinematics were analyzed, considering both rotational and 40 

translational joint motion. Results showed that STA caused underestimation of the hip joint 41 

kinematics (up to 2.2°) for all rotational DoF, and overestimation of knee joint kinematics (up 42 

to 12°) except in flexion/extension. Joint kinematics, in particular the knee joint, appeared to 43 

be sensitive to soft tissue stiffness parameters (rotational and translational mean difference up 44 

to 1.5° and 3.4 mm). Analysis of the results using alternative joint representations highlighted 45 

the versatility of the proposed modeling approach. This work paves the way for using 46 

personalized models to compensate for STA in healthy subjects and different activities. 47 

Keywords 48 

Soft Tissue Artifact, In vivo joint kinematics, Model personalization, Hip and knee joint, 49 

Finite Element Analysis  50 
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1. Introduction 53 

Accurate assessment of in vivo kinematics is essential for providing insights into normal joint 54 

functionality (Akbarshahi et al., 2010) and investigation of lower limb joint pathology 55 

(Andriacchi and Alexander, 2000). Skin Marker (SM) based motion capture is the most 56 

widespread technique used for estimating skeletal kinematics of the lower limb. However, the 57 

accuracy of such technique is affected by the relative movement of soft tissues with respect to 58 

the underlying bone; a bias commonly referred to as Soft Tissue Artifact (STA). If not 59 

compensated for, STA can lead average kinematic errors up to 16 mm in translation and 13° 60 

in rotation for the knee joint (Benoit et al., 2006). Such errors may significantly influence the 61 

assessment of pathology or the treatment effects in clinical gait analysis (Seffinger and 62 

Hruby, 2007).  63 

 Different methods have been proposed in the literature to reduce the effect of STA on 64 

bone pose estimation (e.g., single-body optimization (Chèze et al., 1995), double anatomical 65 

landmark calibration (Cappello et al., 1997), point cluster technique (Andriacchi et al., 1998), 66 

and Multi-body Optimisation (MBO) (Lu and O’Connor, 1999)).  Amongst these, MBO, 67 

which relies on a predefined kinematic model with specific joint constraints, is increasingly 68 

used. Initially, simple kinematic constraints such as hinge or spherical joints were 69 

considered to represent hip and knee articulation (Charlton et al., 2004; Leardini et al., 2017; 70 

Lu and O’Connor, 1999; Reinbolt et al., 2005). Later, anatomical joint constraints (parallel 71 

mechanism, coupling curves, ligament length variation, and elastic joint) were introduced, 72 

providing encouraging 3D kinematics as they allowed joint displacements (Bergamini et al., 73 

2011; Duprey et al., 2010; Gasparutto et al., 2015; Richard et al., 2016). However, regardless 74 

of the joint constraints imposed, generic (unpersonalized) model-derived kinematics were 75 

shown inaccurate (knee kinematic error up to 17° and 8 mm) as these models could not adapt 76 

to patient-specific geometry, particularly in pathological conditions (Clément et al., 2017). 77 
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On the other hand, personalization of model geometry based on medical images was shown 78 

promising in improving joint kinematics accuracy (Assi et al., 2016; Clément et al., 2015; 79 

Nardini et al., 2020).  80 

 Joint simplification has indirect consequences on the predictive accuracy of both rigid 81 

body musculoskeletal (MSK) models, and Finite Element (FE) based MSK models. Studies 82 

that used FE-MSK models to predict local joint mechanics using in vivo joint kinematics (Shu 83 

et al., 2018; Xu et al., 2016) assumed the knee joint as 1 DoF. Such assumption might result 84 

in propagation of uncertainties on the predicted kinematics and would affect the joint reaction 85 

as well as muscle and ligament forces.  86 

 In light of the aforementioned contexts, reliable estimation of skeletal kinematics with 87 

SM-based motion data is still a major challenge (Richard et al., 2017). Furthermore, 88 

extensive time and complexity associated with customization of models to subjects’ geometry 89 

prohibit large sample size. In that context, methods for 3D reconstruction of bony segments 90 

from medical imaging modalities, particularly biplanar X-ray imaging, are promising in 91 

research and clinical routine (Chaibi et al., 2012). Also, there is a need for adaptable 92 

modeling approaches that can account for subject-, task- and location-dependent STA.  93 

