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Abstract 

The SARS-CoV-2 pandemic has challenged researchers at a global scale. The scientific 

community’s massive response has resulted in a flood of experiments, analyses, hypotheses, 

and publications, especially in the field of drug repurposing. However, many of the proposed 

therapeutic compounds obtained from SARS-CoV-2 specific assays are not in agreement and 

thus demonstrate the need for a singular source of COVID-19 related information from which 

a rational selection of drug repurposing candidates can be made. In this paper, we present the 

COVID-19 PHARMACOME, a comprehensive drug-target-mechanism graph generated from a 

compilation of 10 separate disease maps and sources of experimental data focused on SARS-

CoV-2 / COVID-19 pathophysiology. By applying our systematic approach, we were able to 

predict the synergistic effect of specific drug pairs, such as Remdesivir and Thioguanosine or 

Nelfinavir and Raloxifene, on SARS-CoV-2 infection. Experimental validation of our results 

demonstrate that our graph can be used to not only explore the involved mechanistic 

pathways, but also to identify novel combinations of drug repurposing candidates. 
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Introduction and Motivation 

COVID-19 is the term coined for the pandemic caused by SARS-CoV-2. Unprecedented in the 

history of science, this pandemic has elicited a worldwide, collaborative response from the 

scientific community. In addition to the strong focus on the epidemiology of the virus1 2 3, 

experiments aimed at understanding mechanisms underlying the pathophysiology of the virus 

have led to new insights in a comparably short amount of time4 5 6 7 .  

In the field of computational biology, several initiatives have started generating disease 

maps that represent the current knowledge pertaining to COVID-19 mechanisms8 9 10 11 . Such 

disease maps have proven valuable before in diverse areas of research such as 12 13 14 15.  

When taken together with related work including cause-and-effect modeling8, entity 

relationship graphs16, and pathways17; these disease maps represent a considerable amount 

of highly curated “knowledge graphs” which focus primarily on COVID-19 biology. Here, we 

use the term “mechanism” to describe a single, or multiple cause-and-effect relationships (i.e. 

a subgraph), “pathways” to refer to a well-established series of interactions resulting in 

cellular change or a defined product, and “models” for describing a collection of experimental 

data or known interactions defined in the context of a particular biological process or 

pathology. As of July 2020, a collection consisting of 10 models representing core knowledge 

about the pathophysiology of SARS-CoV-2 and its primary target, the lung epithelium, was 

shared with the public.  

With the rapidly increasing generation of data (e.g. transcriptome18, interactome19, and 

proteome20 data), we are now in the position to challenge and validate these COVID-19 

pathophysiology knowledge graphs with experimental data. This is of particular interest as 
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validation of these knowledge graphs bears the potential to identify those disease 

mechanisms highly relevant for targeting in drug repurposing approaches.  

The concept of drug repurposing (the secondary use of already developed drugs for 

therapeutic uses other than those they were designed for) is not new. The major advantage 

of drug repurposing over conventional drug development is the massive decrease in time 

required for development as important steps in the drug discovery workflow have already 

been successfully passed for these compounds21 22. 

Our group and many others have already begun performing assays to screen for 

experimental compounds and approved drugs to serve as new therapeutics for COVID-19. 

Dedicated drug repurposing collections, such as the Broad Institute library23 , and the even 

more comprehensive ReFRAME library24, were used to experimentally screen for either viral 

proteins as targets for functional inhibition25, or for virally infected cells in phenotypic 

assays26. In our own work, compounds were assessed for their inhibition of virus-induced 

cytotoxicity using the human cell line Caco-2 and a SARS-CoV-2 isolate27. A total of 63 

compounds with IC50 < 20 µM were identified, from which 90% have not yet been previously 

reported as being active against SARS-CoV-2. Out of the active compounds, 31 are approved 

drugs, 23 are in phases 1-3 and 9 are preclinical candidate molecules. The described 

mechanisms of action for the inhibitors included kinase signaling, PDE activity modulation, 

and long chain acyl transferase inhibition (e.g. “azole class antifungals”). 

