
1 Supplemental Materials

2 Struo2: efficient metagenome profiling database construction for ever-expanding
3 microbial genome datasets

4 Nicholas D. Youngblut* ,1 , Ruth E. Ley 1

5 1 Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Ring 5,

6 72076 Tübingen, Germany

7 Supplemental Methods
8 Struo2 database creation algorithm
9 Struo2 can generate database files for 4 main database types: “Kraken2”, “Bracken”,

10 “genes”, and “HUMAnN3” (Wood et al. , 2019; Lu et al. , 2017; Franzosa et al. , 2018) . Struo2
11 uses snakemake and conda (Köster and Rahmann, 2012) , and so there are no dependencies
12 that must be installed prior to pipeline execution besides snakemake, conda, and pandas (for
13 input table loading). Moreover, snakemake allows for efficient job execution and easy scaling on
14 to high performance computing systems. We note that the Struo2 pipeline code is a substantial
15 re-write and expansion of the original Struo pipeline (e.g., ~1500 versus ~7000 lines of code in
16 Struo versus Struo2, respectively).
17 The user input for Struo2 database creation is a table that lists: i) unique taxon names, ii)
18 assembly accession identifiers (if available), iii) paths to (compressed) genome assembly fasta
19 files, iv) taxonomy identifiers (taxids) used for Kraken2 database construction, and v)
20 taxonomies at the genus and species levels (used for HUMAnN3). We provide 2 utility scripts to
21 aid in construction of custom databases from genomes in the GTDB: GTDB_metadata_filter.R
22 and genome_download.R . GTDB_metadata_filter.R can filter the publicly available GTDB
23 archaeal and bacterial genome metadata files to a select subset of genomes (e.g., those with a
24 lower CheckM-estimated contamination). genome_download.R can then download all of the
25 user-selected GTDB genomes and add the path to the genome assembly fasta files to the
26 GTDB metadata table. This updated metadata table can then be directly used as input to GTDB.
27 For construction of the custom Kraken2 database, contigs are renamed to
28 “kraken:taxid|<taxid>|<seqid>”, as described in the Kraken2 manual
29 (https://github.com/DerrickWood/kraken2/wiki/Manual). The renamed contigs are added to a
30 new Kraken2 database via kraken-build , and then the database is constructed via the same
31 command. By default, the GTDB taxonomy is used, which entails providing custom GTDB
32 taxdump files created via the gtdb_to_taxdump.py utility tool (available at
33 https://github.com/nick-youngblut/gtdb_to_taxdump). The “taxonomy” and “library” directories
34 created by Kraken2 for temporary file storage are saved in order to expedite database updating
35 with new genomes.
36 Custom Bracken database files are created for any number of read lengths that the user
37 specifies (100 and 150 base pairs by default). The bracken-build.py script is used within the
38 pipeline for constructing each Bracken database.
39 In order to construct a custom HUMAnN3 database, Struo2 first creates a precursor
40 “genes” database, which consists of gene sequences from each genome and gene clusters
41 generated via mmseqs linclust . To construct the “genes” database, genes are first called via
42 prodigal (Hyatt et al. , 2010) , and then de-replicated at 97% sequence identity with vsearch
43 (Rognes et al. , 2016) , which is similar to the standard HUMAnN database construction process
44 (Franzosa et al. , 2018) . Non-redundant gene sequences from all genomes are combined, and
45 the metadata of each gene sequence (e.g., genome of origin, contig of origin, and location on
46 the contig) is also combined into one text file. The amino acid gene sequences are clustered via
47 mmseqs linclust . By default, gene cluster representative sequences are annotated against
48 UniRef90 (version 2019-01; the same as used by HUMAnN3) via mmseqs search with 2 search
49 iterations and 3 sensitivity steps (min=1, max=6). Prior to annotation, the sequence queries are
50 split into n batches and run in parallel for faster distributed searching with snakemake (n is

