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Abstract 15 

 16 

Background: Insecticide resistance and rapid pest evolution threatens food security and the 17 

development of sustainable agricultural practices. An improved understanding of the 18 

evolutionary mechanisms that allow pests to rapidly adapt to novel control tactics will help 19 

prevent economically damaging outbreaks. The Colorado potato beetle (CPB), Leptinotarsa 20 

decemlineata, is a global super-pest that rapidly evolves resistance to insecticides. Using whole 21 

genome resequencing and transcriptomic data focused on its ancestral and pest range in North 22 

America, we assess evidence for three, non-mutually exclusive models of rapid evolution: 23 

pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on 24 

standing genetic variation. 25 

 26 

Results: Population genomic analysis demonstrates that CPB is geographically structured, even 27 

among recently established pest populations. Pest populations exhibit only modest reductions in 28 

nucleotide diversity, relative to non-pest ancestral populations, and show evidence of recent 29 

demographic expansion. Genome scans of selection provide clear signatures of repeated 30 

adaptation across different CPB populations, with especially strong evidence that insecticide 31 

resistance involves selection of different genes in different populations. Similarly, analyses of 32 

gene expression show that constitutive upregulation of candidate insecticide resistance genes 33 

drives distinctive population patterns. 34 

 35 

Conclusion: CPB evolves insecticide resistance repeatedly across agricultural regions, and 36 

oftentimes at the same loci, supporting a prominent role of polygenic evolution from standing 37 
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genetic variation. Despite expectations, we do not find support for strong selection on novel 38 

mutations, or rapid evolution from selection on regulatory genes. An important future goal will 39 

be to understand how polygenic resistance phenotypes spread among local pest populations, in 40 

order to refine integrated pest management practices to maintain the efficacy and sustainability 41 

of novel control techniques. 42 

 43 

 44 

Key Words: population genomics; insecticide resistance; rapid evolution; genetic adaptation; 45 

regulatory evolution; insect pest; polygenic adaptation  46 
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Background 47 

Herbivorous pests cause an estimated 18-20% damage to crops and cost nearly $470 48 

billion annually on a global scale [1]. The ability of insect pests to evolve resistance to 49 

insecticides threatens food security and the development of sustainable agricultural practices, 50 

especially when their rate of evolution outstrips the development of novel control strategies [2-51 

4]. This is the case with insect 'super-pests,' which repeatedly evolve insecticide resistance even 52 

as they are faced with completely novel insecticides, thus perpetuating the arms race that defines 53 

the pesticide treadmill [5]. Curiously, particular super-pest species or even select populations are 54 

more likely to adapt to new compounds, suggesting that there is a genetic basis in the propensity 55 

to evolve resistance [6]. Yet, despite more than 60 years of research on the evolution of 56 

resistance [7], the relative importance of alternative mechanisms that underlie the evolutionary 57 

potential for pesticide resistance evolution are still unclear [8, 9]. Although a considerable effort 58 

has been placed on understanding the proximal molecular control of resistance [10], broader 59 

questions about the genetic complexity of resistance, mode of selection and geographical extent 60 

of adaptation have rarely been studied [11-13]. While population genetic models of resistance 61 

management have been highly effective in certain management scenarios [14], observed patterns 62 

of insecticide resistance evolution defy many of the assumptions of our evolutionary models 63 

[15]. Recent genomic resequencing datasets suggest that resistance evolution is sometimes 64 

geographically and genetically complex [16-19]. 65 

A key goal should be to understand the evolutionary processes that allow species to 66 

become pests, particularly the mechanisms underlying phenotypic shifts that result in 67 

economically damaging pest outbreaks [8, 20]. A prevalent view is that pests, including invasive 68 

species, often retain substantial genetic diversity that facilitates evolution in agroecosystems [21-69 
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23]. However, there is increasing recognition that evolution can be rapid irrespective of levels of 70 

standing genetic diversity [24]. While not all pests exhibit rapid rates of adaptation to 71 

insecticides [6], insect super-pests often demonstrate repeated rapid evolution [25, 26]. Rapid 72 

evolution is defined as a shift in phenotype from underlying variation in exceptionally few 73 

generations [27], and can occur as a result of several mechanisms [28]. First, selection can act on 74 

novel mutations, which may arise frequently if pests have intrinsically large population sizes 75 

(much greater than >>106) and are not mutation-limited [29, 30]. This could lead to repeated 76 

evolution of resistance among different populations, most likely with independent mutations at 77 

different loci underlying resistance phenotypes. Second, as a special case of the first mechanism, 78 

key mutational changes could affect a master regulatory gene [31-33], where mutations drive 79 

expression of the same downstream molecular pathways in different populations. Rapid gene 80 

regulatory evolution has been raised as a possible mechanism underlying repeated evolution of 81 

pesticide resistance in the spider mite Tetranychus urticae, where it has been linked to a 82 

transcriptional cascade in xenobiotic detoxification [34]. Third, an alternative pathway of rapid 83 

evolution would draw on standing genetic variation [7]. Standing genetic variation is 84 

increasingly viewed as a common source of rapid adaptive variation [35], because the initial 85 

frequency of mutations in a population determine the rate at which populations respond to 86 

selection pressures [36, 37]. While population size must typically be large to retain large 87 

reservoirs of standing variation, admixture among divergent populations can increase standing 88 

variation [38, 39]. Furthermore, standing genetic variation can also be present in the form of 89 

redundancy in molecular pathways that are critical to pesticide resistance phenotypes [e.g. in 90 

generalist herbivorous insects that specialize on toxic plants: 40, 41, 42], rather than allelic 91 

diversity per se. It should be emphasized that these mechanisms of adaptation need not be 92 
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exclusive, yet it remains unclear how each contributes to the evolutionary success of the top 93 

arthropod super-pests. Emerging genomic datasets provide the opportunity to detect and quantify 94 

the importance of different mechanisms underlying rapid evolutionary change by screening for 95 

genomic signatures of selection [8].  96 

The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a global super-pest and 97 

an especially tractable exemplar of rapid evolution to insecticides. CPB has evolved resistance to 98 

over 50 different insecticides in all the major classes, in some cases within the first year of use 99 

[43]. CPB has demonstrated an ability to rapidly evolve in response to a wide range of 100 

environmental pressures, including host-plant defenses and climatic variability [44, 45]. This 101 

super-pest originated in the Great Plains region of the U.S. [46], following a host shift to potato 102 

(an introduced crop) in the mid-19th century (around 1866) that allowed for rapid spatial 103 

expansion from Nebraska to the Eastern U.S. in a 20 year period and colonization of Eurasia by 104 

the early 1900s [47-49]. Despite rapid spatial expansion, populations are genetically 105 

differentiated [49, 50] and insecticide resistance is geographically heterogeneous [51], even over 106 

local landscape scales [52]. In particular, beetles from Long Island, New York are known to have 107 

the highest levels of baseline resistance and are typically the first populations to develop 108 

resistance to all compounds [53], while populations in the Pacific Northwest remain susceptible 109 

to insecticides despite an equivalent duration of usage and comparable treatment practices [54, 110 

55]. Non-pest populations are found in the Great Plains and Mexico, where they use ancestral 111 

host plants (primarily Solanum rostratum) [56]. Closely related congeners in the genus 112 

Leptinotarsa are sympatric in the southern part of CPB's geographical range [57]. By integrating 113 

across this diversity, CPB can serve as a model for understanding evolutionary mechanisms that 114 

facilitate and constrain rapid evolution.  115 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.09.430453doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430453
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Here we leverage the recent publication of the CPB genome [58] to investigate whether 116 

repeatable patterns of evolution occur in highly resistant pest populations. We compare CPB 117 

genomic and transcriptomic variation across populations in the U.S., Mexico, and Europe, as 118 

well as closely related Leptinotarsa species, to assess three competing models of rapid evolution: 119 

pervasive selection on de novo mutation (independent hard selective sweeps in geographically 120 

separate populations), rapid regulatory evolution, or repeated selection on standing genetic 121 

variation (see Table 1 for predictions). We also provide detailed description of genomic diversity 122 

patterns, evolutionary relationships, and the population history of CPB pest lineages, in order to 123 

understand how expansion history has influenced geographical variation in insecticide resistance. 124 

Over the long-term, by improving our understanding of the evolutionary processes and genomic 125 

mechanisms underlying the ability to repeatedly evolve insecticide resistance in super-pests, 126 

integrated pest management strategies can be developed to provide more sustainable agricultural 127 

practices [2, 22]. 128 

 129 

Results  130 

Extensive Genomic Diversity within CPB 131 

 We examined short-read whole genome sequences for a geographically dispersed set of 132 

85 samples, including six geographically proximate pairs of susceptible and resistant samples, as 133 

well as nine additional Leptinotarsa species (Fig. 1 and Additional File 1: Table S1 and Fig. 134 

S2). Employing best practices in genotype ascertainment, we sequenced each sample (most 135 

resulted in coverage >4x, Fig. S3), and found that CPB shows considerable genomic diversity, 136 

with 76,647,868 single nucleotide polymorphisms (SNPs) recovered from the nuclear genome 137 

(Additional File 1: Table S2; the CPB genome is estimated to be ~670 Mb in size). Following 138 
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variant recalibration, there were a total of 47,969,460 SNPs, of which 30,973,249 were in 139 

intergenic regions. 140 

We estimated genome-wide nucleotide diversity (π) using a 10 Kb sliding window. 141 

