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7 Supplemental   Methods   
8 Struo2   database   creation   algorithm   
9 Struo2   can   generate   database   files   for   4   main   database   types:   “Kraken2”,   “Bracken”,   

10 “genes”,   and   “HUMAnN3”    (Wood    et   al. ,   2019;   Lu    et   al. ,   2017;   Franzosa    et   al. ,   2018) .   Struo2  
11 uses   snakemake   and   conda    (Köster   and   Rahmann,   2012) ,   and   so   there   are   no   dependencies   
12 that   must   be   installed   prior   to   pipeline   execution   besides   snakemake,   conda,   and   pandas   (for   
13 input   table   loading).   Moreover,   snakemake   allows   for   efficient   job   execution   and   easy   scaling   on   
14 to   high   performance   computing   systems.   We   note   that   the   Struo2   pipeline   code   is   a   substantial   
15 re-write   and   expansion   of   the   original   Struo   pipeline   ( e.g.,    ~1500   versus   ~7000   lines   of   code   in   
16 Struo   versus   Struo2,   respectively).   
17 The   user   input   for   Struo2   database   creation   is   a   table   that   lists:   i)   unique   taxon   names,   ii)   
18 assembly   accession   identifiers   (if   available),   iii)   paths   to   (compressed)   genome   assembly   fasta   
19 files,   iv)   taxonomy   identifiers   (taxids)   used   for   Kraken2   database   construction,   and   v)   
20 taxonomies   at   the   genus   and   species   levels   (used   for   HUMAnN3).   We   provide   2   utility   scripts   to   
21 aid   in   construction   of   custom   databases   from   genomes   in   the   GTDB:    GTDB_metadata_filter.R   
22 and    genome_download.R .    GTDB_metadata_filter.R    can   filter   the   publicly   available   GTDB   
23 archaeal   and   bacterial   genome   metadata   files   to   a   select   subset   of   genomes   ( e.g.,    those   with   a   
24 lower   CheckM-estimated   contamination).    genome_download.R    can   then   download   all   of   the   
25 user-selected   GTDB   genomes   and   add   the   path   to   the   genome   assembly   fasta   files   to   the   
26 GTDB   metadata   table.   This   updated   metadata   table   can   then   be   directly   used   as   input   to   GTDB.   
27 For   construction   of   the   custom   Kraken2   database,   contigs   are   renamed   to   
28 “kraken:taxid|<taxid>|<seqid>”,   as   described   in   the   Kraken2   manual   
29 ( https://github.com/DerrickWood/kraken2/wiki/Manual ).   The   renamed   contigs   are   added   to   a   
30 new   Kraken2   database   via    kraken-build ,   and   then   the   database   is   constructed   via   the   same   
31 command.   By   default,   the   GTDB   taxonomy   is   used,   which   entails   providing   custom   GTDB   
32 taxdump   files   created   via   the    gtdb_to_taxdump.py    utility   tool   (available   at   
33 https://github.com/nick-youngblut/gtdb_to_taxdump ).   The   “taxonomy”   and   “library”   directories   
34 created   by   Kraken2   for   temporary   file   storage   are   saved   in   order   to   expedite   database   updating   
35 with   new   genomes.     
36 Custom   Bracken   database   files   are   created   for   any   number   of   read   lengths   that   the   user   
37 specifies   (100   and   150   base   pairs   by   default).   The    bracken-build.py    script   is   used   within   the   
38 pipeline   for   constructing   each   Bracken   database.   
39 In   order   to   construct   a   custom   HUMAnN3   database,   Struo2   first   creates   a   precursor   
40 “genes”   database,   which   consists   of   gene   sequences   from   each   genome   and   gene   clusters   
41 generated   via    mmseqs   linclust .   To   construct   the   “genes”   database,   genes   are   first   called   via   
42 prodigal    (Hyatt    et   al. ,   2010) ,   and   then   de-replicated   at   97%   sequence   identity   with   vsearch   
43 (Rognes    et   al. ,   2016) ,   which   is   similar   to   the   standard   HUMAnN   database   construction   process   
44 (Franzosa    et   al. ,   2018) .   Non-redundant   gene   sequences   from   all   genomes   are   combined,   and   
45 the   metadata   of   each   gene   sequence   ( e.g.,    genome   of   origin,   contig   of   origin,   and   location   on   
46 the   contig)   is   also   combined   into   one   text   file.   The   amino   acid   gene   sequences   are   clustered   via   
47 mmseqs   linclust .   By   default,   gene   cluster   representative   sequences   are   annotated   against   
48 UniRef90   (version   2019-01;   the   same   as   used   by   HUMAnN3)   via    mmseqs   search    with   2   search   
49 iterations   and   3   sensitivity   steps   (min=1,   max=6).   Prior   to   annotation,   the   sequence   queries   are   
50 split   into    n    batches   and   run   in   parallel   for   faster   distributed   searching   with   snakemake   ( n    is   