 In a previous study, a conceptual FE model was proposed for STA compensation 94 

(Skalli et al., 2018).  The model consists of bone segments (pelvis, femur and tibia), skin 95 

markers, virtual markers, connecting elements between skin markers and corresponding 96 

bones, and joint models for the hip and the knee joint. The potential advantage of the 97 

proposed model is its versatility with regards to soft tissue stiffness personalization and 98 

alternative joint model representation.  The objective of the current study was to develop the 99 

conceptual model for the lower limb and to implement it on healthy volunteers considering 100 

subject-specific models. 101 

 102 
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 103 

2.  Materials and methods 104 

 First, the conceptual model is presented. Then implementation of the model is 105 

illustrated within an IRB approved (CEHDF285) study. Finally, the consistency and 106 

versatility of the model were investigated through sensitivity of various parameters, including 107 

the joints representation.  108 

2.1 Conceptual FE model of the lower limb 109 

 The rationale underlying the conceptual model is twofold: First, the spring connecting 110 

the virtual marker and the skin marker is a simple way of modeling globally and grossly the 111 

soft tissue deformation, while being able to adjust the spring stiffness to differentiate both 112 

between anatomic regions (such as the pelvis, thigh and shank), and between populations of 113 

different skin types (tight or loose). Second, considering virtual markers just beneath the skin 114 

markers allows easy post-processing of the results to estimate the corrected position of skin 115 

markers. These corrected marker positions are analogous to the model determined markers in 116 

standard MBO approaches. Such post-processing helps to use the classical gait analysis 117 

software. 118 

 The conceptual model of the lower limb consists of bone segments, nodes 119 

representing skin markers and virtual markers, joint elements, and elements that connect the 120 

skin markers to the corresponding bones. Bone segments are represented by a set of high 121 

stiffness (quasi-rigid) beams. The joints between the segments are represented by rigid links, 122 

allowing free rotations at the joint and controlled displacements. The connection between a 123 

skin marker and the corresponding virtual marker is represented by a linear spring, where all 124 

the soft tissue deformation is reported. The connection between the virtual marker and the 125 

corresponding bone segment is established with high stiffness beams (Fig. 1). 126 
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 The proposed model requires only the measured optoelectronic skin marker locations 127 

as imposed boundary conditions, without any need for additional force nor any further 128 

optimization process. The output of the Finite Element Analysis of the model is the 129 

mechanical response resulting in bone motion and the virtual marker positions. From the 130 

virtual marker positions, corrected marker positions are obtained. 131 

 Skin markers are denoted by �, differentiating between those of the pelvis (��), femur 132 

(��� and tibia (��). The number of markers for the pelvis (���), femur (���) and tibia 133 

(���) is variable and depends on the protocol being considered. Each skin marker is 134 

therefore referred to using the corresponding subscript : S�� , S��  and S��  respectively for the 135 

pelvis (S��  to S����), femur (S�� to S����) and tibia (S�� to S����). Using the same 136 

convention, virtual markers are denoted SC (SC�� , SC��  and SC�� for the pelvis, femur and 137 

tibia respectively), and the bone points are denoted as 
 (differentiating between those of the 138 

pelvis (
�), femur (
�� and tibia (
�)). These bone points are different bone landmarks, 139 

automatically annotated in the 3D models (Chaibi et al., 2012), which serve as nodes for the 140 

FE model. As illustrated further in Fig. 2(a), the pelvis bone was represented by 6 nodes 141 

�B�� �� B���, the femur by 7 nodes �B��  �� B�	�, and the tibia by 6 nodes 142 

�B�� �� B���(refer supplementary material for details). Beam elements with elastic modulus 143 

(E) of 12 GPa (Choi et al., 1990) were used to connect the nodes for each bone segment. Hip 144 

and knee joints are denoted by HJ and KJ respectively. 145 

Modeling of the skin marker-bone connection: 146 

 Each pelvis skin marker (S��  �� S�
) was linked to the pelvis bone by a combination 147 

of spring element that connects the skin marker to the corresponding virtual marker 148 

