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SUPPLEMENTARY MATERIAL 

 
 

Disease Map 
Name 

Reference Abbreviation Source of 
Information 

Modalities & 
Scales 
Represented 

Model scope 

Interactome Gordon, D. E., Jang, 
G. M., Bouhaddou, 
M., Xu, J., Obernier, 
K., White, K. M., ... & 
Tummino, T. A. 
(2020). A SARS-
CoV-2 protein 
interaction map 
reveals targets for 
drug repurposing. 
Nature, 1-13. 

gordon Pull-down 
experiments 

Molecular 
entities  

Host virus 
interaction 

COVID-19 
Disease Map 

Ostaszewski, M., 
Mazein, A., Gillespie, 
M. E., Kuperstein, I., 
Niarakis, A., 
Hermjakob, H., ... & 
Schreiber, F. (2020). 
COVID-19 Disease 
Map, building a 
computational 
repository of SARS-
CoV-2 virus-host 
interaction 
mechanisms. 
Scientific data, 7(1), 
1-4. 

lux Literature 
mining and 
manual 
curation 

Pathway level 
 
Pathway model 

Host virus 
interaction and 
pathways  

COVID-19 
Knowledge 
Graph 

Domingo-Fernandez, 
D., Baksi, S., Schultz, 
B., Gadiya, Y., Karki, 
R., Raschka, T., ... & 
Hofmann-Apitius, M. 
(2020). COVID-19 
Knowledge Graph: a 
computable, multi-
modal, cause-and-
effect knowledge 
model of COVID-19 
pathophysiology. 
BioRxiv. 

cbm_scai Literature 
mining and 
manual 
curation 

Multimodal and 
multiscale, 
spanning from 
molecular 
entities to 
clinical 
phenotypes 
 
Cause-and-
effect model 

Host virus 
interactions 
and 
mechanisms 

COVID-19 
Interaction 
Graph (Elsevier) 

https://pharma.els
evier.com/covid-
19/elsevier-
models-for-
covid19-bio-
molecular-
mechanisms/  

elsevier Literature 
mining 

Molecular 
entities 

Host virus 
interaction  

COVID-19 
Sepsis Risk 
Factor Graph 
Model 

https://precisionlif
e.com/wp-
content/uploads/2
020/05/precisionli
fe-Sepsis-COVID-

 Driven by 
genetics data 
analysis; 
combining 
data-driven and 

Molecular 
scale, disease 
phenotype 
focus on sepsis 

Focus on sepsis 
biology and 
virus 
susceptibility 

https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://pharma.elsevier.com/covid-19/elsevier-models-for-covid19-bio-molecular-mechanisms/
https://precisionlife.com/wp-content/uploads/2020/05/precisionlife-Sepsis-COVID-19-Risk-Factors-Report.pdf
https://precisionlife.com/wp-content/uploads/2020/05/precisionlife-Sepsis-COVID-19-Risk-Factors-Report.pdf
https://precisionlife.com/wp-content/uploads/2020/05/precisionlife-Sepsis-COVID-19-Risk-Factors-Report.pdf
https://precisionlife.com/wp-content/uploads/2020/05/precisionlife-Sepsis-COVID-19-Risk-Factors-Report.pdf
https://precisionlife.com/wp-content/uploads/2020/05/precisionlife-Sepsis-COVID-19-Risk-Factors-Report.pdf


   
 

 

19-Risk-Factors-
Report.pdf  

knowledge-
driven 
approaches 

COVID-19 
Proteome 

Bojkova, D., Klann, 
K., Koch, B., Widera, 
M., Krause, D., 
Ciesek, S., ... & 
Münch, C. (2020). 
Proteomics of SARS-
CoV-2-infected host 
cells reveals therapy 
targets. Nature, 1-8. 

 Driven by 
proteomics 
analysis;  

Molecular 
scale, 
comparative 
approach with 
infected / non-
infected cells 

Virus host 
interaction 

COVID-19 and 
Lung Epithelial 
Cell Models 

Schlage, W. K., 
Westra, J. W., Gebel, 
S., Catlett, N. L., 
Mathis, C., Frushour, 
B. P., ... & Lietz, M. 
(2011). A computable 
cellular stress 
network model for 
non-diseased 
pulmonary and 
cardiovascular tissue. 
BMC systems 
biology, 5(1), 168. 
 