The approach presented here integrates experimental results and the output from other 

informatic pipelines, and combines proprietary and public data to provide a comprehensive 

overview on the therapeutic efficacy of candidate compounds, the mechanisms targeted by 
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these candidate compounds, and a rational approach to test the drug-mechanism associations 

for their potential in combination therapy.  
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Methodology 

Generation of the COVID-19 PHARMACOME 

Disparate COVID-19 disease maps focus on different aspects of COVID-19 pathophysiology. 

Based on comparisons of the COVID-19 knowledge graphs, we found that not a single disease 

map covers all aspects relevant for the understanding of the virus, host interaction and the 

resulting pathophysiology. Thus, we optimized the representation of essential COVID-19 

pathophysiology mechanisms by integrating several public and proprietary COVID-19 

knowledge graphs, disease maps, and experimental data (Supplementary Table 1) into one 

unified knowledge graph, the COVID-19 Supergraph.  

To this end, we converted all knowledge graphs and interactomes into OpenBEL28, a 

language that is both ideally suited to capture and to represent “cause-and-effect” 

relationships in biomedicine and is fully interoperable with major pathway databases29 30. In 

order to ensure that molecular interactions were correctly normalized, individual pipelines 

were constructed for each model to convert the raw data to the OpenBEL format. For 

example, the COVID-19 Disease Map contained 16 separate files, each of which represented 

a specific biological focus of the virus. Each file was parsed individually and the entities and 

relationships that did not adhere to the OpenBEL grammar were mapped accordingly. Whilst 

most of the entities and relationships in the source disease maps could be readily translated 

into OpenBEL, a small number of triples from different source disease maps required a more 

in-depth transformation. When classic methods of naming objects in triples failed, the 

recently generated COVID-19 ontology31 as well as other available standard ontologies and 

vocabularies were used to normalize and reference these entities.  
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In addition to combining the listed models, we also performed a dedicated curation of 

the COVID-19 supergraph in order to annotate the mechanisms pertaining to selected targets 

and the biology around prioritized repurposing candidates. The resulting BEL graphs were 

quality controlled and subsequently loaded into a dedicated graph database system 

underlying the Biomedical Knowledge Miner (BiKMi), which allows for comparison and 

extension of biomedical knowledge graphs (see http://bikmi.covid19-knowledgespace.de). 

Once the models were converted to OpenBEL and imported into the database, the 

resulting nodes from each mechanism-based model were compared (Figure 1). Even when 

separated by data origin type, the COVID-19 knowledge graphs had very little overlap (3 

shared nodes between all manually curated models and no shared nodes between all models 

derived from interaction databases), but by unifying the models, our COVID-19 supergraph 

improves the coverage of essential virus- and host-physiology mechanisms substantially.  

 

 

Figure 1: Venn diagrams comparing major mechanistic models in the COVID-19 supergraph. Mechanism-based 

models were divided, and their entities compared within their resulting subgroups. Model abbreviations are 

defined in Supplementary Table 1. a) Manual node comparison shows the overlap of entities in the models that 

are knowledge-based, manually curated relationships that have been directly encoded in OpenBEL. b) 

Automated node comparison shows the overlap of entities in models re-encoded into OpenBEL from other 

formats (e.g. SBML models). 
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Additionally, by enriching the COVID-19 supergraph with drug-target information linked 

from highly curated drug-target databases (DrugBank, ChEMBL, PubChem), we created an 

initial version of the COVID-19 PHARMACOME, a comprehensive drug-target-mechanism 

graph representing COVID-19 pathophysiology mechanisms that includes both drug targets 

and their ligands (Figure 2). In order to maximize its utility, this network includes both 

experimentally validated drug-target relationships as well as a wide distribution of biological 

entities and concepts (Supplementary Figure 1). The entire COVID-19 PHARMACOME was 

manually inspected and re-curated; this graph database is openly accessible to the scientific 

community at http://graphstore.scai.fraunhofer.de. 

 

 

 

Figure 2: The COVID-19 supergraph integrates drug-target information to form the COVID-19 PHARMACOME. 

a) An aggregate of 10 constituent COVID-19 computable models covering a wide spectrum of pathophysiological 

mechanisms associated with SARS-CoV-2 infection or harmonized to generate the mechanism-based COVID-19 

supergraph. b) The COVID-19 supergraph is annotated with drug-target information from a variety of curated 

sources to generate the COVID-19 PHARMACOME composed of 150662 nodes (representing proteins, 
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pathologies, and other biological entities/concepts) and 573929 edges (indicating relationships or interactions 

between the pair of nodes they connect). 