(SC��  �� SC�
), and a beam element that connects the virtual marker to the bone.  The springs 149 

were assigned with stiffness (k) values in the range 5 kN/m to 65 kN/m (Dumas and 150 

Jacquelin, 2017; Gittoes et al., 2006; McLean et al., 2004), whereas the beams were 151 
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considered highly stiff and assigned the same elastic modulus as that of the bones. The same 152 

combination of elements was used to connect the skin markers to the femur and tibia bone 153 

segments.  154 

 155 

Modeling of the joints: 156 

 As a first option, hip and knee joints were represented each by a rigid link allowing 157 

free rotation while controlling the relative displacements (through the length of the link).  For 158 

the hip joint,  the rigid link connected the acetabulum center and femur head center. For the 159 

knee joint, the rigid link was defined in the line joining the centroid of the two femoral 160 

condyle centers to the centroid of the two tibial plateau centers (Fig. 2(b)) (refer 161 

supplementary material for details).  162 

2.2. Model implementation  163 

2.2.1. Data Acquisition 164 

 66 healthy volunteers were included (age range: 18-60 years; weight: 71.3±15 Kg; 165 

height: 170±10 cm) in this study. The only exclusion criterion was previous record of 166 

orthopedic surgery of the lower limbs. 167 

 Quantitative Movement Analysis was performed on an optoelectronic analysis system 168 

comprising 7 video-cameras (Vicon Motion System Ltd., Oxford Metrics, UK). The 169 

optoelectronic markers were positioned following the Plug-in Gait® method (Davis et al., 170 

1991), and participants were asked to perform level walking at self-selected speed (Fig. 3(a)). 171 

Biplanar radiographs were then acquired using the EOS system (EOS Imaging, France). 3D 172 

digital models of bones were obtained using a 3D reconstruction algorithm validated by 173 

previous studies (Fig. 3(b)) (Chaibi et al., 2012). The location of skin markers was also 174 

computed from biplanar X-Rays.  175 

2.2.2. Subject-specific FE model development and simulation 176 
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 From the 3D digital models of the bones, subject-specific anatomical landmarks were 177 

automatically identified, resulting in nodal coordinates of each bone, as represented in Fig. 178 

3(c). The distance between the skin and the corresponding virtual marker was arbitrarily 179 

chosen as 1 mm (i.e., spring length). A rigid link represented the hip and knee joints. The 180 

choice of the rigid link ���� for the knee joint was motivated by the in vitro kinematic 181 

response obtained in a previous study on 12 cadaveric specimens showing that overall knee 182 

translations were nearly 20 mm (Rochcongar et al., 2016). For the hip ����, the joint length 183 

was fixed to 1 mm based on an unpublished data on the hip joint translation quantified using 184 

biplanar X-rays. For simplicity, stiffness parameter of the springs was kept constant across all 185 

segments and assigned 50 kN/m.  186 

 The measured skin marker displacements at each frame from the motion capture were 187 

introduced to the model as a prescribed boundary condition. A solution was computed at each 188 

frame using commercial FE package ANSYS®, with a default Newton-Raphson algorithm, 189 

an implicit scheme widely used in numerical procedures for Partial Differential Equations  190 

(Bathe, 1996). 191 

2.2.3. Kinematic computation 192 

 The positions of the resulting bone segments and virtual markers were used to define 193 

corrected markers (���) with the same consideration as those of the virtual markers, i.e., rigid 194 

links with the bone segment (Fig. 4). The positions of the corrected markers were used to 195 

compute STA Compensated (STAC) joint kinematics. Hip and knee joint rotational 196 

kinematics were expressed in the pelvis and femur anatomical reference frames (EOS-based) 197 

respectively, and with Cardan sequence ������. Hip joint translation was defined as the 198 

relative displacement between points �


� and �

� expressed in the pelvis anatomical reference 199 

frame. Similarly, knee joint translation was defined as a relative displacement between points 200 

�

� and �


�expressed in the femur anatomical reference frame. Anatomical reference frames 201 
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were defined as described in (Schlatterer et al., 2009) for the femur and tibia, and in (Dubois, 202 

