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Abstract 
 
Despite the availability of vaccines for COVID-19, serious illness and death induced by 

coronavirus infection will remain a global health burden because of vaccination 

hesitancy, possible virus mutations, and the appearance of novel coronaviruses. 

Accordingly, there is a need for new approaches to limit severe illness stemming from 

coronavirus infections. Cells of the immune system and lung epithelia express receptors 

for GABA (GABA-Rs), a widely used neurotransmitter within the CNS. GABA-R agonists 

have anti-inflammatory effects and can limit acute lung injury. We previously showed 

that GABA treatment effectively reduced disease severity and death rates in mice 

following infection with a coronavirus (MHV-1) which provides a potentially lethal model 

of COVID-19. Here, we report that GABA treatment also reduced viral load in the lungs, 

suggesting that GABA-Rs may provide a new druggable target to limit pulmonary 

coronavirus replication. Histopathological analysis revealed that GABA treatment 

reduced lung inflammatory infiltrates and damages. Since GABA is safe for human 

consumption, inexpensive, and available worldwide, it is a promising candidate to help 

treat COVID-19.  
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Introduction 
 While GABA-Rs are well known for their role in neurotransmission in the CNS, 

these receptors are also found on some cells in the periphery, most notably for our 

studies, on some cells of the immune system and lung epithelia. The biological roles of 

GABA-Rs on immune cells are not yet well understood, but there is a growing body of 

evidence that the activation of these receptors has immunoregulatory actions. Rodent 

and human macrophages and dendric cells express both GABA-Rs and GABA and 

GABA-R agonists inhibit their inflammatory activity (1-6). T cells also express GABA-Rs 

(4-8). The administration of GABA-R agonists inhibits autoreactive Th1 and Th17 cells 

while promoting CD4+ and CD8+ Treg responses (5, 6, 9) and ameliorates autoimmune 

disease in mouse models of type 1 diabetes (T1D), multiple sclerosis, and rheumatoid 

arthritis, and also limits inflammation in murine type 2 diabetes (1, 5, 6, 10, 11). Human 

immune cells also express GABA-Rs and GABA inhibits secretion of IL-6, TNF, IL-17A, 

CXCL10/IP-10, CCL4, CCL20, and MCP-3 from anti-CD3 stimulated PBMC from T1D 

patients (7). The ability of GABA-R agonists to inhibit the production of number of 

inflammatory factors is of potential interest for helping to treat COVID-19 since high 

levels of some of these inflammatory factors in patient sera is associated with the 

development of severe COVID-19 (12-15). 

 Lung epithelial cells also express GABA-Rs, specifically the GABAA-R subtype. 

GABA and GABAA-R positive allosteric modulators (PAMs) have been shown to reduce 

inflammation and improve alveolar fluid clearance and lung functional recovery in 

different rodent models of acute lung injury (16-23), as well as limit pulmonary 

inflammatory responses and improve clinical outcomes in ventilated human patients 

(24-26). GABAA-R PAMs reduce macrophage infiltrates and inflammatory cytokine 

levels in bronchoalveolar lavage fluid (BALF) and limit inflammatory responses by 

rodent and human macrophages (3, 22, 27-31). GABA application reduces the secretion 

of inflammatory factors from LPS-stimulated human bronchial epithelial cells in vitro 

(17). Finally, GABA can inhibit platelet aggregation (32), which is important because 

pulmonary thrombosis often occurs in critically ill COVID-19 patients (33, 34). 
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 Mouse hepatitis virus (MHV)-1 is a pneumotropic beta-coronavirus that is widely 

used as a safe model of SARS-CoV and SARS-CoV-2 infection (35-38). Intranasal 

inoculation with ³5 x 103 plaque-forming units (PFU) of MHV-1 in A/J mice induces 

acute pneumonitis and acute respiratory distress syndrome with a high lethality rate. 

The MHV-1-infected mice develop clinical symptoms and pathological features similar to 

those in severely ill COVID-19 patients, including high levels of pulmonary edema, 

pneumonitis, dense macrophage infiltrates, hyaline membranes, fibrin deposits, 

accompanied by loss of body weight and respiratory distress (35-38). We previously 

showed that GABA treatment just after MHV-1 inoculation, or after the appearance of 

disease symptoms, very effectively protected the mice from severe illness and death 

(39). Here, we report that GABA treatment also reduced viral loads and pathological 

findings in their lungs. We discuss possible mechanisms underlying these observations. 

 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.09.430446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430446
http://creativecommons.org/licenses/by-nd/4.0/


Materials and methods  
Mice. Female A/J mice (8 weeks in age) were purchased from the Jackson Laboratory 

and maintained in microisolator cages and fed with a standard diet and water ad libitum. 

This study was carried out in accordance with the recommendations of the Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health. The protocols 

for all experiments using vertebrate animals were approved by the Animal Research 

Committee at UCLA (approval # ARC-2020-122) and were carried out in compliance 

with the ARRIVE guidelines. 
 

Reagents. GABA (stock #A2129) was purchased from Millipore-Sigma (St. Louis, MO, 

USA).   