 

Systematic review and integration of information from phenotypic screening 

At the time of the writing of this paper, six phenotypic cellular screening experiments have 

been shared via archive servers and journal publications (Supplementary Table 2). Although 

only a limited number of these manuscripts have been officially accepted and published, we 

were able to extract their primary findings from the pre-publication archive servers. A 

significant number of reports on drug repurposing screenings in the COVID-19 context 

demonstrate how appealing the concept of drug repurposing is as a quick answer to the 

challenge of a global pandemic. Drug repurposing screenings were all performed with 

compounds for which a significant amount of information on safety in humans and primary 

mechanism of action is available. We generated a list of “hits” from cellular screening 

experiments while results derived from publications that reported on in-silico screening were 

ignored. Therefore, we keep a strict focus on well-characterized, well-understood candidate 

molecules in order to ensure that one of the pivotal advantages of this knowledge base is its 

use for drug repurposing. 

Subgraph annotation 

The COVID-19 PHARMACOME contains several subgraphs, three of which correspond to major 

views on the biology of SARS-CoV-2 as well as the clinical impact of COVID-19: 

- the viral life cycle subgraph focuses on the stages of viral infection, replication, and 

spreading.  

- the host response subgraph represents essential mechanisms active in host cells 

infected by the virus. 
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- the clinical pathophysiology subgraph illustrates major pathophysiological processes 

of clinical relevance.  

These subgraphs were annotated by identifying nodes within the COVID-19 

PHARMACOME that represent specific biological processes or pathologies associated with 

each subgraph category and traversing out to their first-degree neighbors. For example, a 

biological process node representing “viral translation” would be classified as a starting node 

for the viral life cycle subgraph while a node defined as “defense response to virus" would be 

categorized as belonging to the host response subgraph. Though the viral life cycle and host 

response subgraphs contain a wide variety of node types, the pathophysiology subgraph is 

restricted to pathology nodes associated with either the SARS-CoV-2 virus or the COVID-19 

pathology. 

 

Mapping of gene expression data onto the COVID-19 PHARMACOME 

Two single cell sequencing data sets representing infected and non-infected cells directly 

derived from human samples32 and cultured human bronchial epithelial cells33 (HBECs) were 

used to identify the areas of the COVID-19 PHARMACOME responding at gene expression level 

to SARS-CoV-2 infection. Details of the gene expression data processing and mapping are 

available in the supplementary material (section gene expression data analysis). 

 

Pathway enrichment  

Associated pathways for subgraphs and significant targets were identified using the Enrichr34 

feature of the gseapy Python package35. Briefly, gene symbol lists were assembled from their 

respective subgraph or dataset and compared against multiple pathway gene set libraries 

including Reactome, KEGG, and WikiPathways. To account for multiple comparisons, p-values 
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were corrected using the Benjamini-Hochberg36 method and results with p-values < 0.01 were 

considered significantly enriched. 

 

Drug repurposing screening 

We performed phenotypic assays to screen for repurposing drugs that inhibit the replication 

and the cytopathic effects of virus infection. A derivative of the Broad repurposing library was 

used to incubate Caco-2 cells before infecting them with an isolate of SARS-CoV-2 (FFM-1 

isolate, see 37). Survival of cells was assessed using a cell viability assay and measured by high-

content imaging using the Operetta CLS platform (PerkinElmer). Details of the drug 

repurposing screening are described in the supplemental material. 

 

Drug combinations assessment with anti-cytopathic effect measured in Caco-2 cells 

As described in Ellinger et al.,38 we challenged four combinations of five different compounds 

with the SARS-CoV-2 virus in four 96-well plates containing two drugs each. Eight drug 

concentrations were chosen ranging from 20 µM to 0.01 µM, diluted by a factor of 3 and 

positioned orthogonally to each other in rows and columns. No pharmacological control was 

used, only cells with and without exposure to SARS CoV-2 virus at 0.01 MOI. 