2014) for the pelvis (Fig. 4). A customized Matlab (MathWorks, Massachusetts, United 203 

States) routine was used for both SM-based and STAC kinematic processing. In each case, 204 

before and after STA compensation, joint kinematics were obtained using an internal 205 

procedure implemented in our previous studies (Azmy et al., 2010; Pillet et al., 2016; 206 

Rochcongar et al., 2016). Briefly, skin marker coordinate systems were registered on the 207 

bone anatomic reference frames to get the joint kinematics.   208 

 Joint kinematics (mean±1SD) for the hip and knee joint were plotted for all DoFs over 209 

time normalized gait cycle. The difference in range of motions (dROM) was also computed 210 

between SM-based and STAC kinematics. 211 

2.3. Illustration of versatility 212 

2.3.1. Sensitivity of spring stiffness and joint length 213 

 Two different stiffness values for the springs were implemented (5 kN/m and 65 214 

kN/m) to investigate the influence of stiffness parameters on joint kinematics.  215 

 Furthermore, two different knee joint lengths (L� = 21 mm and 31 mm) were 216 

arbitrarily considered to investigate the impact of joint lengths on estimated kinematics. 217 

Implemented knee joint lengths were based on the minimum and maximum value found in 218 

the population. In this case, spring stiffness was kept constant with a value of 65 kN/m. 219 

 Differences between the two groups with different spring stiffness values and then 220 

joint lengths were analyzed with a Student’s t-test or Wilcoxon sign-rank test depending on 221 

the outcomes of the Shapiro-Wilk test of normality, using a customized Matlab routine. For 222 

all the tests, the significance level was set 0.05 a priori. 223 

2.3.2. Alternative joint representations 224 

 Two other alternative joint models were considered to illustrate the versatility of the 225 

lower limb FE model.  226 
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These joint models were: 227 

Parallel Mechanism: The centers of the medial and lateral condyles and corresponding tibial 228 

plateaus were considered to model the knee joint with two rigid links approximating the 229 

femur-tibia contact behavior. The hip joint model was left unaltered (single-link model).  230 

Spherical joint: Spherical joint model at the hip and knee joint was considered. The joint 231 

constraint location was placed on the femur head center for the hip joint and the mid-point of 232 

the two femoral condyles for the knee joint. Such consideration was similar, as reported in 233 

previous studies (Sauret et al., 2016).  234 

 Differences between alternative joint models were analyzed with a Student’s t-test or 235 

Wilcoxon sign-rank test depending on the outcomes of the Shapiro-Wilk test of normality, 236 

using a customized Matlab routine. For all the tests, the significance level was set 0.05 a 237 

priori. Spring stiffness value of 65 kN/m was assigned for all the joint models.  238 

2.4. Model comparison with multi-body optimization 239 

 As no reference kinematics (artifact-free motion) were available, the FE model results 240 

were compared to a standard MBO method with spherical joint modeling for both the hip and 241 

knee joints (Lu and O’Connor, 1999). The joint constraints and locations incorporated in the 242 

MBO were in accordance with the FE model. To compare the kinematic results of the 243 

subject-specific FE models with MBO, the same anatomical reference fra mes were defined 244 

for the MBO bone segments.  245 

 Differences between the two methods were analyzed with a Student’s t-test or 246 

Wilcoxon sign-rank test depending on the outcomes of the Shapiro-Wilk test of normality, 247 

using a customized Matlab routine. For all the tests, the significance level was set 0.05 a 248 

priori. 249 

3. Results 250 
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 Each FE model with 5 DoF joints required less than 45 sec of run time on a single 251 

processor desktop PC to simulate a complete gait cycle of approximately 200–300 frames. 252 

All results are synthesized in Table 1.  253 

3.1.Joint kinematics 254 

 Both rotational and translational kinematics estimated with skin marker measurements 255 

and FE model embedding the 5 DoF joint model are illustrated in Figs. 5 and 6 for the hip 256 

and knee joints respectively. The joint kinematics are plotted over time-normalized gait cycle.   257 