 

Virus. MHV-1, DBT cells, and HeLa-CECAM1 were generously provided by Dr. Stanley 

Perlman (University of Iowa). MHV-I virus was prepared and titered as previously 

described (35-39). 

 

Viral infection and GABA treatment. At 9 weeks in age, individual A/J mice were 

anesthetized and inoculated intranasally with 5 x 103 PFU MHV-1 in 50 µl cold 

Dulbecco’s modified Eagle’s medium (DMEM). The mice were immediately randomized 

and provided with plain water (controls) or water that contained GABA (20 mg/mL) as 

per (9, 39) for the entirety of the observation period. The mice treated with GABA on 

day 0 are referred to as the GABA0 group. Some virus-inoculated mice were provided 

with plain water for 2 days and treated with GABA beginning on day 3 post-inoculation 

and are referred to as the GABA3 group. The mice were euthanized at 3 or 6 days post-

infection and their right and left lungs were dissected for measurements of viral loads 

and histology, respectively. 

 

Viral titers. Frozen lung samples were dounce-homogenized into 1 mL of ice-cold 

DMEM with 10% fetal calf serum and homogenized with 1 mm glass beads using a 

Qiagen TissueLyser-LT at 50 Hz for 6x1 min. The viral titers in the supernatants were 

determined by endpoint dilution (40) in HeLa-CEACAM1 cells (85% confluent, 5 x 104 
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cells/well) using the Spearman-Kärber formula (41) to calculate 50% tissue culture 

infectious dose (TCID50). 

 

Hematoxylin and eosin staining of lung sections. Their left lungs were fixed in 10% 

neutral buffered formalin and embedded in paraffin. Lung tissue sections (5 µm) were 

routine-stained with hematoxylin and eosin. Five images from each mouse were 

captured under a light microscope at 200 x magnification. The degrees of pathological 

changes were scored, based on the number of hyaline membranes, % of pulmonary 

areas with obvious inflammatory infiltrates in lung parenchyma, and the % of area with 

inflammatory consolidation within the total area of the section. The total numbers of 

hyaline-like membranes with, or without, cell debris or hyaline-like deposition in alveoli 

of the lung tissue section were scored as 0: none detectable; 1: 1-5; 2: 5-10; 3: >10. The 

areas of lung inflammation and hemorrhage in one lung section were estimated and the 

severity of inflammation and hemorrhage in the section was scored as 1: mild, 2: 

moderate; 3, marked, 4: severe. Accordingly, an inflammatory score in each mouse was 

obtained by % of lung areas x severity score. The areas of lung consolidation were 

estimated in the lung section and scored as 1: <10%; 2:11-25%: 3:26-50%; 4:>50%. 

Finally, the pneumonitis score of individual mice = (% of inflammation areas x severity 

score) + lung consolidation score + hyaline membrane score with a maximum score of 

11.  
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Results  

 A/J mice were inoculated intranasally with MHV-1 (5 x 103 PFU) and then 

randomized to receive plain water (controls) or water containing GABA (20 mg/mL, as in 

(39)) for the remainder of the study. Mice from these groups were euthanized 3 or 6 

days post-infection and the virial load in their lungs was determined. Concurrently, 

another group of MHV-1 inoculated mice was given water containing GABA beginning 

at 3 days post-infection and the viral load in their lungs was determined 6 days post-

infection.  

 At three days post-infection the mean viral load in the lungs of mice given plain 

water was about 7-fold higher than that in mice given GABA immediately after infection 

(p<0.5, Fig. 1). Thereafter, the viral load in the lungs declined as expected, and by day 6 

post-infection the viral load in the lungs of control mice were about twice that in the 

lungs of mice given GABA either immediately or 3 days post-infection, although these 

differences were not statistically significant (Fig. 1). Thus, early GABA treatment 

reduced viral loads in the lungs of mice. 

 Histological evaluation of lung sections from mice given GABA immediately 

following MHV-1 inoculation revealed reduced inflammatory infiltrates, hyaline-like 

membrane formation and fibrin deposits in the alveoli at 3 days post-infection, relative to 

that in control MHV-1 inoculated mice (Fig. 2A). Thus, GABA treatment limited the 

MHV-1 induced lung damage in A/J mice.   
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Discussion 

 Our previous study showed that GABA treatment beginning just after MHV-1 

inoculation or after the appearance of symptoms rapidly curtailed disease progression 

(39). GABA-treated mice also had smaller lung coefficient indexes (indicative of less 

inflammation and edema). Thus, GABA-R activation can limit a very acute and highly 

lethal viral infection-induced pulmonary inflammation, a property that heretofore was 

unknown. Here, we show that early GABA treatment reduced MHV-1 replication in the 

lungs of mice when measured near the time of peak viral load in this model (35-37), 

which may have contributed to the better outcomes observed in GABA-treated animals. 

Hence, GABA-R agonists may provide a new approach to limit viral replication in the 

lungs.   