Within-population genetic diversity of non-pest CPB samples from the inferred ancestral source 142 

population, the U.S. Plains region, was high with an average π = 0.005. Comparison of 143 

nucleotide diversity between the Plains and U.S. pest populations shows a clear reduction in 144 

nucleotide diversity (average π = 0.0028 and 0.003 for co-located pairs of pesticide resistant and 145 

susceptible populations, respectively; Additional File 1: Fig. S4). However, pooling co-located 146 

pairs of samples increased nucleotide diversity in a given agricultural region by 40% and eroded 147 

the difference from the Plains samples, showing that high levels of variation have been retained 148 

in agricultural regions. Individual heterozygosity appeared to be reduced relative to expectations 149 

under random mating, as measured by the inbreeding coefficient FIS. Inbreeding was higher in 150 

pest populations (on average FIS = 0.603 and 0.557 for susceptible and resistant populations, 151 

respectively; Fig. S5), relative to Plains individuals (on average FIS = 0.531). The New Jersey lab 152 

population, which was maintained as a breeding colony for pesticide assays, showed the highest 153 

level of inbreeding (FIS = 0.723). Susceptible and resistant pest samples had a comparable 154 

number of private alleles (93,407 vs. 89,599, respectively; Additional File 1: Fig. S6 and S7), 155 

but Plains samples had three times as many private alleles (262,140 vs. 91,503, respectively). 156 

Combining observations of nucleotide diversity, inbreeding, and private alleles suggests that pest 157 

lineages lost genetic variation as they expanded into agricultural habitats, but do not appear to 158 

have suffered from a strong genetic bottleneck. 159 

 160 

Evolutionary Diversification and Demographic History  161 
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Leptinotarsa decemlineata population structure is clearly driven by geographic isolation. 162 

Phylogenetic reconstruction (Fig. 1A) clearly separated the Mexican samples from all U.S. 163 

samples. All CPB populations from potato growing regions in the U.S. and Eurasia formed a 164 

well-supported monophyletic group, while separate clades contained samples in the Pacific 165 

Northwest, Southwest U.S. and the U.S. Plains region. The Arizona CPB sample was found 166 

outside the CPB clade, next to the L. lineolata sample, suggesting high divergence and possibly 167 

cryptic species status. Interestingly, Mexican CPB and other Leptinotarsa species were mixed 168 

together, also suggesting that Mexican CPB belong to an unidentified cryptic Leptinotarsa 169 

species. Due to their significant genetic divergence, Mexican CPB, the Arizona sample, and 170 

other Leptinotarsa species were removed from downstream analyses of population structure and 171 

demographic change, as their inclusion would violate statistical assumptions in those approaches. 172 

Examining U.S. CPB samples, genetic divergence among populations was modest (average 173 

pairwise FST = 0.09; Additional File 1: Fig. S8 and Table S3), but exceeded >0.1 when New 174 

Jersey or the Michigan resistant population were compared. Principal component and population 175 

ancestry analyses converged in showing clear geographical patterns of population genetic 176 

structure (Fig. 1B; Additional File 1: Figs. S9-S12). Admixture-based clustering supported six 177 

populations, which represent the New-Jersey population, a western population (Oregon plus 178 

Idaho), a Plains population, a Midwestern population, a distinctive Michigan resistant 179 

population, and an Eastern U.S. population (which includes the introduced European samples). 180 

Admixture tests using the D statistic were examined among CPB pest and non-pest populations, 181 

as well as with other Leptinotarsa species. These tests provided limited evidence of admixture 182 

contributing to genetic diversity of pest lineages (Fig. 2), ruling out the hypothesis of standing 183 

genetic variation increasing in the pest lineage as a result of hybridization. The highest Dmin 184 
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values suggest historical admixture from Mexico to the Plains (0.036) and Mexico to the 185 

Western populations (0.044), and limited ongoing gene flow between New York and the 186 

Michigan susceptible population (D = 0.015). Similarly, an assessment of admixture with other 187 

Leptinotarsa species (Additional File 1: Fig. S13) does not suggest recent gene flow into pest 188 

populations. 189 

Demographic reconstruction of CPB populations using SMC++ and Stairway plot 190 

analysis (Fig. 1C and Additional File 1: Fig. S14-S15) showed consistent population size 191 

fluctuations through time, with similar trajectories for all pest populations. Nearly all agricultural 192 

populations exhibited recent population size increases in the SMC++ analysis, most notably in 193 

the Eastern U.S. The split time analysis suggested an early split of the western populations from 194 

the Plains region, and subsequent near-simultaneous split times of Midwest and Eastern 195 

populations (Additional File 1: Fig. S16). Applying a mutation rate from other insect taxa (2.1 × 196 

10-9 substitutions per site per generation) suggests that populations contracted between 300k and 197 

100k years ago, expanded between 200k and 70k years, and declined again until 10k to 5k years 198 

ago. The splits of most pest populations from the sampled populations in the Plains occurred 199 

between 21k and 11k years, during the transition from the late Pleistocene to early Holocene.  200 

 201 

Genome-wide Patterns of Natural Selection 202 

 Genomic diversity across CPB's geographical range was scanned for evidence of natural 203 

selection by identifying outlier SNPs in comparisons of population differentiation and SNPs that 204 

were highly correlated to environmental predictor variables. Population differentiation tests 205 

identified 0.37% of all SNPs as outliers (i.e. 65,815 out of 17,599,906, with a false discovery 206 

rate, or FDR, of 0.01%). A total of ~32% of the outlier SNPs could be assigned to 8,760 known 207 
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genes (Additional File 1: Table S4 and Table S5; gene list provided in Additional File 2). Of 208 

these genes, 336 were linked to candidate insecticide resistance genes, including 205 genes 209 

involved in detoxification pathways, 91 target-sites, and 40 genes involved in cuticular 210 

development. The well-known voltage-sensitive sodium channel gene (LDEC011942) that 211 

provides knockdown resistance to pyrethroids was included among the target-site genes. Based 212 

on a gene set enrichment analysis, over-represented gene ontology terms were linked to 213 

insecticide resistance and/or stress (Additional File 1: Fig. S17). For biological processes, GO 214 

terms included oxidation-reduction process and response to oxidative stress (and multiple nested 215 

terms), among others. For cellular components, terms linked to insecticide resistance included 216 

voltage-gated sodium channel and acetylcholine-gated channel complexes, presynaptic active 217 

zone and synapse, and integral component of the membrane. Among the molecular functions, 218 

terms such as heme and zinc ion binding (including iron ion binding), extracellular ligand-gated 219 

ion channel activity (including voltage-gated sodium channel and acetylcholine receptor 220 

activity), glutathione transferase activity, ABC transporter activity via the term ATPase activity 221 

coupled to transmembrane movement, and peroxidase activity (including CYP monooxygenase 222 

activity) were associated with insecticide resistance. 223 

 To test for patterns of natural selection driven by environmental factors, we also 224 

employed gene environment association analysis to examine five different, ecologically-relevant 225 

predictors of natural selection on the genome: latitude, elevation, precipitation, minimum 226 

temperature in the coldest month and potato land cover. Only 0.02% of the analyzed SNPs 227 

(4,098 out of 17,599,906 SNPs, with an FDR of 0.01%) were significantly associated with at 228 

least one environmental variable (Additional File 1: Table S6 and Fig. S18; gene list provided 229 

in Additional File 2). A total of 67.6% of the SNPs were associated with precipitation, 15.5% 230 
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with latitude, 10.7% with potato land cover, 2.8% with elevation, and 3.7% with temperature. Of 231 

all significant SNPs, 29% were found in 816 known genes, including 42 resistance-related genes 232 

(28 involved in metabolic detoxification mechanisms, 3 in cuticle development, and 11 target-233 

site genes; Additional File 1: Table S7). Based on a gene set enrichment analysis, over-234 

represented gene ontology terms were associated with insecticide resistance and/or stress 235 

(Additional File 1: Fig. S19). Among the biological processes, terms included chemical synaptic 236 

transmission, oxidation-reduction process, proteolysis, defense response, and DNA repair. 237 

Among the cellular components, terms included synapse and presynaptic active zone, as well as 238 

integral component of the membrane. Among the molecular functions, terms included heme and 239 

iron ion binding, carboxylic ester hydrolase activity, extracellular ligand-gated ion channel 240 

activity, oxidoreductase activity (including monooxygenase activity), and ubiquitin binding. 241 

 The outlier-based and environmental-association genome scans leverage different models 242 

to detect selection, but a comparison of the results shows that a total of 557 genes (see 243 

Additional File 2) were shared in both tests, and 29 of these are candidate insecticide resistance 244 

genes (Table 2). The largest group represents xenobiotic detoxification genes, with nine ABC 245 

transporters, seven CYP genes, two esterase genes, one MFS gene and one GST gene 246 

represented. Target-site genes included four voltage-dependent channel genes and two nicotinic 247 

acetylcholine receptors, and three cuticle genes overlap in both tests. Gene set enrichment 248 

analysis of significant genes identified as overlapping in the two genome scan tests (Additional 249 

File 1: Fig. S20) showed enrichment of gene ontology terms associated with insecticide 250 

resistance and stress. Among biological processes, terms included chemical synaptic 251 

transmission, oxidation-reduction process, proteolysis, DNA repair, and chloride transport, 252 

transmembrane transport, and ion transport. Terms associated with cellular components included 253 
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integral component of membrane, synapse, and presynaptic active zone. Terms associated with 254 

molecular functions included pathways such as heme and iron ion binding, ATPase activity 255 

coupled to transmembrane movement, GABA and G-protein coupled receptor activity, and 256 

monooxygenase and oxidoreductase activity. 257 

 258 

Local Adaptation to Insecticides 259 

 To examine the geographical occurrence of selection events, we employed a haplotype-260 

based approach that examines shifts in haplotype frequency along branches of a population tree. 261 