 Overall, for the hip joint, STAC and SM-based kinematics exhibited qualitatively 258 

similar pattern. However, differences in range of motion (dROM) varied across all DoFs, 259 

with a maximum value of �2.2° for Abduction/Adduction (Abd/Add) followed by �1.6° and 260 

�0.3° for Flexion/Extension (Flex/Ext) and Internal/External (Int/Ext) rotation respectively. 261 

Maximum joint displacement up to 1 mm was observed for STAC kinematics while showing 262 

up to 41.5 mm for SM-based kinematics in Posterior/Anterior (Post/Ant) direction. In the 263 

Medial/Lateral (Med/Lat) and Inferior/Superior (Inf/Sup) direction, joint displacement 264 

exhibited less than 1 mm, whereas SM-based kinematics showed up to 28 mm.   265 

 For the knee joint, maximum dROM value was observed for Int/Ext (12.5°) followed 266 

by  Flex/Ext (�6.3°) and Abd/Add (1.5°) rotation respectively. A maximum of 20 mm of 267 

joint displacement was noted in (Post/Ant) direction, while remaining DoFs showed up to 9 268 

mm (Med/Lat) and 3 mm (Inf/Sup) for STAC kinematics. These results showed up to 30.5 269 

mm, 12.5  mm, and 21 mm respectively, for SM-based kinematics. 270 

3.2. Sensitivity study 271 

3.2.1. Spring stiffness parameter and joint length 272 

 With two different values of spring stiffness parameters (5 kN/m and 65 kN/m), no 273 

statistical significance in dROM was noted for the hip joint kinematics. As for the knee joint, 274 

different spring stiffness revealed significant dROM for all DoFs except Flex/Ext.  275 
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 With different knee joint lengths (21 mm and 31 mm), hip translational kinematics 276 

displayed significant variability for Lat/Med motions (by 2 mm), while showing less than 1 277 

mm change for remaining DoFs. As for knee translational kinematics, significant dROM was 278 

observed for the Post/Ant and Inf/Sup motions.  279 

3.2.2. Influence of alternative joint models on kinematics   280 

 Different joint representations displayed varying kinematic changes across all DoFs 281 

for the hip and knee joints. Among hip joint kinematic results, significant dROM was 282 

observed only for the Lat/Med (up to 4 mm) and Post/Ant motion (up to 2.7 mm). Similarly, 283 

knee joint kinematics significantly varied up to 3.4° in dROM for Int/Ext rotation when joint 284 

model was altered, along with  Post/Ant motion (up to 7.6 mm), for the single link Vs parallel 285 

mechanism. 286 

3.3.FE Model comparison with MBO  287 

 Statistically significant differences between MBO-based and FE-based STA 288 

compensation for the hip and knee joints were found (p<0.05). Those differences, however,  289 

were always in the range of 0.7° to 2°. 290 

3. Discussion 291 

 Soft Tissue Artifact compensation is essential for accurate estimation of in vivo joint 292 

kinematics in both research and clinical routine; however, personalization and versatility of 293 

current model-based methods still represent a challenge. The purpose of this study was to 294 

develop and evaluate a conceptual FE model of the lower limb for STA compensation. The 295 

proposed method was evaluated on a population of 66 subjects. This model is 296 

computationally fast (less than 45 sec run time), and its main advantage is versatility allowing 297 

a wide range of parameters and joint representations to be considered.  298 

 Qualitatively similar kinematic patterns were observed between SM-based and FE-299 

based STA compensated (STAC) results for both the hip and knee joints, with differences in 300 
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range ROM across all DoFs. SM-based kinematics were comparable to the literature 301 

(D’Isidoro et al., 2020; Fiorentino et al., 2017).  Results obtained showed that overall 302 

rotational ROM was underestimated by SM-based results up to 2.2° for the hip joint, thus 303 

confirming similar observations reported in studies that compared SM-based ROM to dual 304 

fluoroscopic measurements (Fiorentino et al., 2020). For the knee joint,  SM-based ROM was 305 

smaller by 6.3° for the Flex/Ext, whereas other DoFs revealed up to 12° higher as compared 306 

to STAC kinematics. For translational kinematics of the knee joint, SM-based results were 307 

higher as compared to STAC kinematics. STAC knee kinematics were comparable to studies 308 

that reported either bone-pin-based or fluoroscopy-based kinematics (Benoit et al., 2006; 309 