In addition, recently published data from the work of Bobrowski et al.39, were mapped to 

the COVID-19 PHARMACOME and compared to the results of the combinatorial treatment 

experiments performed here.  
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Results 

Comparative analysis of the hits from different repurposing screenings 

Data from six published drug repurposing screenings were downloaded, and extensive 

mapping and curation was performed in order to harmonize chemical identifiers. The curated 

list of drug repurposing “hits” together with an annotation of the assay conditions is available 

under http://chembl.blogspot.com/2020/05/chembl27-sars-cov-2-release.html  

Initially, we analyzed the overlap between compounds identified in the reported drug 

repurposing screening experiments. Figure 3A shows no overlap between experiments, which 

is not surprising, as we are comparing highly specific candidate drug experiments with 

screenings based on large drug repositioning libraries. However, the overlap is still quite 

marginal for those screenings where large compound collections (Broad library, ReFRAME 

library) have been used. 

 

Figure 3: Overlap of compound hits between different drug repurposing screening experiments. a) Direct 

comparison of overlapping hits in drug repurposing screenings revealed no overlap between the experiments. 

These experiments were performed using different cell types (Vero E6 cells and Caco2 cells). b) Protein target 

space overlap between different COVID-19 drug repurposing screenings. Drug targets were identified by 

confidence level >= 8 and single protein targets according to the ChEMBL database. Comparison of experiments 

indicates over one hundred common protein targets. 
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Mapping of repurposing hits to target proteins  

In order to identify which proteins are targeted by the repurposing hits, and to investigate the 

extent to which there are overlaps between repurposing experiments at the target/protein 

level, we mapped all the identified compounds from the drug repurposing experiments to 

their respective targets. As most drugs bind to more than one target, we increase the 

likelihood of overlaps between the drug repurposing experiments when we compare them at 

the protein/target space. Indeed, Figure 3B shows an overlap of 112 targets between all the 

drug repurposing experiments, thereby creating a list of potential proteins for therapeutic 

intervention when the compound targets are considered rather than the compounds 

themselves. 

 

The COVID-19 PHARMACOME associates pathways derived from drug repurposing targets 

with pathophysiology mechanisms 

A non-redundant list of drug repurposing candidate molecules that display activity in 

phenotypic (cellular) assays was generated and mapped to the COVID-19 PHARMACOME. 

Figure 4 shows the distribution of repurposing drugs in the COVID-19 cause-and-effect graph, 

the “responsive part” of the graph that is characterized by changes in gene expression 

associated with SARS-CoV-2 infection and the overlap between the two subgraphs. This 

overlap analysis allows for the identification of repurposing drugs targeting mechanisms that 

are modulated by viral infection.  

A total number of 870 mechanisms were identified as being targeted by most of the drug 

repurposing candidates (see section “Associated pathway identification” in supplementary 

materials). When compared to the annotated subgraphs in the COVID-19 PHARMACOME, 201 

of the 227 determined associated pathways found for the viral life cycle subgraph overlapped 
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with those for the drug repurposing targets while the host response subgraph shared 90 of its 

105 pathways.  

 

Mapping of drug repurposing signals to hypervariable regions of the COVID-19 

PHARMACOME 

One of the key questions arising from the network analysis is whether the repurposing drugs 

target mechanisms are specifically activated during viral infection. In order to establish this 

link, we mapped differential gene expression analyses from two single-cell sequencing studies 

to our COVID-19 PHARMACOME (see section “Differential Gene Expression” in supplementary 

material). An overlay of differential gene expression data (adjusted p-value ≤ 0.1 and abs(log 

fold-change) > 0.25) on the COVID-19 PHARMACOME reveals a distinct pattern characterized 

by the high responsiveness (expressed by variation of regulation of gene expression) to the 

viral infection (Figure 4A).  
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Figure 4: Identification of suitable targets for combination therapy by comparing subgraphs within the COVID-

19 PHARMACOME. Incorporation of gene expression data into the COVID-19 PHARMACOME resulted in a 

subgraph characterized by the entities (genes/proteins) that respond to viral infection (a). Mapping of the filtered 

results obtained from drug repurposing screenings (IC50 < 10 µM) to the PHARMACOME resulted in a subgraph 

enriched for drug repurposing targets (b). The intersection between subgraphs presented in (a) and (b) is highly 

enriched for drug repurposing targets directly linked to the viral infection response (c).  