Due to the fragmented nature of the reference genome, we examined haplotype frequencies on 262 

the longest 95 genomic scaffolds (encompassing ~21% of the genome, all >1 Mb). Our analyses 263 

show that 1.1% (72,386 SNPs), 0.01% (7,826 SNPs) and 0.16e-3% (1,106 SNPs) of the markers 264 

were significant at α = 0.01, 0.001 and 0.0001, respectively (see list in Additional File 2). SNPs 265 

were grouped into regions, where each region was separated by at least 1 Kb up- and 266 

downstream. This resulted in 1,169 selection regions at α = 0.01, 140 regions at α = 0.001, and 267 

24 regions at α = 0.0001 (Additional File 1: Table S8). Excluding one extremely long region 268 

(35 Kb in length), the average length of the most significant haplotypes (α = 0.0001) was 3.1 Kb; 269 

Additional File 1: Fig. S21). On average (across α levels and branch association thresholds), 270 

these regions in the genome were repeatedly selected in multiple populations (on average, in 6.06 271 

branches of the population tree, and only 4.87% of these selection events were singularly 272 

associated with one population; Additional File 1: Table S9). These singular regions tended to 273 

be short (1.1 Kb on average). Out of all selected regions (α = 0.01), 319 were found in 224 genes 274 

and only 3.8% were singular (Additional File 1: Fig. S22). Recalling that this only represents 275 

~21% of the genome, 24 regions comprising 16 genes were candidate insecticide resistance-276 
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associated genes, including six ABC transporters, two esterases, one olfactory receptor, one 277 

nicotinic acetylcholine receptor, two genes associated with glutamate pathways and four growth 278 

factors (Additional File 1: Table S10).  279 

 Most haplotype-based selection events in the candidate insecticide resistance genes (19 280 

out of 24 regions) were less than 1 Kb long (Additional File 1: Fig. S23) and present (22 out of 281 

24 regions) on nine to eleven branches of the population tree (Fig. 3; Additional File 1: Fig. 282 

S24). Selection at these candidate regions (19 out of 24) were shared between Western and 283 

Eastern lineages (Additional File 1: Fig. S25), which were the most genetically distinct and 284 

geographically isolated populations. Furthermore, several of these candidate genes 285 

(LDEC004355, LDEC005089, and LDEC002775) appeared to have multiple regions under 286 

selection, with population-specific patterns. The observed patterns at insecticide resistance 287 

candidates suggests that repeated selection on the same set of protein-coding genes is prevalent 288 

among populations. Over 150 genes (68.5%) identified in the haplotype-based test were also 289 

identified in the outlier test (Additional File 1: Fig. S26), including 11 of the 16 candidate 290 

insecticide resistance genes. Seven of these were ABC transporters, and notably three were 291 

significant in all selection tests (the ABC subfamily C/multidrug associated gene LDEC002518, 292 

and two ABC subfamily G genes, LDEC002775 and LDEC005530). The other ABC genes 293 

included: the subfamily F gene LDEC004565, and three additional multidrug associated genes 294 

LDEC005089, LDEC003183, and LDEC002116. The remaining genes included one target site 295 

gene, the acetylcholine receptor β subunit (LDEC002850), one cuticle protein (LDEC003397), 296 

one transient receptor potential (TRP) gene (LDEC003216), and one odorant binding gene 297 

(LDEC003898). 298 
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 We examined gene expression profiles to test whether patterns of gene regulatory 299 

evolution were shared among geographical regions for a subset of previously published CPB 300 

population samples (Additional File 1: Table S11). For quality control, we first assessed 301 

whether differences in experimental design influenced the expression of candidate insecticide 302 

resistance genes (see detailed results in Additional File 1). Based on these comparisons, we 303 

determined that regional population differences could be compared for adults from field 304 

populations irrespective of generation sampled, but lab reared larvae needed to be compared 305 

separately. For the larval comparison, we removed samples representing an insecticide induction 306 

treatment, focusing our analysis on constitutive differences in gene expression. These 307 

comparisons showed strong geographical differences in overall gene expression profiles 308 

(Additional File 1: Fig. S27 and Fig. S28). Focusing on significantly differentially expressed 309 

candidate insecticide resistance genes, local populations showed divergent patterns of 310 

constitutive upregulation among populations (Fig. 4 and Additional File 1: Fig. S29; see gene 311 

list in Additional File 2). Seven differentially expressed candidate insecticide resistance genes 312 

were found among the adults and 84 among larvae (Additional File 1: Fig. S29 and Table S12), 313 

with only one esterase (LDEC019310) and one ABC transporter (LDEC004154) common to 314 

both datasets. A gene set enrichment analysis of the differentially expressed gene list in among-315 

population comparisons of adults (Additional File 1: Fig. S30) showed enrichment of terms 316 

associated with insecticide detoxification and/or stress, including heme and ion iron binding, 317 

oxidoreductase activity and dioxygenase activity, proteolysis, transport, defense response, and 318 

integral component of the membrane. Among larvae (Additional File 1: Fig. S31), there was 319 

enrichment of terms associated with regulatory changes to gene networks underlying insecticide 320 

detoxification or stress, such as glutathione transferase activity, hexachlorocyclohexane 321 
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metabolism, oxidoreductase and monooxygenase activity, gap junction channel activity, 322 

proteolysis, substrate-specific transmembrane transporter activity, heme and iron ion binding, 323 

innate immune response, and integral component of the membrane. 324 

Although 26 transcription factors were significantly differentially expressed among the 325 

four larval populations (Additional File 1: Fig. S32 and Table S13), they are not known to be 326 

associated with detoxification pathways. These results do not support rapid evolution of 327 

regulatory genes, as different genes, and in some cases different molecular pathways, are favored 328 

in each regional population. Gene set enrichment analysis of the overlapping set of significant 329 

genes in larvae and adult differential expression analysis gene sets (Additional File 1: Fig. S33) 330 

showed shared regulatory changes in gene networks linked to insecticide detoxification and 331 

stress, such as oxidoreductase and dioxygenase activity, heme and iron ion binding, proteolysis 332 

and integral component of membrane. The shared enrichment of lipid metabolism might also be 333 

related to insecticide detoxification (through an interaction with oxidation-reduction or 334 

membrane-transport processes), rather than metabolism per se. 335 

 Finally, we examined a global intersection of gene ontology terms that were enriched in 336 

both the genome scans and differential expression datasets (Additional File 1: Fig. S34). Six 337 

gene ontology terms were identified, each of which has been related to insecticide resistance in 338 

prior studies: biological process terms include oxidation-reduction process and proteolysis, while 339 

cellular components include integral component of the membrane, and molecular functions 340 

include oxidoreductase activity acting on paired donors with incorporation or reduction of 341 

molecular oxygen, heme binding, and iron ion binding.  342 

 343 

Discussion 344 
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 Population genomics is increasingly providing insight into the evolutionary mechanisms 345 

that give rise to super-pests and holds promise for improving pest management practices [8]. Our 346 

study provides the first comprehensive genomic and geographical assessment of genome-wide 347 

patterns of genetic variation for a super-pest in the center of its origin. Whole genome variation 348 

demonstrates that the Colorado potato beetle (CPB) is geographically structured, including 349 

among pest populations, and corroborates evidence from microsatellite markers that CPB pest 350 

populations are most closely related to populations in the Great Plains instead of Mexico [46, 59, 351 

60]. In evaluating the competing (but not mutually-exclusive) mechanisms of rapid evolution, 352 

our data suggest that different loci are selected across growing regions, and among different 353 

populations within regions, with statistical tests providing a consistent pattern of repeated 354 

evolution at many candidate insecticide resistance genes. Below we discuss in turn the evidence 355 

that supports polygenic evolution from standing genetic variation, selection on de novo mutation, 356 

and rapid regulatory evolution. We close by discussing the pest management consequences of 357 

these modes of rapid evolution. 358 

 359 

Evidence for repeated selection on standing genetic variation 360 

Population clustering analyses demonstrate that regional CPB pest populations (western 361 

US, eastern US, multiple lineages in the Midwestern US, and Europe) are genetically distinct, 362 

with D-statistics suggesting limited ongoing gene flow. This alone supports previous 363 

observations that insecticide resistance evolves locally among CPB populations [43, 51, 52, 55]. 364 

However, genome scans, using both outlier-based and environmental association-based methods, 365 

provide clear signatures that adaptation occurs repeatedly across different populations of CPB. 366 

Focusing on candidate genes of insecticide resistance, the considerable overlap among the two 367 
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methods suggests different genes are selected in different populations (see PC loadings in Table 368 

2). Similarly, candidate insecticide resistance genes are constitutively upregulated, but in distinct 369 

patterns in different populations (Fig. 4). Selected genes also encompass multiple resistance 370 

mechanisms, including metabolic detoxification, target site resistance, and cuticular proteins, 371 

which is broadly supported by gene set enrichment analyses across multiple tests (Additional 372 