Kozanek et al., 2009; Myers et al., 2012). Nevertheless, we observed overall higher dROM 310 

values between SM-based and STAC as compared to the studies that reported in the range 311 

4.4°–5.3° for rotational kinematics, and up to 13 mm for translational kinematics (Benoit et 312 

al., 2006; Leardini et al., 2005). These discrepancies may arise from the experimental 313 

protocol, such as number of markers, cluster configuration and location.  314 

 Sensitivity study showed that joint kinematics (particularly the knee joint) were 315 

sensitive to spring stiffness exhibiting dROM value up to 1.5° for the rotational kinematics 316 

and up to 3.5 mm for translational kinematics. Different joint representations revealed that 317 

alternative joint models have considerable influence on the estimated kinematics, particularly 318 

knee Int/Ext rotation (up to 3.4°) and translations (up to 7.6 mm), establishing similar 319 

remarks as reported in the literature (Duprey et al., 2010; Richard et al., 2017).  320 

 Joint kinematics computed using the proposed FE-based STA compensation model 321 

were able to consider the joint simplifications used in a standard MBO method in the 322 

literature, producing consistent results. However, the proposed approach aims to overcome 323 

the limitations of the MBO method underlined by (Clément et al., 2017), who showed that 324 

simplified joint constraints (kinematic or anatomical) were inadequate for clinical 325 
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applications. Indeed, such simplifications considered in MBO methods may be sufficient for 326 

many movement analysis applications; however, this is not the case for pathological cases. 327 

For example, in a previously unpublished study using EOS imaging, the translations at the 328 

hip joint (distance between the femur head and acetabulum center) during a change of posture 329 

from standing to sitting was quantified varying up to 5 mm in pathological population. In 330 

such cases, it is apparent that standard joint representation, such as a spherical joint, is not 331 

relevant. The main advantage of the new procedure is its versatility. Indeed, it can be 332 

modified to incorporate more or less detailed joint representations to improve joint mechanics 333 

estimation. It could also evolve into subject-specific modeling for clinical applications. For 334 

example, the spring stiffness could be personalized based on quantitative soft tissue 335 

deformation that can be assessed using medical images  (Südhoff et al., 2007). Such avenues 336 

are currently under investigation. 337 

 This study has some limitations. First, there was no reference kinematics to compare 338 

the results to. Therefore, the joint kinematics exhibited by the FE models were compared to 339 

those computed with the MBO method. Nevertheless, as we cannot consider MBO as a fully 340 

reliable solution for STA compensation (Richard et al., 2017), such comparison is only for 341 

assessing the qualitative performance of the FE model. Second, STA parameters 342 

implemented in the model were arbitrary as there is a lack of data in the literature.  343 

Personalization of such parameters is, however, essential to encompass different range of 344 

subjects (young, adult, patients with CP and OA etc.). Third, joint representation in this 345 

model is still simplified, which could be insufficient for investigating local joint mechanics 346 

for healthy or pathological joints (Adouni et al., 2012; Lenhart et al., 2015; Shu et al., 2018; 347 

Valente et al., 2014). Nevertheless, as a preliminary step, the current contribution only 348 

focused on exploring and facilitating personalization of the parameters that are important for 349 

STA compensation. Moreover, even with simplified joint representation, the model could 350 
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limit the effect of STA in joint kinematics. Fourth, although the proposed approach may give 351 

the impression that it complicates the process of STA compensation in gait analysis, the 352 

perspectives are numerous, as already highlighted. Fifth, no external forces nor inertial/mass 353 

forces were imposed on the model. The only boundary conditions were the external skin 354 

markers displacements. Considering the inertial/mass forces would be necessary when 355 

dynamic phenomena are essential to take into account, for example, in sports biomechanics. 356 

Finally, the study was based on a single motor task, i.e., level walking. Therefore, the results 357 

may vary with other motor tasks (hopping, cutting, stand-to-sit) and hence the interpretations.  358 