 

Virus-response mechanisms are targets for repurposing drugs  

In the next step, we analyzed which areas of the COVID-19 graph respond to SARS-CoV-2 

infection (indicated by significant variance in gene expression) and are targets for repurposing 

drugs. To this end, we mapped signals from the drug repurposing screenings to the subgraph 

that showed responsiveness to SARS-CoV-2 infection (Figure 4B). Figure 4C depicts the 

resulting subgraph that is characterized by the transcriptional response to SARS-CoV-2 

infection and the presence of target proteins of compounds that have been identified in drug 

repurposing screening experiments. 
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The COVID-19 PHARMACOME supports rational targeting strategies for COVID-19 

combination therapy 

We mapped existing combinatorial therapy data to the COVID-19 PHARMACOME in order to 

evaluate its potential in guiding rational approaches towards combination therapy using 

repurposing drug candidates.  Combinatorial treatment data obtained from the results 

published by Bobrowski et al.40 and Ellinger et al.41 were mapped to the COVID-19 

PHARMACOME. Figure 5 provides an overview of the mapped compounds, thier protein 

targets, and the interaction mechanisms. Analysis of the overlaps between the drug 

repurposing screening data  showed that four of the ten compounds reported in the 

synergistic treatment approach by drug repurposing data were represented in our initial non-

redundant set of candidate repurposing drugs.  
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Figure 5: Visualization of drug repurposing candidates (and their targets) used in combination treatment 

experiments. The subgraph depicts the drug repurposing candidate molecules in relation to each other and their 

targets. Shortest path lengths between drug combinations were calculated from this subgraph and are available 

in the supplementary material (Supplementary Table 5). 

 

Based on the association between repurposing drug candidates and the areas of the 

COVID-19 PHARMACOME that respond to SARS-CoV-2 infection (Figure 4), we hypothesized 

that the number of edges between a pair of drug nodes may be linked to the effectiveness of 

the drug combination (Supplementary Figure 2). In order to evaluate whether the determined 

outcome of a combination of drugs correlated with the distance between said drug nodes, we 

compared distances for combinations of drugs within the COVID-19 PHARMACOME for which 
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their effect was known (Supplementary Tables 3 & 5). Of the 47 drug combinations we were 

able to check within the COVID-19 PHARMACOME, we found that the pairs of drugs known to 

have a synergistic effect in the treatment of SARS-CoV-2 had an average shortest path length 

of 2.43,  while antagonistic combinations were found to be farther apart with an average 

shortest path length of 4.0 (Supplementary Table 7). Based on our calculations, we formulated 

three categories for predicting the outcome of new drug combinations on infection using the 

shortest path lengths between them within the COVID-19 PHARMACOME. Drug combinations 

with shortest path lengths of 2 indicate a synergistic relationship between the compounds, 3 

was determined to be inconclusive as our calculations did not justify a specific outcome, and 

those with a shortest path length of 4 or more were predicted to have an antagonistic 

relationship.  

In order to test our ability to predict the outcome of novel drug combinations, we 

selected five compounds: Remdesivir (a virus replicase inhibitor), Nelfinavir (a virus protease 

inhibitor), Raloxifene (a selective estrogen receptor modulator), Thioguanosine (a 

chemotherapy compound interfering with cell growth), and Anisomycin (a pleiotropic 

compound with several pharmacological activities, including inhibition of protein synthesis 

and nucleotide synthesis). These compounds were used in four different combinations 

(Remdesivir/Thioguanosine, Remdesivir/Raloxifene, Remdesivir/Anisomycin and 

Nelfinavir/Raloxifene) to test the potency of these drug pairings in phenotypic, cellular assays. 