File 1: Fig. S34). These results are consistent with previous genetic studies that have 373 

documented some of the same genes (see Table 2; Additional File 2) or mechanisms in CPB 374 

resistance [43, 61-64]. We also identify compelling new candidates, such as the multiple ABC 375 

transporters, as well as acetylcholine receptor β subunit (LDEC002850), which are likely linked 376 

to neonicotinoid resistance phenotypes [65, 66]. Although our analysis focuses on pesticide 377 

resistance candidates, we note that other interesting genes emerged from our study. In particular, 378 

an octopamine receptor (LDEC006841), which was identified as a gene associated with pest 379 

behavior in a comparative genomics analysis of CPB [67], is recovered as a significant target in 380 

contrasts of Plains and pest populations in both LFMM and PCAdapt. 381 

The observed patterns of repeated local adaptation are most consistent with polygenic 382 

evolution from standing genetic variation. Using a more sophisticated haplotype-based method 383 

(focusing on ~21% of the genome), we found 24 highly significant (p < 0.0001) haplotype 384 

blocks suggestive of selective sweeps. Only one selected region exceeded 4 Kb in length (35 385 

Kb), while the remaining regions averaged 3.1 Kb in length. These shorter sweep lengths are 386 

similar to those found in at least one other insect pest, Spodoptera frugiperda [on average, 387 

sweeps are 4.1 Kb: 68], but much smaller than the strong selective sweeps found in other 388 

prominent cases of insecticide resistance [18, 69, 70]. Sweep lengths typically scale inversely 389 

with the rate of recombination as a product of increasing effective population size, so we might 390 
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have expected sweep lengths similar to those found in insects with large population size 391 

(typically > 10 Kb in D. melanogaster) [71]. Instead, nearly all strong candidate selective events 392 

from hapFLK are more consistent with soft sweeps that recur in multiple geographically distant 393 

populations. Most importantly, the sweep regions in CPB occur on multiple branches of the 394 

population tree (on average, 8.16 branches). For soft sweeps to be a reasonable mechanism in the 395 

evolution of insecticide resistance, however, populations must maintain high levels of genomic 396 

variation. The host-shift to potato, coupled with agroecosystem invasion over a broad 397 

geographical scale, has been presumed to reduce genetic variation in CPB [47, 72]. However, 398 

despite having recently invaded agroecosystems, CPB pest populations exhibit only modest 399 

reductions in nucleotide diversity (though the loss of private alleles is more pronounced), and 400 

SMC++ reconstructions show recent population expansion. Dense population sampling of CPB 401 

at a landscape scale in the Midwestern U.S. also supports high levels of standing variation at a 402 

regional level [52]. 403 

Early population genetic research on insecticide resistance by J.F. Crow suggested that 404 

resistance evolution arises from polygenic standing variation [7]. Quantitative variation in 405 

insecticide tolerance, among populations and individuals within populations, is frequently 406 

observed, even under controlled laboratory conditions [73, 74]. Increasingly, genomics-based 407 

analyses are documenting how multiple genes contribute to quantitative resistance phenotypes 408 

[16, 75-77]. A combination of new mutations and recruitment of standing genetic variation 409 

probably occurs in many cases of adaptation, as it is evident that phenotypic traits are typically 410 

quantitative in nature (influenced by multiple loci), large-effect mutations often require 411 

compensatory fitness changes, and the most likely outcome of evolution in theoretical models is 412 

polygenic adaptation [78]. At the same time, the action of multiple genes and their regulatory 413 
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elements can be difficult to detect using population genomics methods, as it results in modest 414 

changes in allele frequencies (under soft or partial selective sweeps) [79-81]. Further noise is 415 

added because tests of selection are prone to false positives [82]. For example, hapFLK tends to 416 

show a high false positive rate under population models with continuous migration or in those 417 

that experience strong bottlenecks [83, 84]. However, while chance false positives might 418 

contribute to our observed patterns, it is unlikely that so many would occur in candidate 419 

insecticide resistance genes. Our results are in broad support with the emerging view that 420 

polygenic architecture is common in insecticide resistance [10, 24, 85, 86]. Certainly of course, 421 

expanded and more continuous population sampling of CPB will be needed to improve support 422 

for this mode of selection and the complex genetic architecture underlying insecticide resistance. 423 

 424 

Selection on de novo mutation: is CPB mutation limited? 425 

Selection on novel mutations could lead to repeated evolution of resistance in pests with 426 

intrinsically large population sizes (much greater than >>106) that are not considered mutation-427 

limited [29, 30]. Analyses of nucleotide diversity in protein-coding genes is known to range 428 

widely in animal species and is most strongly correlated with reproductive strategy, with highly 429 

fecund (r-selected) species like CPB having the greatest diversity [87]. Schoville et al. [58] 430 

found evidence for a high rate of polymorphism in protein-coding regions (nucleotide diversity, 431 

π, was ~0.01), suggesting a high level of standing genetic diversity relative to other insects. 432 

Furthermore, CPB shows a higher rate of positive selection and greater levels of standing 433 

variation compared to other species in the genus Leptinotarsa [88]. In this genome-wide 434 

resequencing dataset, we identify an average nucleotide diversity of 0.005 within CPB, 435 

irrespective of pest or non-pest status across different geographical regions. While this rate of 436 
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nucleotide diversity remains high relative to most vertebrates (median 0.0025), it is not 437 

exceptional among arthropods [median 0.0125 all sites, 0.00204 synonymous sites; 89]. Despite 438 

its super-pest status, CPB nucleotide diversity falls within the range of insect species (0.0023-439 

0.0288). Among Coleoptera, CPB falls within the range of nucleotide diversity found in the bark 440 

beetles Dendroctonus ponderosae and D. brevicornis [0.0023 and 0.008, respectively; 90, 91] 441 

and is similar to the horned scarab beetle Onthophagus taurus [0.0056, 92]. Lepidopteran pest 442 

genomes are more polymorphic; five species of Helicoverpa range in nucleotide diversity from 443 

0.004 to 0.010 in autosomal regions, with the super-pest H. armigera as the most polymorphic 444 

[93], while two sympatric stains of the pest species Spodoptera frugiperda range from 0.043 to 445 

0.044 [94] and the closely related pest S. litura has nucleotide diversity as high as 0.016 [95].  446 

These results suggest that CPB is not exceptional in terms of standing genetic diversity 447 

and the potential for rapid evolution. However, there is an upper limit on nucleotide diversity in 448 

species with large effective population sizes (e.g. Drosophila melanogaster), as nucleotide 449 

variation at neutral sites is removed as a result of selection on nearby linked sites [96]. In fact, 450 

patterns of reduced variation in species with large effective population sizes might reflect 451 

selection from recurrent adaptive mutation [97]. On the other hand, there is considerable debate 452 

about this interpretation, as reduced nucleotide diversity might alternatively arise from purifying 453 

selection acting on nearly neutral sites in the form of background selection [98, 99]. 454 

Distinguishing among these alternatives will require direct estimates of genome-wide mutation 455 

and recombination in CPB, in addition to improved sampling, as it is not yet clear that CPB is 456 

mutation-limited. 457 

 458 

Are key regulatory shifts contributing to resistance evolution 459 
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Overexpression of multiple CYP, GST and ABC transporter genes is often associated 460 

with insecticide resistance and several studies have shown that trans-acting transcription factors 461 

may simultaneously regulate the expression of these targets [100-103]. Known trans-acting 462 

transcription factors involved in the xenobiotic detoxification pathway include CncC, Maf-S, 463 

AhR, ARNT, and Met. CncC forms a heterodimer with Maf-S to regulate multiple detoxification 464 

loci in many insects [104], including the highly resistant Long Island population of CPB [63] and 465 

deltamethrin resistant populations of the beetle Tribolium castaneum [105]. However, in 466 

comparing gene expression profiles of CPB populations throughout several growing regions, we 467 

found that expression levels of insecticide detoxification genes vary across populations, 468 

suggesting that varied transcriptional patterns are most-likely achieved through cis-regulatory 469 

evolution [106, 107]. In a similar analysis, comparison of transcriptomic profiles of Anopheles 470 

gambiae across Africa revealed the recruitment of many population-specific candidate 471 

insecticide resistance genes [108], suggesting cis-regulatory evolution of these pathways may be 472 

common among insect pests. Our data don't support the role of a single master-regulatory switch 473 

driving insecticide resistance, as we see no evidence for differential expression of key trans-474 

acting transcription factors despite comparing insecticide resistant and susceptible populations. 475 

Furthermore, the role of different genes in metabolic resistance in CPB has been demonstrated 476 

by RNAi experiments where knockdown of different upregulated CYP genes restores 477 

susceptibility in different pesticide resistant CPB populations [109, 110]. Altogether, our results 478 

suggest that a simple upstream shift in Cap-n-collar expression is not sufficient to explain all 479 

cases of metabolic resistance in CPB and that, instead, additional cis-regulatory changes are 480 

required to account for the heterogeneity and diversity of resistance pattern among populations 481 

[111]. This is consistent with widespread evidence that cis-regulatory evolution is more common 482 
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in adaptive evolution, while trans-acting gene regulation is typically constrained by strong 483 

stabilizing selection [112, 113]. 484 

 485 

Implications for pest management and novel control tactics 486 

Current resistance management strategies assume that the evolution of resistance is a rare 487 

event, caused by simple (single-gene) mutations [114], thereby ignoring the importance of 488 

alternative mechanisms involving multiple loci [115]. Resistance management models also 489 

assume that resistance is involved in fitness tradeoffs [116], a rationale underlying high 490 

dose/refuge strategies where gene flow from susceptible 'refuge' populations into insecticide-491 

treated fields delays resistance evolution [117]. However, it is increasingly difficult to 492 

understand the rate of pesticide resistance evolution using conventional models of single, large-493 

effect mutations in conferring a resistance phenotype [118]. Rates of insecticide resistance 494 

evolution in CPB are among the highest observed in agricultural pests [6] and often lead to 495 

failure unless implemented in an integrated pest management framework [119]. From our results, 496 

polygenic evolution from standing variation appears best explains this pattern, although we note 497 

alternative mechanisms were not investigated and could contribute to rapid evolutionary change. 498 