51 user-defined).   For   each   gene   cluster,   the   UniRef90   annotations   are   propagated   to   each   gene.   
52 UniRef90   annotations   are   mapped   to   UniRef50   identifiers   via   a   mapping   file   created   from   the   
53 UniRef90.xml   file   available   from   the   UniProt   ftp   server   
54 (ftp:// ftp.uniprot.org/pub/databases/uniprot/ ).   The    unirefxml2clust50-90idx.py    utility   script   is   used   
55 to   generate   this   mapping   file   (available   at    https://github.com/nick-youngblut/gtdb_to_taxdump ).   
56 The   mapping   of   UniRef90   to   UniRef50   identifiers   obviates   the   need   to   annotate   genes   
57 separately   against   UniRef90   and   UniRef50.   We   note   that   Struo   requires   separate   rounds   of   
58 annotation   to   each   UniRef   database   instead   of   this   UniRef90-to-UniRef50   mapping   approach,   
59 which   greatly   increases   the   run   time   versus   Struo2   when   the   goal   is   to   obtain   annotations   for   
60 both   UniRef90   and   UniRef50.   Note   that   the   genes   database   includes   both   nucleotide   and   amino   
61 acid   sequences   for   each   gene.     
62 The   annotated   gene   sequences   are   renamed   in   the   format   
63 “<UniRefID>|<gene_length>|g__<genus>;s__<species>”   for   creation   of   the   HUMAnN3   
64 database.   Note   that   the   taxonomy   information   is   provided   by   the   user   in   the   original   input   table.   
65 bowtie2-build    and    diamond   makedb    are   used   to   generate   a   HUMAnN3-compatible   bowtie2   and   
66 DIAMOND   databases   of   all   annotated   gene   nucleotide   and   amino   acid   sequences,   respectively.     

  
67 Struo2   database   update   algorithm   
68 Struo2   can   update   existing   Struo2-generated   Kraken2,   Bracken,   genes,   and   HUMAnN3   
69 databases.   The   databases   can   be   updated   with   new   genomes   or   individual   gene   sequences   
70 ( e.g.,    created   via   metagenome   assembly   with   PLASS    (Steinegger    et   al. ,   2019) ).     
71 If   the   input   is   a   set   of   new   genomes,   the   input   is   essentially   the   same   as   for   database   
72 creation,   except   the   existing   database   files   must   also   be   provided.   Database   updating   with   
73 individual   gene   sequences   requires   the   gene   sequences   in   amino   acid   format   (and   also   
74 nucleotide,   if   available)   and   metadata   on   each   gene   ( i.e.,    the   genus-   and   species-level   
75 taxonomy   inferred   via    mmseqs   taxonomy    or   other   approaches).     
76 Kraken2   custom   databases   are   updated   via   adding   more   genomes   to   the   existing   library   
77 via    kraken-build .   New   Bracken   databases   are   created   from   the   updated   Kraken2   database.     
78 Gene   sequences,   either   originating   from   new   genomes   or   new   individual   sequences,   are   
79 added   to   the   existing   mmseqs   gene   cluster   database   via    mmseqs   clusterupdate .   Newly   formed   
80 clusters   are   annotated   with    mmseqs   search ,   while   existing   annotations   are   used   for   existing   
81 clusters.   The   updated   database   of   annotated   genes   are   used   for   creating   new   
82 HUMAnN3-compatible   bowtie2   and   DIAMOND   databases.     

  
83 Benchmarking   
84 We   used   genomes   from   the   GTDB   (Release   95)   for   all   benchmarking.     
85 Only   genomes   with   ≥50%   CheckM-estimated   completeness,   <5%   CheckM-estimated   
86 contamination   were   included    (Parks    et   al. ,   2015) .   To   reduce   biases   towards   species   with   large   
87 numbers   of   representative   genomes,   we   selected   one   genome   per   species.   The   genome   with   
88 the   highest   estimated   completeness   and   lowest   estimated   contamination   was   selected   for   all   
89 candidates   of   each   species.   The   final   pool   consisted   of   30,989   genomes   (Figure   S2).     
90 We   used   the   same   genome   subsets   for   benchmarking   database   creation   with   both   Struo   
91 and   Struo2.   We   benchmarked   the   combined   time   to   generate   Kraken2,   Bracken,   and   HUMAnN   
92 databases,   which   included   both   UniRef50   and   UniRef90   annotations   for   the   HUMAnN   