51 user-defined). For each gene cluster, the UniRef90 annotations are propagated to each gene.
52 UniRef90 annotations are mapped to UniRef50 identifiers via a mapping file created from the
53 UniRef90.xml file available from the UniProt ftp server
54 (ftp:// ftp.uniprot.org/pub/databases/uniprot/). The unirefxml2clust50-90idx.py utility script is used
55 to generate this mapping file (available at https://github.com/nick-youngblut/gtdb_to_taxdump).
56 The mapping of UniRef90 to UniRef50 identifiers obviates the need to annotate genes
57 separately against UniRef90 and UniRef50. We note that Struo requires separate rounds of
58 annotation to each UniRef database instead of this UniRef90-to-UniRef50 mapping approach,
59 which greatly increases the run time versus Struo2 when the goal is to obtain annotations for
60 both UniRef90 and UniRef50. Note that the genes database includes both nucleotide and amino
61 acid sequences for each gene.
62 The annotated gene sequences are renamed in the format
63 “<UniRefID>|<gene_length>|g__<genus>;s__<species>” for creation of the HUMAnN3
64 database. Note that the taxonomy information is provided by the user in the original input table.
65 bowtie2-build and diamond makedb are used to generate a HUMAnN3-compatible bowtie2 and
66 DIAMOND databases of all annotated gene nucleotide and amino acid sequences, respectively.

67 Struo2 database update algorithm
68 Struo2 can update existing Struo2-generated Kraken2, Bracken, genes, and HUMAnN3
69 databases. The databases can be updated with new genomes or individual gene sequences
70 (e.g., created via metagenome assembly with PLASS (Steinegger et al. , 2019)).
71 If the input is a set of new genomes, the input is essentially the same as for database
72 creation, except the existing database files must also be provided. Database updating with
73 individual gene sequences requires the gene sequences in amino acid format (and also
74 nucleotide, if available) and metadata on each gene (i.e., the genus- and species-level
75 taxonomy inferred via mmseqs taxonomy or other approaches).
76 Kraken2 custom databases are updated via adding more genomes to the existing library
77 via kraken-build . New Bracken databases are created from the updated Kraken2 database.
78 Gene sequences, either originating from new genomes or new individual sequences, are
79 added to the existing mmseqs gene cluster database via mmseqs clusterupdate . Newly formed
80 clusters are annotated with mmseqs search , while existing annotations are used for existing
81 clusters. The updated database of annotated genes are used for creating new
82 HUMAnN3-compatible bowtie2 and DIAMOND databases.

83 Benchmarking
84 We used genomes from the GTDB (Release 95) for all benchmarking.
85 Only genomes with ≥50% CheckM-estimated completeness, <5% CheckM-estimated
86 contamination were included (Parks et al. , 2015) . To reduce biases towards species with large
87 numbers of representative genomes, we selected one genome per species. The genome with
88 the highest estimated completeness and lowest estimated contamination was selected for all
89 candidates of each species. The final pool consisted of 30,989 genomes (Figure S2).
90 We used the same genome subsets for benchmarking database creation with both Struo
91 and Struo2. We benchmarked the combined time to generate Kraken2, Bracken, and HUMAnN
92 databases, which included both UniRef50 and UniRef90 annotations for the HUMAnN

93 databases. Both pipelines were run on the same computational architecture, consisting of a high
94 performance computing cluster comprising nodes running Ubuntu 18.04.5 with AMD Epyc CPUs
95 and 0.5-2 terabytes of RAM. The CPU hours shown in Figure 1B are the sum of all CPU hours
96 for all snakemake jobs, as recorded via snakemake’s benchmarking feature.
97 We only benchmarked database updating for Struo2, given that Struo cannot update
98 databases, and we clearly show in Figure 1B that database generation is much slower for Struo.
99 We first used Struo2 to generate custom Kraken2, Bracken, and HUMAnN databases from 1000

100 genomes. These “n1000” databases were used for all database update benchmarking. The
101 genomes used for database update benchmarking did not overlap with any genomes used to
102 generate the n1000 databases, and they did not overlap with each other. We used subsets of
103 10, 100, 175, 250, 350, and 500 genomes. We used the linear regression models shown in
104 Figure 1B to estimate the CPU hours that would be required to generate each database from
105 scratch rather than updating.