Notably, recent work in CPB has shown that changes in DNA methylation patterns might drive 499 

transgenerational epigenetic mechanisms of regulatory evolution that lead to pesticide resistance 500 

[120, 121]. 501 

As society faces the challenge of global food security, there is a prevailing view that 502 

insect pests have won the arms race involving conventional chemical pesticide control [3]. Novel 503 

chemical modes of action are needed to avoid target-site resistance, yet there is a high cost to 504 

such efforts, both in terms of development costs and environmental impacts. In addition, the 505 
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widespread emergence of cross-resistance, especially through metabolic detoxification, suggests 506 

novel modes of action may have limited efficacy and durability [122]. Although gene drives 507 

have been raised as promising novel control tactics [123, 124], most recent work in in CPB has 508 

focused on gene-targeted insecticides via the RNAi pathway [125]. Gene knock-down via RNAi 509 

could allow for highly effective, species-specific management if multiple genes are targeted 510 

simultaneously, and such products are currently under development [126]. How do genome-wide 511 

population genetic data shed light on RNAi implementation? Drawing on the mechanisms of 512 

evolution described in this paper, where standing variation is substantial, the likelihood of 513 

resistance evolution to RNAi might be high unless population-specific approaches are developed. 514 

One target site mutagenesis experiment in CPB has shown that mismatch rate of 3% or less still 515 

allows for effective gene target suppression [127], but clearly some CPB target genes would be 516 

problematic. Additionally, alternative pathways of RNAi resistance might emerge. For example, 517 

experiments with cell lines of CPB have shown that resistance evolving from mutations altering 518 

the uptake and transport of dsRNA [128]. CPB is known to utilize both sid‐1 transmembrane 519 

channel‐mediated uptake and clathrin‐mediated endocytosis in processing dsRNA [129], 520 

suggesting that there are multiple targets for resistance evolution in the RNAi pathway. 521 

Comparison of dsRNA efficacy among European CPB populations also suggested variation in 522 

the RNAi pathway itself (involving the multiple homologs of dicer, argonaut, and staufen) was 523 

more likely to evolve than at target site loci [130]. However, knockdown experiments in other 524 

Coleopteran pests have shown that loss of function of genes in the RNAi pathway impair 525 

development and reduce reproductive fitness [131], thus the inherent trade-off in resistance may 526 

be too great. One interesting RNAi resistance pathway involves selection on gut nuclease activity 527 

that alters the sensitivity of CPB to RNAi [132]. In other insects, such as Lepidopteran pests 528 
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[133], a single nuclease is responsible for dsRNA tolerance. Though clearly dsRNA provides a 529 

novel mode of action for controlling CPB pests, the propensity to draw on reservoirs of standing 530 

genetic variation to rapidly evolve suggests that multiple mechanisms of resistance are likely to 531 

occur. 532 

 533 

Conclusions 534 

Understanding the molecular mechanisms underlying pesticide adaptation has become 535 

increasingly important because of the widespread occurrence of the “pesticide treadmill” 536 

phenomenon in agricultural pests [134], wherein the repeated and escalating use of pesticides, 537 

and the search for new chemistries [119], is required to keep pace with pest evolution. We 538 

provide clear evidence that polygenic resistance drawn from standing variation could explain 539 

how insects rapidly overcome multiple classes of pesticides [135]. While the importance of 540 

polygenic evolution from standing genetic variation remains mostly theoretical in the insecticide 541 

resistance literature and has proven challenging to identify in empirical case studies [8], 542 

polygenic resistance has also been broadly implicated in the evolution of herbicide resistance in 543 

agricultural weeds [85] and antibiotic resistance in bacterial pathogens [136]. Here we provide 544 

evidence that CPB evolves insecticide resistance repeatedly across agricultural regions, and often 545 

at the same loci. An important future goal will be to understand how polygenic resistance 546 

phenotypes spread among local pest populations, in order to refine integrated pest management 547 

practices to maintain the efficacy and sustainability of novel control techniques. 548 

 549 

Methods 550 

Study Design and Aim  551 
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We collected a geographically dispersed set of 88 samples was selected to maximize 552 

information about genomic differentiation across the range of CPB (Additional File 1: Fig. S1 553 

and Table S1). An additional 10 samples comprising nine species of Leptinotarsa were also 554 

collected for relevant information on outgroup variation and possible sources of hybridization. 555 

Within the 88 CPB samples, we sampled six geographically proximate pairs of resistant (R) and 556 

susceptible (S) populations, 5 beetles per R/S site: Maine (R) and Vermont (S), New York (R) 557 

and New Jersey (S), Maryland (R and S), Michigan (R and S), Wisconsin (R and S), Oregon (R 558 

and S). The resistance status of beetles was ascertained by topical exposure to an insecticide 559 

(imidacloprid) or from published records at those sites (see Additional File 1 for detailed 560 

methods). However, all pest populations have potentially evolved resistance to other insecticides, 561 

as insecticide use was widespread starting in the late 1940s. As each diploid individual 562 

represents N=2 genomes, our sample size exceeds the requirements for most population genomic 563 

tests and allows for accurate estimation of frequencies for all but the most rare (and therefore, 564 

presumably, less important) alleles in key potato growing regions of the United States [137].  565 

 566 

Genomic Resequencing, Quality Control and Variant Calling 567 

High quality genomic DNA was isolated from adult beetle thoracic muscle tissue using 568 

DNeasy Blood & Tissue kits (Qiagen) and then submitted to the University of Wisconsin-569 

Madison Biotechnology Center. Libraries were sequenced using paired-end, 125bp sequencing 570 

on a HiSeq2500 sequencer (see Additional File 1 for detailed methods). We predetermined 571 

sequencing effort to yield >6x average coverage for each of our CPB genomes, a quantity 572 

sufficient to identify SNPs with reasonable accuracy [138].  573 
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Each sample was demultiplexed prior to downstream analysis, and we followed GATK's 574 

"Best Practices" guidelines (https://software.broadinstitute.org/gatk/best-practices/). Using the L. 575 

decemlineata reference genome v1.0 [GCA_000500325.1; 58], we aligned demultiplexed reads 576 

using BWA v0.7.101 [139], and converted SAM files to BAM format using SAMTOOLS 577 

v1.3.12 [139]. We generated one uBAM file (i.e., unmapped BAM file) per forward-reverse pair 578 

of the fastq raw reads using FastqToSam and then marked Illumina adapters with 579 

MarkIlluminaAdapters, both functions available from PICARD v2.2.4 580 

(https://github.com/broadinstitute/picard). We then reverted BAM files to fastq format with 581 

PICARD's SamToFastq, aligned the new fastq files to the reference genome with the BWA-mem 582 

algorithm and merged all alignments into one BAM file per sample with PICARD's 583 

MergeBamAlignment tool. We marked PCR and optical duplicates using PICARD's 584 

MarkDuplicates tool, but some of our samples were sequenced on multiple sequencer lanes. For 585 

these samples, we marked duplicates first at the lane level (i.e., per replicate), then at the sample 586 

level (merging duplicates into a unique BAM output). Finally, we realigned reads around 587 

insertions and deletions with GATK's RealignerTargetCreator and IndelRealigner tools. In order 588 

to assess the quality of our BAM files, we used GATK's Flagstat and DepthOfCoverage tools. 589 

Among our 88 CPB samples, three samples (two susceptible samples from Oregon: 590 

CPBWGS_59 and CPBWGS_63, and one susceptible sample from Vermont: CPBWGS_93) had 591 

few successfully mapped reads and were removed (Additional File 1: Fig. S2 and Table S1). 592 

 Genotyping was split into two steps: per-individual variant calling, followed by joint 593 

genotyping. Variant calling was conducted with GATK's HaplotypeCaller tool, which generates 594 

a likelihood score for all reference sites (-ERC GVCF option), including non-variant sites. Two 595 

different joint genotyping procedures were performed: one excluding non-CPB samples ("CPB" 596 
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dataset; N=85), and one including non-CPB samples, but keeping only one susceptible and one 597 

resistant sample (chosen at random) for populations from Oregon, Wisconsin, Michigan, 598 

Maryland, New-Jersey/New-York and Vermont/Maine ("Leptinotarsa" dataset; N=50; 599 

Additional File 1: Table S2). For joint genotyping, we employed variant quality score 600 

recalibration (VQSR) using a training dataset. VQSR is based on applying machine learning 601 

algorithms and clustering methods to examine the overlap of the raw call set and a training 602 

dataset. It is composed of two steps: 1. ApplyRecalibration describes the multi-dimensional 603 

annotation profile of variants and calculates (for each variant in both datasets) a new, well-604 

calibrated quality score called VQSLOD (for "variant quality score log-odds"). 2. 605 

ApplyRecalibration uses VQSLOD to apply a new cutoff to retain only high likelihood variants 606 

from the call set, based on a proportion of the variants in the training set that are present in the 607 

call set (e.g. 99.9% to enhance sensitivity or 90% to enhance specificity). As this approach 608 

requires a well-validated, independent dataset to be used as a training set, we used 41,454 SNPs 609 

generated from a published genotyping-by-sequencing (GBS) experiment [52]. These data 610 

represent 188 samples from 24 Midwestern populations (Additional File 1: Fig. S35), which 611 

were hard filtered for depth of coverage ≥10x, polymorphism in at least 30% of the individuals 612 

of each population, minor allele frequency ≥5%, and less than 20% missing genotypes across all 613 

individuals. We calculated VQSLODs based on the following annotations: QD, MQ, 614 