93 databases.   Both   pipelines   were   run   on   the   same   computational   architecture,   consisting   of   a   high   
94 performance   computing   cluster   comprising   nodes   running   Ubuntu   18.04.5   with   AMD   Epyc   CPUs   
95 and   0.5-2   terabytes   of   RAM.   The   CPU   hours   shown   in   Figure   1B   are   the   sum   of   all   CPU   hours   
96 for   all   snakemake   jobs,   as   recorded   via   snakemake’s   benchmarking   feature.   
97 We   only   benchmarked   database   updating   for   Struo2,   given   that   Struo   cannot   update   
98 databases,   and   we   clearly   show   in   Figure   1B   that   database   generation   is   much   slower   for   Struo.   
99 We   first   used   Struo2   to   generate   custom   Kraken2,   Bracken,   and   HUMAnN   databases   from   1000   

100 genomes.   These   “n1000”   databases   were   used   for   all   database   update   benchmarking.   The   
101 genomes   used   for   database   update   benchmarking   did   not   overlap   with   any   genomes   used   to   
102 generate   the   n1000   databases,   and   they   did   not   overlap   with   each   other.   We   used   subsets   of   
103 10,   100,   175,   250,   350,   and   500   genomes.   We   used   the   linear   regression   models   shown   in   
104 Figure   1B   to   estimate   the   CPU   hours   that   would   be   required   to   generate   each   database   from   
105 scratch   rather   than   updating.     

  
106 Struo2   databases   from   GTDB   Release   95   
107 The   genomes   selected   were   as   reported   for   the   benchmarking   of   Struo   and   Struo2.   The   
108 custom   Kraken2,   Bracken,   genes,   and   HUMAnN3   databases   are   available   at:   
109 http://ftp.tue.mpg.de/ebio/projects/struo2/ .   We   will   publish   new   versions   of   each   database   as   
110 new   releases   of   the   GTDB   are   published.   

  
111 Utility   tools   
112 We   have   generated   a   set   of   utility   tools   for   aiding   in   the   construction   of   input   for   Struo2   
113 and   generally   facilitating   the   integration   of   the   GTDB   taxonomy   into   existing   bioinformatics   
114 pipelines.   Some   of   these   tools   are   described   elsewhere   in   the   Supplement   Methods.   We   note   2   
115 utility   tools   that   can   have   a   broad   applicability:    gtdb_to_taxdump.py    and    ncbi-gtdb_map.py .   The   
116 former   can   convert   the   GTDB   taxonomy,   as   documented   in   the   GTDB   bacterial   and   archaeal   
117 metadata   table,   to   NCBI-formatted   taxdump   files.   These   taxdump   files   can   be   used   with   any   
118 existing   software   that   requires   taxdump   files,   such   as   taxonkit    (Shen   and   Xiong,   2019)    or   
119 KrakenUniq    (Breitwieser    et   al. ,   2018) .    ncbi-gtdb_map.py    maps   between   NCBI   and   GTDB   
120 taxonomies,   based   on   the   taxonomy   information   provided   in   the   GTDB   archaeal   and   bacterial   
121 metadata   files.   This   tool   can   be   useful   for   converting   GTDB-Tk   classifications   to   NCBI   
122 taxonomies    (Chaumeil    et   al. ,   2019) ,   or   converting   existing   NCBI   taxonomies   to   GTDB   
123 taxonomies   without   requiring   re-classification.     



124 Supplemental   Figures   

  
125 Figure   S1.    An   overview   of   the   Struo2   algorithm   for   database   updating.    Cylinders   are   input   or   
126 output   files,   squares   are   processes,   and   right-tilted   rhomboids   are   intermediate   files.   Existing   
127 Kraken2,   Bracken,   genes,   and   HUMAnN3   databases   can   be   updated   with   new   genomes,   while   only   
128 existing   genes   and   HUMAnN3   databases   can   be   updated   with   new   individual   gene   sequences.     

  



  



  
129 Figure   S2.    The   number   of   GTDB   genomes   per   phylum   used   for   Struo2   generation   of   the   custom   
130 Kraken2,   Bracken,   genes,   and   HUMAnN3   databases   available   at   
131 http://ftp.tue.mpg.de/ebio/projects/struo2/ .   See   the   Supplemental   Methods   for   information   on   how   
132 genomes   were   selected.   The   phylum   names   shown   are   based   on   the   GTDB   taxonomy.   
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