Park, J. S., Schlage, 
W. K., Frushour, B. 
P., Talikka, M., 
Toedter, G., Gebel, 
S., ... & Kogel, U. 
(2013). Construction 
of a computable 
network model of 
tissue repair and 
angiogenesis in the 
lung. J Clinic Toxicol 
S, 12, 2161-0495. 

pmi Driven by 
literature 
analysis and 
expert 
knowledge 

Molecular level; 
tissue specific 
(lung 
epithelium and 
microvasculatur
e) 

Target cell 
physiology 

Heme 
Knowledge 
Graph 

Humayun, F., et al. 
(2020). A 
computational 
approach for 
mapping heme 
biology in the context 
of hemolytic 
disorders. Frontiers 
in Bioengineering 
and Biotechnology, 8, 
74. 

heme Manual 
curation 

Molecular 
entities 

Heme 
physiology 
including major 
blood - based 
physiology 

BioDati COVID-
19 Model 

https://networkstore.d
emo.biodati.com/net
works/01E46GDFQA
GK5W8EFS9S9WM
H12?format=normal 
 

biodati Literature 
mining 

Molecular 
entities 

Related 
molecular 
interactions 

IntAct 
Coronavirus 
Molecular 
Interaction 
Dataset 

https://www.ebi.ac.uk
/intact/query/annot:%
22dataset:coronaviru
s%22 

intact Literature 
Mining 

Molecular 
entities 

Related 
molecular 
interactions 

Supplementary Table 1. Constituent COVID-19 models that were incorporated into the COVID-19 supergraph. 
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Authors Title URL Library Screened and 
Number of Hits 

Cell Type Tested 

Touret et al. In vitro screening of a 
FDA approved chemical 
library reveals potential 
inhibitors 1of SARS-
CoV-2 replication 

https://www.bio
rxiv.org/content/
10.1101/2020.04
.03.023846v1  

6 hits 
 
Prestwick Chemical 
Library® (a library of 
1,520 off-patent small 
molecules) 

VeroE6 (ATCC CRL-
1586) cells 

Gordon et al. A SARS-CoV-2 protein 
interaction map reveals 
targets for drug 
repurposing 

https://www.nat
ure.com/articles/
s41586-020-
2286-9  

36 hits out of 75 pre-
selected compounds 

VeroE6 (ATCC CRL-
1586) cells 

Riva et al. A Large-scale Drug 
Repositioning Survey 
for SARS-CoV-2 
Antivirals 

https://www.nat
ure.com/articles/
s41586-020-
2577-1 

ReFRAME library 
(approx. 12,000 
compounds), 18 hits 

VeroE6 (ATCC CRL-
1586) cells 

Jeon et al. Identification of 
antiviral drug 
candidates against 
SARS-CoV-2 from FDA-
approved drugs 

https://aac.asm.
org/content/64/
7/e00819-
20.abstract  

Initial screening of 
approx. 3000 cmpd 
with MERS / SARS-
CoV-1; re-screening 
of 48 drugs on SARS-
CoV-2; 24 hits 
identified  

Vero (ATCC CCL-81) 
cells 

Weston et al. Broad anti-coronaviral 
activity of FDA 
approved drugs against 
SARS-CoV-2 in vitro and 
SARS-CoV in vivo  

https://www.bio
rxiv.org/content/
10.1101/2020.03
.25.008482v2.full
.pdf  

Targeted screening of 
pre-selected 20 
compounds; 17 hits 

VeroE6 (ATCC CRL-
1586) cells 

Ellinger et al. Identification of 
inhibitors of SARS-CoV-
2 in-vitro cellular 
toxicity in human 
(Caco-2) cells using a 
large scale drug 
repurposing collection 

https://www.res
earchsquare.com
/article/rs-
23951/v1  

5632 compounds 
(Fraunhofer replica 
Broad library); 77 hits 

Human Caco–2 
cells 

Supplementary Table 2. Overview on published and proprietary drug repurposing data used in this study. 
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https://www.researchsquare.com/article/rs-23951/v1


   
 

 

 

 

Drug repurposing screening using phenotypic assays  

 

A highly qualified set of known bioactives and marketed compounds (the Fraunhofer 

Repurposing Collection, established as a mirror set using principles set up by the Broad 