 We can envision a number of ways that GABA may have limited viral replication, 

including: 1) The lung alveolar cells of rodents and humans express GABAA-Rs (30, 42). 

While the activation of GABAA-R’s Cl- channels on neurons leads to Cl- influx and 

hyperpolarization, the activation of GABAA-Rs on ATII cells induces Cl- efflux and 

greater membrane depolarization (30, 42). Because coronaviruses promote Ca2+ influx 

to enhance their replication (43, 44), the activation of ATII GABAA-Rs and the ensuing 

Cl- efflux and membrane depolarization may limit the influx of extracellular Ca2+, making 

the cellular environment less conducive to viral replication. 2) Activation of GABAA-Rs 

on lung alveolar and large airway epithelial cells may have A) altered the secretion of 

immune signaling molecules from infected cells, B) altered alveolar surfactant 

production/absorption, and/or C) altered inflammatory responses and autophagy (45) 

and, D) reduced the expression of the MHV-1 receptor CAECAM1 in ways that limited 

virus production. Further detailed studies are needed to evaluate whether these factors, 

and/or others, contributed to the observed reduction in viral load. 

 Histopathological analysis of lungs from mice that received GABA just after MHV-

1 inoculation revealed that three days post-infection these mice had significantly 

reduced lung inflammation and markers of lung damage relative to that in control mice. 

There are a number of different biological processes through which GABA treatment 

may have ameliorated the severity of pneumonitis: 1) GABA can inhibit macrophage 

and dendritic cell inflammatory activities (1-3, 29, 46, 47). Likewise, GABAA-R PAMs 
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reduce the numbers of macrophages in broncholavage fluid, lung secretion of 

inflammatory cytokines, and inflammatory responses by rodent and human 

macrophages (22, 27-31). GABAA-R agonists also inhibit activated Th17 and Th1 

responses and promote CD4+ and CD8+ Tregs, however, since adaptive immune 

responses take time to arise, these abilities are unlikely to have contributed to GABA’s 

ability to attenuate disease soon after MHV-1 infection. These effects on adaptive 

immune responses may be relevant for treating COVID-19 which has a longer disease 

course and in which high levels of circulating Th1, Th17, and Th2-secreted proteins are 

associated with severe illness (12, 13). 2) By reducing viral loads in the lungs, GABA 

treatment may have limited dysregulated inflammatory responses to the infection. 3) 

GABA and GABAA-R PAMs reduce inflammation and improve alveolar fluid clearance 

and lung functional recovery in animal models of acute lung injury (16-18, 20-23) and in 

ventilated patients (24-26) and could have exerted similar actions in the MHV-1 infected 

mice. 4) GABA and GABAA-R agonist treatments increase macrophage autophagy (45). 

In murine models of pneumatic bacterial infections, GABAA-R agonists reduced 

bacterial load and TNFa and IL-6 levels in the lungs and protected the mice against 

illness (45). 5) GABA inhibits platelet aggregation (32)—this may be an important 

property because pulmonary thrombosis is increased in critically ill COVID-19 patients 

(33, 34). Thus, treatment with GABA may have led to better outcomes in MHV-1 

infected mice through multiple and diverse pathways.    

 Much remains to be learned about the mechanisms by which GABA-R activation 

protected MHV-1 infected mice from severe pneumonitis and whether these 

observations extend to SARS-CoV-2 infections. Given that GABA can affect many 

biological processes and that viral infection is a very dynamic process it is clear that 

GABA-R agonist dosing needs to be carefully studied and optimized for different stages 

of coronavirus infection. Our observations provide a spring board for future 

investigations into whether the GABA system can be modulated to limit severe illness 

due to SARS-CoV-2, future novel coronavirus outbreaks, and other respiratory 

disorders. 
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Figure 1. GABA treatment reduces viral replication in MHV-1 infected mice.  Mice 

were inoculated with MHV-1 and placed on plain water (control) or water containing 

GABA immediately (GABA0) or 3-days post-infection (GABA3). Kinetics of MHV-1 

replication in the lungs. A/J mice were inoculated with MHV-1 (5 x 103 PFU) and given 

plain drinking water, or water containing GABA, and 3 or 6 days later their lungs were 

harvested for determination of viral load. Concurrently, another group of MHV-1 

inoculated mice was given water containing GABA beginning at 3 days post-infection 

and the viral load in their lungs was determined 6 days post-infection. The data shown 

are the mean TCID50/g of lung tissue ±SEM at the indicated days. GABA0 mice (blue 

square symbol) received GABA immediately after inoculation and GABA3 mice (orange 

triangle symbol) received GABA beginning three days post-infection. N=5 mice per 

group at each time point.  *p<0.05 by Student’s t-test. 
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Figure 2. Histopathological features in the lungs of untreated and GABA-treated mice 

six days post-MHV-1 infection. Images are representative images of H&E stained lung 

sections from A) untreated mice and B) GABA-treated (beginning immediately following 

inoculation) mice six days post-infection. Red arrows point to hyaline-like membranes 

and black arrows indicate local consolidation. Scale bar is 50 um.   
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