MQRankSum, ReadPosRankSum, FS, SOR, DP and InbreedingCoeff. The recalibrated score 615 

provides a continuous estimate for the probability of each variant, which can then be partitioned 616 

into quality tranches. Tranche plots for the "CPB" and "Leptinotarsa" datasets are based on a 617 

90% threshold that maximizes specificity over sensitivity (Additional File 1: Fig. S36). Finally, 618 

we used GATK's VariantsToTable tool to assess the quality of our inferred SNP dataset. We 619 
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plotted the improvement in the distribution of QualByDepth (QD) following the VQSR 620 

procedure for the "CPB" dataset (Additional File 1: Fig. S37) using the ggplot2 package in R 621 

v3.6 [140, 141]. After removing sites representing mitochondrial DNA (1,756 total variant sites), 622 

our dataset contained 47,969,460 SNPs in the "CPB" dataset and 69,680,768 in the 623 

"Leptinotarsa" dataset. Some analyses, like demographic reconstruction, require analyses with 624 

neutrally evolving loci. To mitigate the effect of non-neutral loci in these analyses, we created an 625 

“intergenic CPB dataset” from our "CPB" dataset, by considering only SNPs located outside of 626 

known genes from the L. decemlineata Official Gene Set (OGS) v1.1 [58]. 627 

 628 

Genomic Diversity 629 

 To estimate the genetic diversity of populations, we used the "CPB" dataset (i.e. not 630 

including Mexican samples), removed multi-allelic SNPs and those SNPs with a MAF <5% 631 

(using GATK's SelectVariants tool; final SNP number = 17,599,906). For these analyses we 632 

consider paired populations (susceptible/resistant) and grouped individuals from the U.S. Plains 633 

region (Colorado, Nebraska, Kansas, Missouri, New Mexico and Texas). We estimated genome-634 

wide nucleotide diversity (π) using a 10 Kb sliding window with VCFtools v0.1.15 [142]. We 635 

also estimated heterozygosity by calculating the inbreeding coefficient F for each individual, 636 

using the method of moments estimator in VCFtools. Individual estimates were then averaged 637 

per population, keeping susceptible and resistant individuals separate. Finally, we used the 638 

“singletons” function in VCFtools to calculate the number of singletons and private doubletons 639 

for each sample. 640 

 641 

Evolutionary Divergence 642 
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 In order to reconstruct the evolutionary origins of CPB populations, we conducted a 643 

phylogenomic analysis of the "Leptinotarsa" dataset. This dataset comprised 48 samples, 644 

including 10 L. decemlineata samples from Mexico, 28 L. decemlineata from the U.S. and 645 

Europe, and 10 samples of closely-related Leptinotarsa species. Since the dataset was quite 646 

large, we used only the first 100 scaffolds comprising 16,519,065 SNPs. We used SNPhylo 647 

v.20160204 [143] to construct a phylogeny, after pruning the SNPs for linkage disequilibrium 648 

(LD). In order to ensure the relative independence of the SNPs used in the analysis, we tested 649 

several values of the LD threshold parameter and selected 0.5 for downstream analyses, which 650 

resulted in 35,838 SNPs. The SNP data were concatenated and then aligned using MUSCLE 651 

v3.8.31 [144], and a maximum likelihood phylogeny was estimated using DNAML in PHYLIP 652 

v3.6 [145]. Support values for nodes in the tree were determined by bootstrap resampling 100 653 

times. 654 

 To estimate population structure, we examined both the "CPB" dataset and the 655 

“intergenic CPB” dataset, but the results were biologically consistent. We used three approaches: 656 

classical FST estimates between pairs of populations, principal components analysis using 657 

PCAdapt [146, 147] and ancestry analysis with sNMF (Frichot and François 2016). For the FST 658 

analyses, we consider paired populations (susceptible/resistant) and Plains individuals (Colorado, 659 

Nebraska, Kansas, Missouri, New Mexico and Texas). All estimations of Weir and Cockerham's 660 

mean weighted fixation indices (FST) were done using 10 Kb windows in VCFtools [142]. For 661 

the PCAdapt analysis, we assessed the number of principal components using Cattell's rule 662 

[148]. We plotted the percentage of variance explained by the first 20 principal components in a 663 

screeplot and examined the point of inflection in the plot, above which additional terms provide 664 

diminishing returns in terms of explained variance. For sNMF, we inferred individual patterns of 665 
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ancestry by estimating ancestral population allele frequencies and admixture coefficients using 666 

the R package LEA [149]. We first converted our VCF files to PLINK's ped format using 667 

VCFtools, then to the geno file format using LEA's ped2geno tool. We implemented 10 runs per 668 

k value and combined the different runs with CLUMPAK (http://clumpak.tau.ac.il/). We plotted 669 

cross-entropy values to assess the number of k values. 670 

 Finally, to test for possible admixture among ancestral populations during the invasion of 671 

CPB into agroecosystems, we assessed evidence of gene flow (i) from Mexican CPB populations 672 

and (ii) from other Leptinotarsa species, into the pest lineage. We used Dsuite [150] to calculate 673 

the genome-wide D-statistic (D) on allele frequency data, estimating the strength of introgression 674 

based on the ABBA/BABA test [151]. D ranges from zero (no introgression) to one (complete 675 

introgression), and is calculated using a set of three focal populations or taxa (P1, P2), P3) with 676 

one additional outgroup. For the first test (i), we only considered populations with sample sizes ≥ 677 

5, grouping susceptible and resistant samples from Vermont/Maine, Maryland, Wisconsin and 678 

Oregon as FST between these sub-populations was negligible (Additional File 1: Table S5), 679 

grouping samples from the "Plains" region (N=7), and grouping all CPB samples from Mexico 680 

(N = 10). We tested every possible focal trio of populations, retaining the lowest D-statistic for 681 

every given trio (Dmin; a conservative estimate of D). We assessed whether D was significantly 682 

different from zero by calculating a p-value based on jackknifing. We analyzed the complete 683 

biallelic SNP dataset with the two L. juncta samples as outgroups (the results were almost 684 

identical when using L. undecemlineata instead; data not shown). For the second test (ii), we 685 

included the nine other Leptinotarsa species using the same dataset from the SNPhylo analysis, 686 

comprising the 100 first scaffolds and 16,519,065 SNPs. The dataset contained one susceptible 687 

and one resistant sample for each of the six paired populations. In order to analyze a balanced 688 
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dataset, we limited the “Plains” population to the samples from Colorado. We also created two 689 

Mexican populations, representing the two distinct Mexican clades recovered in our phylogeny: 690 

"Mexico_City" (containing two samples) and "Mexico_South" (containing the sample from 691 

Oaxaca and the one from Guerrero; Additional File 1: Table S1). We used L. lineolata as the 692 

outgroup, as it was recovered as the most basal and distantly-related taxon to the U.S. CPB clade. 693 

 694 

Demographic Analysis 695 

 To reconstruct the population history of CPB, we used the CPB intergenic SNP dataset 696 

and employed two coalescent approaches: the stairway plot method [152] and SMC++ [153]. 697 

Demographic reconstructions rely on an accurate estimate of the mutation rate. Most estimates of 698 

nuclear mutation rate in insects fall into the range of 2 × 10-9 to 7 × 10-9 substitutions per site per 699 

generation [154, 155]. As there is no genome-wide mutation rate estimate for CPB or related 700 

beetles, we chose to use a mutation rate of 2.1 × 10-9, estimated recently in the non-biting midge 701 

[156]. We set the generation time of 0.5/year (i.e. 2 generations per year) for all our samples. The 702 

Stairway plot approach relies on the calculation of the expected composite likelihood of a given 703 

site frequency spectrum (SFS), which reduces the computational burden of inferring population 704 

parameters. It is also suitable for estimating recent population histories with low coverage 705 

genomic data. We analyzed the resistant and susceptible paired populations, both separately and 706 

pooled together, and also considered a pooled sample from the Plains (Colorado, Nebraska, 707 

Kansas, Missouri, New Mexico and Texas), East (Florida, Tennessee, North Carolina, Virginia, 708 

Kentucky and Ohio) and Europe (Italy, Russia). For each population, we estimated the folded 709 

SFS in dadi [157], calculated for a genome length of 678Mbp [58], and used 200 bootstraps to 710 

assess confidence intervals. We then conducted the Stairway plot analysis with default 711 
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parameters and plotted the estimated median (and 95% confidence intervals) effective population 712 

size (Ne) through time. 713 

 We chose SMC++ [153] as an alternative approach, as it incorporates estimates of 714 

recombination and linkage disequilibrium (LD) in an SFS framework. Even though this method 715 

is relatively computationally efficient, long run times prevented us from using the entire CPB 716 

dataset. Due to the fragmented nature of the genome, we analyzed the longest 95 genomic 717 

scaffolds of the CPB dataset, including all intergenic and non-intergenic biallelic SNPs. This 718 

encompasses ~21% of the genome (~140MB out of ~670M bp, mean length of 1.9MB and all > 719 