Institute i ii) with a well-defined collection of 5632 compounds including 3488 that have 

undergone previous clinical investigations (approved drugs, phases I–III, and withdrawn 

compounds) across 600 indications is one of the most comprehensive sets of annotated 

compounds currently described, with 5682 unique compounds. The collection includes 3,400 

compounds that have reached clinical use across 600 indications. In addition, the collection 

contains 1582 pre-clinical compounds at varying stages of validation. In 2019, the compounds 

were purchased from the same set of more than 70 high-quality suppliers identified by the 

Broad Institute and were quality controlled by LC/MS for purity and identity (minimum purity 

> 90%). The compounds were stored at a concentration of 10 mM in 100% DMSO at -20 °C. A 

curated database is available listing the compounds, indications, primary targets (where 

known), and mechanism of action, as well as analysis tools which can help to determine the 

mechanism of action and target. This collection of compounds differs from many in that it 

contains a high proportion of clinical and preclinical candidates, as well as marketed drugs 

which are commonly found in classical repurposing collections. The collection has been 

screened in phenotypic antiviral assays, either in epithelial cells, human (Caco-2) or cells 

derived from green macaque (Vero-E6). The cells were treated with or without virus and the 

cytotoxic effect of each molecule was measured after 48 hr (Caco-2) or 120 hr (Vero-E6) post 

infection.  

  



   
 

 

Gene expression data analysis 

To validate the edges in the supergraph, differential expression data were obtained from two 

studies that generated single-cell RNA sequencing (scRNA-seq) data for SARS-CoV-2 infected 

samples. 

The first data set is comprised of the results taken from Ravindra et al.iii. Primary human 

bronchial epithelial cells (HBECs) were cultured for 28 days prior to SARS-CoV-2 infection. Cells 

were kept in culture for three days; each day a suspension was taken and prepared for single-

cell RNA sequencing. Using the 10X Genomics cellranger pipeline, expression reads were 

mapped against the human and viral genomes and count matrices were generated. Then, the 

Seurativ package was used for clustering, and the cells were annotated based on marker genes 

reported in the molecular cell atlasv. Subsequently, cells were classified as infected if more 

than ten viral transcript counts were found. Finally, differential gene expression analysis was 

conducted; the authors pooled the three time-points and compared infected versus 

bystander, infected versus mock, and bystander versus mock. For a detailed description of 

their methodology, see Ravindra et al. The results of the differential gene expression analyses 

were retrieved from the Van Dijk GitHub repositoryvi. 

The second is the data set from Chua et al.vii. The authors conducted an observational 

cohort study at the Berlin and Leipzig university hospitals and acquired scRNA-seq data for 19 

patients with moderate or critical disease and five healthy controls. Nasopharyngeal and 

bronchial specimens were taken and prepared for 3' single-cell RNA-sequencing. The raw data 

were processed with the 10X Genomics Cell Rangerviii ix and the Seurat package. The variables 

“sex” and “days past the first symptoms” have been used as confounder variables (cfr. Chua 

et al. for further details on the sample acquisition and data processing).  



   
 

 

In both cases, the list of differentially expressed genes was used to validate that the 

experimental data agrees with the information from the supergraph. For every edge of the 

graph, it was tested if the experimental data either has supporting, contradicting, or no 

information about the involved genes. 

 

Graph visualization and layout 

Images of the COVID-19 PHARMACOME and its subgraphs were generated using Gephix, an 

open-source software created for graph and network analysis. The graph layout method used 

for visualization is a derivation of the Fruchterman-Reingoldxi algorithm called OpenOrdxii. This 

algorithm that was modified to better handle larger graphs (greater than 1000 nodes) while 

still maintaining the ability to accurately distinguish clusters through a combination of 

simulated annealing iterations and edge cutting.  

Relative node abundance and interrelationship images were created using the graph 

visualization software Cytoscapexiii. Nodes were labeled and colored by type such as protein, 

pathology, or other biological concepts and entities. Nodes whose types comprised less than 

1% of total nodes in the COVID-19 PHARMACOME were not included in the final visualizations 

in order to improve image quality. Clusters were subsequently generated for each node type 

with the size of cluster being directly proportional to the number of nodes belonging to that 

class. Edges between individual nodes are also shown, but the total number of edges between 

any two clusters of node classes was limited to 1000 in order to ensure proper visualization. 