 The proposed approach may serve in two major fields of applications: First, in gait 359 

analysis for research, where classical scaling techniques are used to obtain subject-specific 360 

geometry instead of image-based model personalization. Compensating for STA with such 361 

method is possible with an approximated model geometry, while being able to differentiate 362 

soft tissue stiffness parameters between different sub-groups. To be noted that as such scaling 363 

techniques often consider gross anthropometry of the subject and disregards distinctive 364 

features of the joint, therefore can be considered “not actually personalized” (Nardini et al., 365 

2020; Smale et al., 2019). Second field of application can be clinical gait analysis, where 366 

image-based model personalization could capture anatomical details of the joint structures.  367 

 In conclusion, as a first study, we presented a conceptual FE model of the lower limb 368 

for STA compensation and evaluated it in a population of 66 subjects with varying 369 

morphologies. The model appeared to be satisfactory in compensating for STA and versatile, 370 

facilitating parameters necessary for model personalization. The methodology developed and 371 

evaluated in this study may improve the accuracy of kinematic predictions, which is 372 

instrumental for MSK models as well as making clinical decisions. In the current 373 

contribution, the human model used for the computations consists only of the lower limbs 374 

(pelvis, femur and tibia). However, the same approach can be considered for the whole body, 375 
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which could be particularly interesting for the shoulder joint (Duprey et al., 2017). Future 376 

work could focus on further model evaluation based on in vivo data, such as dual 377 

fluoroscopy. 378 
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Figure Captions 1 

 2 

Figure 1. Schematic illustration of the conceptual lower limb FE model. Detailed illustration shown 3 

only for the femur segment. B�� , B��  and B��  denote pelvis, femur and tibia bone nodes. S��  and SC��  4 

are the skin and virtual markers respectively of the for the femur segment. HJ and KJ denote the hip 5 

and knee joint respectively. 6 

Figure 2. (a) Detailed representation of the lower limb FE model with generic anatomical bony 7 

landmarks. Anatomical landmarks for the pelvis �B�� 	
 B���: right antero-superior iliac spine, right 8 

postero-superior iliac spine, left antero-superior iliac spine, left postero-superior iliac spine, and right 9 

and left acetabulum centers. For the femur �B�� 	
 B���: femur head center, greater trochanter, two 10 

diaphyseal points, medial and lateral condyle centers and center of the two condyles. For the tibia 11 

�B�� 	
 B���: center of the two plateaus, two diaphyseal points, medial and lateral malleoli and center 12 

of the two malleoli. (b) joint modeling of the hip (L�) and knee joint (L�) with rigid links allowing 13 

free rotation and controlled relative displacement. 14 

Figure 3. Schematic illustration of FE model personalization (a) the locations of the skin markers 15 

throughout gait cycle obtained  from motion capture and (b) 3D digital models of the pelvis, femur 16 

and tibia built from two orthogonal radiographs (c) anatomical landmarks were identified from the 3D 17 

digital models resulting the nodal coordinates of each bone. 18 

Figure 4. Illustration of corrected markers (
�� , 
�� , 
�� ) and anatomical reference frames 19 

(���	 , �
�� , ���
) for the (A) femur, (B) pelvis and (C) tibia respectively.  Corrected markers are 20 

obtained from the virtual marker in a direction orthogonal to the bone segment and 1mm away from 21 

virtual marker. Anatomical reference frames for the femur and tibia were defined as described in 22 

(Schlatterer et al., 2009) and for pelvis (Dubois, 2014).  23 

Figure 5. Hip joint kinematics during gait presented as Mean±1SD. Mean values for skin marker-24 

based (green) and FE model predicted results (blue) are shown as solid lines, while standard deviation 25 

in lighter shades. Differences in ROM (dROM) between SM-based and STAC results are depicted as 26 

insets for all DoFs 27 

Figure 6. Knee joint kinematics during gait presented as Mean±1SD.  Mean values for skin marker-28 

based (green) and FE model predicted results (blue) are shown as solid lines, while standard deviation 29 

in lighter shades. Differences in ROM (dROM)  between SM-based and STAC results are depicted as 30 

insets for all DoFs. 31 
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