1MB) and contains 6,669,259 SNPs. This subset of highly contiguous reference genomic data 720 

ensures we can accurately infer demography using the sequential Markov coalescent [158], 721 

although we note that analyses considering all >10 Kb scaffolds (covering 95% of the genome) 722 

yielded comparable results (i.e. same population sizes, same demographic events, same time-723 

scale; results not shown). 724 

 725 

Selection Analyses 726 

 We used three different approaches to study genomic signatures of selection: outlier 727 

detection with PCAdapt [146, 147], genome-environment association with LFMM [159] and 728 

haplotype-based tests using hapFLK [84]. To detect outlier SNPs using PCAdapt, Mahalanobis 729 

distances were transformed into p-values and then the FDR was controlled by transforming the 730 

p-values into q-values and considering an FDR of 0.01% (α=0.0001). We initially filtered SNPs 731 

using a minor allele frequency (MAF) of 0.05 and a conservative setting of K=10, but the 732 

number of SNPs suggested a high rate of false positives (see Additional File 1). We therefore 733 

refined our filtering steps using linkage disequilibrium clumping (choosing a window size of 500 734 
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SNPs and a squared-correlation coefficient threshold of 0.2). We examined the screeplot of the 735 

principle components and, following Cattell's rule, selected K=6 as the optimal clustering level. 736 

Finally, we adjusted the dataset by setting a more conservative MAF setting of 0.1. 737 

  As an alternative genome scan approach, we employed a genome-environmental 738 

association method using latent factor mixed models [LFMM; 159]. This test identifies SNP 739 

allele frequencies that are significantly associated with environmental predictor variables, while 740 

simultaneously modeling the confounding effect of population structure as latent factors. To 741 

account for the population structure observed in our data, we modeled k = 6 latent factors, as 742 

suggested by our PCAdapt and sNMF results. We adjusted p-values by an empirically-743 

determined genomic inflation factor, while controlling the false discovery rate at 0.01%. We 744 

explored five different environmental variables: elevation, precipitation, minimum temperature 745 

in the coldest month and potato land cover. We reasoned that genes containing SNPs associated 746 

with climate variables could be related to L. decemlineata adaptation to northern climates during 747 

range expansion, while associations with potato land cover might reveal genes responding to 748 

selective pressures faced in potato agroecosystems, such as novel host plants, natural enemy 749 

pressure and insecticide exposure. We obtained historic, county-level potato land cover data 750 

(between 1850 and 2012), as detailed in Crossley et al. [160]. For latitude, elevation, 751 

precipitation and minimum temperature in the coldest month, we obtained the data from the 752 

PRISM climate group (http://prism.oregonstate.edu). For each environmental variable, we took 753 

the average value within a 75 km radius around each sampling site, using functions available in 754 

the rgdal and raster packages in R [161, 162]. For potato land cover, we summarized the average 755 

proportion of area planted with potato within a 75 km radius of each sample site  [163].  756 
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 Finally, to integrate information from linked SNPs in tests of selection, we used the 757 

haplotype frequency-based method hapFLK [84]. This method has been shown to be relatively 758 

robust to confounding effects of population structure and variable population size. It also allows 759 

selection events to be pinpointed to specific branches of the population tree. For each identified 760 

signature of selection, a local tree is re-estimated using significant SNPs, constrained by the 761 

overall topology of the population tree. Statistical significance is computed for the difference 762 

between the branch lengths estimated from the focal region and from the global tree. We 763 

analyzed the first (longest) 95 genomic scaffolds of the CPB dataset (representing ~21% of the 764 

genome), including all biallelic SNPs. From a VCF file produced with GATK's SelectVariants 765 

function, we produced a ped file and associated map file with VCFtools' --plink function. In 766 

order to use the multi-point linkage disequilibrium model, hapFLK needs the number of 767 

haplotype clusters (K) to be specified and a population tree. We compared hapFLK results for 768 

different K values, ultimately selecting K=20 to minimize imputation errors (see Additional File 769 

1 for detailed methods; Additional File 1: Fig. S38). The population tree was estimated from a 770 

kinship matrix (Additional File 1: Fig. S39). We standardized hapFLK values and computed 771 

corresponding p-values from a standard normal distribution, examining results at three nominal 772 

levels (α = 0.01, 0.001 and 0.0001; Additional File 1: Fig. S40). We grouped significant SNPs 773 

into selected regions, where each region was separated by at least 1 Kb up- and downstream. 774 

 775 

Candidate Genes and Gene Network Analysis 776 

 For each selection test, we obtained functional information for candidate SNPs using 777 

manual annotation of the OGS supplemented by Blast2GO annotations [164], which have been 778 

previously published [52, 58]. To develop a list of candidate insecticide resistance genes, 779 
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Crossley et al. [52] identified 664 genes associated with processes or functions potentially linked 780 

to known mechanisms of insecticide resistance (Additional File 1: Table S14): metabolic 781 

detoxification including cytochrome p450s (CYPs), esterases, Glutathione S-transferases (GSTs) 782 

and ATP-binding cassette (ABC) transporters [165]; target-site insensitivity including most of 783 

the modes of actions classified by the Insecticide Resistance Action Committee (IRAC; 784 

http://www.irac-online.org/modes-of-action/) such as TRPC channels, sodium and calcium 785 

channels, glutamate receptors, acetylcholine receptors, etc.; and reduced cuticular penetration, 786 

including genes involved in chitin production or cuticle development. 787 

 One frequent concern in analyses of large datasets is the inclusion of false positives 788 

(Type I error) resulting from the large number of statistical tests. Frequently, this is resolved by 789 

adjusting p-values to more conservative values, for example by implementing multiple testing 790 

recalibrations such as Bonferroni or the Benjamini-Hochberg false discovery rate. However, in 791 

functional genomic studies, gene lists provide objective hypotheses that can be easily assessed in 792 

follow-up studies, while removing them based on statistical criteria can sometimes be 793 

challenging [166]. Although we employ stringent statistical criteria in all tests, we additionally 794 

leverage information by comparing gene lists from different tests. As we expect that both 795 

regulatory and structural changes might lead to genetic adaptation, we tested for over-796 

representation of specific gene networks in selection tests, gene expression analyses, and 797 

combinations of both approaches. Given multiple data sources, overlap in gene identity and 798 

function provides a measure of support for repeated evolution and polygenic adaptation. We 799 

curated gene ontology terms associated with significant genes in lists from genome-wide 800 

selection tests and differential expression tests, and used a one-sided hypergeometric Fisher's 801 

Exact test [167, 168] to test for over-representation (enrichment) of gene ontology terms, with p-802 
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value < 0.05 used as the statistical significance threshold. To further refine this analysis, we used 803 

REVIGO [169], a clustering algorithm that relies on semantic similarity measures, to summarize 804 

the list of enriched gene ontology terms. Gene ontology terms associated with biological 805 

processes, cellular components, and molecular function were separately clustered using the 806 

simRel score for functional similarity, allowing for redundancy in similar terms up to a value of 807 

0.7 before removal, and then compared to the UniProt database to find the percentage of genes 808 

annotated with each gene ontology term. The results were visualized using a CIRGO plot [170]. 809 

To provide a context for interpreting these results, we used our list of candidate genes 810 

(Additional File 1: Table S14) to generate a CIRGO plot of gene ontology terms associated with 811 

insecticide resistance (Additional File 1: Fig. S41). Major biological processes include response 812 

to insecticide/response to oxidative stress, endocytosis, glycerolipid metabolism, sensory 813 

perception, and DNA integration. Major cellular components include the plasma 814 

membrane/integral component of the membrane and transcription factor complex. Finally, major 815 

molecular functions include metallocarboxypeptidase activity, monooxygenase activity, 816 

acetylcholine binding, lipid binding, DNA polymerase binding, tetracycline transporter activity, 817 

chromatin binding, chitin binding, and structural component of cuticle. 818 

 819 

Gene Expression Analyses 820 

 In order to test for regulatory evolution, we compared gene expression data from RNA 821 

sequencing (RNAseq) experiments across the geographical range of CPB, including original data 822 

from the Plains region (a Colorado population) and previously published pest CPB population 823 

samples (see Additional File 1: Table S11). The Colorado population was raised under 824 

greenhouse conditions on potato plants (~25oC, 16:8 light:dark cycle), but represents the first 825 
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generation derived from wild-caught adults feeding on Solanum rostratum. RNAseq studies are 826 

recognized as robust estimators of whole-genome gene expression profiles [171] that are highly 827 

responsive to experimental conditions [172]. As the original experiments varied in their design, 828 

we conducted a set of initial analyses to determine if sampling issues might bias geographical 829 

comparisons. First, we assessed whether sampling of an overwintering (post-diapause) 830 

population versus a summer (non-diapausing) generation at the same field in Wisconsin altered 831 

gene expression patterns (1st generation versus 2nd generation). Second, we examined whether 832 

direct exposure to imidacloprid was necessary to induce insecticide resistance gene expression 833 

responses, by comparing a set of lab-reared individuals from Wisconsin, Oregon and Long Island 834 

populations (control versus an imidacloprid-induction treatment). Third, we compared samples 835 

of larvae and adults from a susceptible population in Wisconsin. Based on these comparisons, we 836 

determined that regional population differences could be compared for adults from field 837 

collected populations irrespective of generation sampled, but lab reared larvae needed to be 838 

compared separately. We compared constitutive levels of gene expression in six adult 839 

populations: Colorado (CO), Wisconsin (WI), Michigan (MI), New York (NY), New Jersey 840 