Figure 6 shows the results of these combinatorial treatments on the virus-induced cytopathic 

effect in Caco-2 cells.    
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Figure 6: Dose-response curves (DRC) depicting viral inhibition of SARS-CoV-2 by select drug combinations. a) 

A threshold effect can be seen with the Remdesivir/Anisomycin combination when Anisomycin reaches 20 µM, 

well beyond Anisomycin’s IC50 alone. Remdesivir activity does not appear to be affected by Anisomycin, while  

Remdesivir seems to be equally affected (de-potentiated) by low to high concentrations of Raloxifene. b) Viral 

inhibition for Remdesivir/Thioguanosine can be seen only at lower Thioguanosine concentrations, at higher 

concentrations the clear curve shift of Remdesivir at lower concentration (effect beyond Loewe’s additivity 

formula) could not be appreciated. c) Raloxifene had an antagonistic effect on Remdesivir’s viral replication 

inhibition activity. d) A clear shift in Nelfinavir’s DRC can be observed when combined with Raloxifene, but also 

suggests a threshold effect when Raloxifene concentrations are higher than 2.2 µM. 

 

Our results indicate that compound combinations acting on different viral 

mechanisms, such as Remdesivir and Thioguanosine (Figure 6b) or Nelfinavir and Raloxifene 

(Figure 6d), showed synergy, while compounds acting on host mechanisms, for instance 

Anisomycin or Raloxifene, when combined with Remdesivir (Figure 6a and Figure 6c, 

respectively), resulted in neither synergistic nor additive effects. Interestingly, our 

experiments revealed that the HIV-Protease inhibitor Nelfinavir, which already appeared to 

be active against viral post-entry fusion steps of both SARS-CoV42 and SARS-CoV-243, displayed 

synergistic effects when combined with high concentrations of Raloxifene. This result agrees 

with our  predictions generated using the COVID-19 PHARMACOME in which the drug 
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combination with the shortest distance, Raloxifene and Nelfinavir (Supplementary Table 5), 

would have a synergistic effect on SARS-CoV-2 pathology.  
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Discussion 

By combining a significant number of knowledge graphs which represent various aspects of 

COVID-19 pathophysiology and drug-target information we were able to generate the COVID-

19 PHARMACOME, a unique resource that covers a wide spectrum of cause-and-effect 

knowledge about SARS-CoV-2 and its interactions with the human host. Based on a systematic 

review of the results derived from published drug repurposing screening experiments, as well 

as our own drug repurposing screening results, we were able to identify mechanisms targeted 

by a variety of compounds showing virus inhibition in phenotypic, cellular assays. With the 

COVID-19 PHARMACOME, we are now able to link repurposing drugs, their targets and the 

mechanisms modulated by said drugs within one computable data structure, thereby enabling 

us to target - in a combinatorial treatment approach - different, independent mechanisms. By 

challenging the COVID-19 PHARMACOME with gene expression data, we have identified 

subgraphs that are responsive (at gene expression level) to virus infection. Network analysis 

along with the overview on previous repurposing experiments provided us with the insights 

needed to select the optimal repurposing drug candidates for combination therapy. 

Experimental verification showed that this systematic approach is valid; we were able to 

identify two drug-target-mechanism combinations that demonstrated synergistic action of 

the repurposed drugs targeting different mechanisms in combinatorial treatments.  

We are fully aware of the fact that the COVID-19 PHARMACOME combines experimental 

results generated in different assay conditions. In the course of our work, we accumulated 

evidence that assay responses recorded using Vero E6 cells in comparison to Caco-2 cells may 

only partially overlap. Comparative analysis of the results of both assay systems to virus 

infection by means of transcriptome-wide gene expression analysis is one of the experiments 
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we plan to perform next. However, for the identification of meaningful combinations of 

repurposing drugs, the current model-driven information fusion approach was shown to work 

well despite the putative differences between drug repurposing screening assays. 

Given the urgent need for treatments that work in an acute infection situation, our 

approach described here paves the way for systematic and rational approaches towards 

combination therapy of SARS-CoV-2 infections. We want to encourage all our colleagues to 

make use of the COVID-19 PHARMACOME, improve it, and add useful information about 

pharmacological findings (e.g. from candidate repurposing drug combination screenings). In 

addition to vaccination and antibody therapy, (combination) treatment with small molecules 

remains one of the key therapeutic options for combatting COVID-19. The COVID-19 

PHARMACOME will therefore be continuously improved and expanded to serve integrative 

approaches in anti-SARS-CoV-2 drug discovery and development. 
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