106 Struo2 databases from GTDB Release 95
107 The genomes selected were as reported for the benchmarking of Struo and Struo2. The
108 custom Kraken2, Bracken, genes, and HUMAnN3 databases are available at:
109 http://ftp.tue.mpg.de/ebio/projects/struo2/ . We will publish new versions of each database as
110 new releases of the GTDB are published.

111 Utility tools
112 We have generated a set of utility tools for aiding in the construction of input for Struo2
113 and generally facilitating the integration of the GTDB taxonomy into existing bioinformatics
114 pipelines. Some of these tools are described elsewhere in the Supplement Methods. We note 2
115 utility tools that can have a broad applicability: gtdb_to_taxdump.py and ncbi-gtdb_map.py . The
116 former can convert the GTDB taxonomy, as documented in the GTDB bacterial and archaeal
117 metadata table, to NCBI-formatted taxdump files. These taxdump files can be used with any
118 existing software that requires taxdump files, such as taxonkit (Shen and Xiong, 2019) or
119 KrakenUniq (Breitwieser et al. , 2018) . ncbi-gtdb_map.py maps between NCBI and GTDB
120 taxonomies, based on the taxonomy information provided in the GTDB archaeal and bacterial
121 metadata files. This tool can be useful for converting GTDB-Tk classifications to NCBI
122 taxonomies (Chaumeil et al. , 2019) , or converting existing NCBI taxonomies to GTDB
123 taxonomies without requiring re-classification.

124 Supplemental Figures

125 Figure S1. An overview of the Struo2 algorithm for database updating. Cylinders are input or
126 output files, squares are processes, and right-tilted rhomboids are intermediate files. Existing
127 Kraken2, Bracken, genes, and HUMAnN3 databases can be updated with new genomes, while only
128 existing genes and HUMAnN3 databases can be updated with new individual gene sequences.

129 Figure S2. The number of GTDB genomes per phylum used for Struo2 generation of the custom
130 Kraken2, Bracken, genes, and HUMAnN3 databases available at
131 http://ftp.tue.mpg.de/ebio/projects/struo2/ . See the Supplemental Methods for information on how
132 genomes were selected. The phylum names shown are based on the GTDB taxonomy.

133 Supplemental References

134 Breitwieser,F.P. et al. (2018) KrakenUniq: confident and fast metagenomics classification using
135 unique k-mer counts. Genome Biol. , 19 , 198.
136 Chaumeil,P.-A. et al. (2019) GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy
137 Database. Bioinformatics .
138 Franzosa,E.A. et al. (2018) Species-level functional profiling of metagenomes and
139 metatranscriptomes. Nat. Methods , 15 , 962–968.
140 Hyatt,D. et al. (2010) Prodigal: prokaryotic gene recognition and translation initiation site
141 identification. BMC Bioinformatics , 11 , 119.
142 Köster,J. and Rahmann,S. (2012) Snakemake--a scalable bioinformatics workflow engine.
143 Bioinformatics , 28 , 2520–2522.
144 Lu,J. et al. (2017) Bracken: estimating species abundance in metagenomics data. PeerJ
145 Comput. Sci. , 3 , e104.
146 Parks,D.H. et al. (2015) CheckM: assessing the quality of microbial genomes recovered from
147 isolates, single cells, and metagenomes. Genome Res. , 25 , 1043–1055.
148 Rognes,T. et al. (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ , 4 ,
149 e2584.
150 Shen,W. and Xiong,J. (2019) TaxonKit: a cross-platform and efficient NCBI taxonomy toolkit.
151 Cold Spring Harbor Laboratory , 513523.
152 Steinegger,M. et al. (2019) Protein-level assembly increases protein sequence recovery from
153 metagenomic samples manyfold. Nat. Methods , 16 , 603–606.
154 Wood,D.E. et al. (2019) Improved metagenomic analysis with Kraken 2. Genome Biol. , 20 , 257.