(NJ), and eastern Canada (CAN). We compared constitutive levels of gene expression in four 841 

larval populations: Oregon (OR), Wisconsin (WI), New York (NY), and New Jersey (NJ). As 842 

some of the adult samples were sequenced as pair-end and single-end reads, we analyzed only 843 

the first read of a set of pair-end samples representing CO and WI. 844 

 We aligned short read data from each sample to the L. decemlineata reference genome 845 

using HISAT2 [173]. SAMTOOLS was used to convert sam files to bam files. Read counts per 846 

gene per sample were generated using the function featureCounts available in the Rsubread 847 

package [174], with reference to the L. decemlineata OGS. Using the resulting counts, we 848 
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evaluated evidence for differential gene expression for each region using DESEQ2 [175]. 849 

DESEQ2 first estimates the dispersion among a set of replicated samples and then the 850 

logarithmic fold change of transcript counts among sample groups. It then employs a generalized 851 

linear model based on the negative binomial distribution of transcript counts and a binomial 852 

Wald statistic to test for differences among experimental contrasts. We first trimmed the read 853 

count matrix to remove genes with less than five reads and then conducted the differential 854 

expression analysis. We retained differentially expressed genes if read counts were > 2-fold and 855 

the significance level α = 5% was reached. We then adjusted the false discovery rate to 1% level, 856 

using a Benjamini-Hochberg correction [176]. Heatmaps of differentially expressed genes were 857 

generated in R using the pheatmap package [177]. As described previously, we curated gene 858 

ontology terms associated with significant genes and used a one-sided hypergeometric Fisher's 859 

Exact test to test for over-representation (enrichment) of gene ontology terms, with a p-value < 860 

0.05 used as the statistical significance threshold. 861 
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Figure Legends 1361 

 1362 

Figure 1. A) Unrooted phylogenetic tree of Leptinotarsa species obtained with SNPhylo, based 1363 

on 35,838 SNPs (after LD-based reduction). Node labels represent bootstrap values. The blue 1364 

arrow highlights a monophyletic clade comprising CPB samples collected in the U.S. and 1365 

Europe. (S): imidacloprid susceptible population; (R): imidacloprid resistant population. B) 1366 

Geographical sampling of Leptinotarsa decemlineata and estimated admixture coefficients. 1367 

Admixture proportions were estimated with SNMF on the intergenic "CPB" dataset for k=6 1368 

clusters, and are shown as both pie charts and an individual bar-plot. Each pie chart represents a 1369 

sampled location (small charts for single samples; large ones for populations of five individuals), 1370 

referenced as a number. Colored boxes around large pie charts differentiate susceptible (green) 1371 

vs. resistant samples (red). C) Population demographic histories (median Ne only) estimated 1372 

from SMC++. Colors correspond to geographical regions. 1373 

 1374 

Figure 2. Heatmap of D-statistics, showing the introgression patterns among CPB populations. 1375 

The color of the heatmap cell indicates the most significant Dmin found with every population 1376 

pairs: red colors indicate higher D-statistics, and generally more saturated colors indicate higher 1377 

P-values. The complete biallelic dataset was analyzed. 1378 

 1379 

Figure 3. Population tree showing the distribution of 24 resistance-associated selection events 1380 

identified with hapFLK in the first 95 genomic scaffolds. Colors refer to geographical location. 1381 

Internal branches show few selection events (one or two events in four branches, no selection 1382 

event in five branches).  1383 
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 1384 

Figure 4. Gene expression heatmap among four populations of CPB larvae, showing divergent 1385 

constitutive expression of 84 differentially expressed candidate insecticide resistance genes. 1386 

Colors of expression levels correspond to log-fold change. See Table S15 for the functional 1387 

annotation of these genes.  1388 
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Table 1. Predictions from alternative mechanisms of rapid evolution to insecticide resistance in 1389 

Colorado potato beetle. 1390 

Evolutionary 

mechanism 

Geographical pattern in 

resistant populations 

Genome scans of 

selection 

Haplotype-based 

selection scan 

Differential gene 

expression 

De novo mutation Independent hard 

selective sweeps 

A few statistically 

significant candidate genes 

Long haplotype blocks 

around selected loci 

Differential gene expression 

limited to key pathways 

Rapid regulatory 

evolution 

Selection in key 

regulatory genes leading 

to repeated upregulation 

of resistance pathways 

A few statistically 

significant regulatory 

genes 

Long haplotype blocks 

around regulatory genes 

encoding transcription 

factors 

Differential expression of 

key transcription factors and 

constitutive expression 

differences in insecticide 

resistance pathways 

Standing genetic 

diversity 

Repeated selection on 

candidate insecticide 

resistance genes 

Numerous statistically 

significant candidate genes 

Short haplotype blocks 

around selected loci 

Multiple differentially 

expressed genes in the same 

molecular pathways and 

constitutive expression 

differences in insecticide 

resistance pathways 

 1391 

Table 2. Candidate resistance genes identified in both PCAdapt and LFMM. The loading of each 1392 

gene on a principal component is indicated (see Additional File 1: Fig. S9). 1393 

Mechanisms Categories Gene ID* Annotated Gene Name 

Principal 

Component 

Metabolic detoxification 

ABC transporters 

LDEC015007 

LDEC002775 

LDEC005530 

LDEC019090 

LDEC020530 

LDEC022533 

LDEC005086 

LDEC002518 

LDEC012031 

atp-binding cassette sub-family a member 5-like isoform x2 

atp-binding cassette sub-family g member 1-like 

atp-binding cassette sub-family g member 4-like 

Multidrug resistance-associated 1 

multidrug resistance-associated 4-like 

multidrug resistance-associated protein 4 

multidrug resistance-associated protein 4 

probable multidrug resistance-associated protein lethal 03659 

probable multidrug resistance-associated protein lethal 03659 

1 

4 

1 

1 

1 

3 

2 

1 

5 

CYPs 

LDEC018533 

LDEC019188 

LDEC019765 

LDEC019766 

LDEC015048 

cytochrome P450 

cytochrome P450 

cytochrome P450 

cytochrome P450 

cytochrome p450 

3 

1 

1 

2 

4 
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LDEC018119 

LDEC005460 

cytochrome p450 

cytochrome p450 6bq10 

5 

1 

Esterases 

LDEC017038 

LDEC018118 

esterase 

esterase 

3 

2 

GSTs LDEC012947 glutathione s-transferase theta-1 1 

MFS LDEC009079 major facilitator superfamily domain-containing protein 8 1 

Target-sites 

Voltage-dependent channels 

LDEC009862 

LDEC000112 

LDEC021584 

LDEC015955 

glutamate receptor 2-like isoform x4 

voltage-dependent calcium channel subunit alpha-2 delta-3 

Voltage-dependent calcium channel type D subunit alpha-1 

voltage-dependent calcium channel type d subunit alpha-1-like 

protein 

1 

1 

1 

1 

Known insecticide resistance genes 

LDEC016101 

LDEC007707 

nicotinic acetylcholine receptor a9 subunit 

nicotinic acetylcholine receptor subunit alpha4 

2 

1 

Growth Factors Cuticular proteins 

LDEC003392 

LDEC014693 

LDEC010803 

cuticle protein 19 

cuticular protein analogous to peritrophins 1-j precursor 

larval cuticle protein 8-like 

2 

1 

3 

*Among these genes, three (the CYP gene LDEC015048, the cuticular protein LDEC010803, and the voltage-dependent calcium channel gene 1394 

LDEC000112) were found as candidate genes among field populations within Wisconsin [52]. The nicotinic acetylcholine receptor subunit 1395 

alpha4 (LDEC007707) was also found as a candidate gene in a comparative genomic analysis of Leptinotarsa by Cohen et al. [67].  1396 
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 1397 
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Figure 1. A) Unrooted phylogenetic tree of Leptinotarsa species obtained with SNPhylo, based 1398 

on 35,838 SNPs (after LD-based reduction). Node labels represent bootstrap values. The blue 1399 

arrow highlights a monophyletic clade comprising CPB samples collected in the U.S. and 1400 

Europe. (S): imidacloprid susceptible population; (R): imidacloprid resistant population. B) 1401 

Geographical sampling of Leptinotarsa decemlineata and estimated admixture coefficients. 1402 

Admixture proportions were estimated with SNMF on the intergenic "CPB" dataset for k=6 1403 

clusters, and are shown as both pie charts and an individual bar-plot. Each pie chart represents a 1404 

sampled location (small charts for single samples; large ones for populations of five individuals), 1405 

referenced as a number. Colored boxes around large pie charts differentiate susceptible (green) 1406 

vs. resistant samples (red). C) Population demographic histories (median Ne only) estimated 1407 

from SMC++. Colors correspond to geographical regions.  1408 
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 1409 

Figure 2. Heatmap of D-statistics, showing the introgression patterns among CPB populations. 1410 

The color of the heatmap cell indicates the most significant Dmin found with every population 1411 

pairs: red colors indicate higher D-statistics, and generally more saturated colors indicate higher 1412 

P-values. The complete biallelic dataset was analyzed.  1413 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.09.430453doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430453
http://creativecommons.org/licenses/by-nc-nd/4.0/


70 

 

 1414 

 1415 

 1416 

Figure 3. Population tree showing the distribution of 24 resistance-associated selection events 1417 

identified with hapFLK in the first 95 genomic scaffolds. Most resistance-associated selection 1418 

events occur on nine to eleven branches, and only two are singular to one branch. Colors refer to 1419 

geographical location. Internal branches show few selection events (0.67 selection events on 1420 

average).  1421 
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 1422 

Figure 4. Gene expression heatmap among four populations of CPB larvae, showing divergent 1423 

constitutive expression of 84 differentially expressed candidate insecticide resistance genes. 1424 

Colors of expression levels correspond to log-fold change. See Additional File 1: Table S12 for 1425 

the functional annotation of these genes. 1426 
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