Clusters were arranged manually to optimize visibility of edges. 

 

 

 



   
 

 

Model overlap analysis 

The COVID-19 supergraph consists of 10 constituent graph models that have been unified 

and harmonized using the OpenBEL language. For comparison, node entity values were 

extracted from individual models and, in the case of nodes representing genes, RNA, 

proteins, or any combination thereof, mapped to their UniProt accession numbers. The 

intersections of these sets were compared using Venn diagrams and the resulting 

overlapping values were analyzed. 

 
 
Rational selection of repurposing drugs for combination treatment 

Currently, there are two experiments known to us that use combinations of (repurposing) 

drugs in phenotypic assays: the publication by Bobrowski et al.xiv and the work published by 

Ellinger et al.xv. Initially, we determined to what extent the compounds used by Bobrowski et 

al. are represented in the drug repurposing experiments performed by Ellinger et al. To this 

end, we identified all compounds and their targets from both manuscripts using the ChEMBL 

database, however, in some cases we had to manually select drug targets from other 

sources such as xvi or xvii. These compounds and targets were subsequently mapped to the 

COVID-19 supergraph.  

A complete overview of the compound pairs and their outcomes used in both 

experiments is provided in Supplementary Tables 3 & 4. Supplementary Table 3 contains all 

published combinations from Bobrowski et al. as well as the four combinations described 

here. Drug combinations for which target/pathways could be retrieved from ChEMBL, the 

relative pathway overlap was calculated. For these pairs of drugs, compounds with a higher 

number of targets/pathways are combined into the primary combination compound 

(Compound 1). Detailed information on individual drug activities and path length 



   
 

 

calculations can be found in Supplementary Tables 4-7. It is important to note that for some 

combinations of drugs tested, such as Remdesivir and Anisomycin, there exists a threshold 

effect for which the presence of a second compound does not continuously modulate the 

effect of the first. 

  



   
 

 

 

Supplementary Table 3: Overview of all drug combinations and their outcomes. The 

“overlap_pathways_relative” columns were calculated by dividing that row’s 

“overlap_pathways” value by the corresponding “num_pathways_gsea” value. The color 

gradients go from white to a darker shade where the darker the shade, the closer the value 

is to the maximum of the column. 

Supplementary Table 4: Individual drug activities by cell type. 

Supplementary Table 5: The average shortest path length, number of associated pathways, 

and determined effect on SARS-CoV-2 infection for drug combinations tested. 

Supplementary Table 6: Cytopathic effect (CPE) concentrations for each individual drug 

repurposing candidate. 

Supplementary Table 7: Overview of the shortest path lengths and outcome averages. 

Supplementary Figure 1: Graphical depiction representing the distribution of major classes 

of entities (pathologies, molecular entities such as proteins, drugs) in the COVID-19 

PHARMACOME. 

Supplementary Figure 2: Workflow representation for identifying new combination therapy 

drug candidates through multimodal modelling and path length calculation. a) Specific 

mechanisms (blue lines) affected by infection, referred to as hypervariable (HV) regions, are 

identified in the COVID-19 PHARMACOME and the involved components are marked as blue 

circles. b) Repurposing drug candidate hits (red circles) extracted from screenings are 

mapped to targets found in (a) (red lines). c) The shortest paths (purple lines) between 

known drug combinations are analyzed and the lengths of these paths are calculated. Here, 

shorter lengths are found to correlate with drug combinations that synergize while longer 

path lengths with those that are antagonistic. d) Determined associations between shortest 



   
 

 

path length and combination drug therapy outcome are used to predict new drug 

combinations in the COVID-19 PHARMACOME (orange lines). 

 
 

i https://www.nature.com/articles/nm.4306 
ii https://www.broadinstitute.org/drug-repurposing-hub 
iii https://doi.org/10.1101/2020.05.06.081695 
iv https://doi.org/10.1016/j.cell.2019.05.031 
v https://doi.org/10.1101/742320 
vi https://github.com/vandijklab/HBEC_SARS-CoV-2_scRNA-seq 
vii https://www.nature.com/articles/s41587-020-0602-4 
viii https://doi.org/10.1101/303727 
ix https://doi.org/10.1186/s13059-015-0844-5 
x Bastian M., Heymann S., Jacomy M. (2009). Gephi: an open source software for exploring and manipulating 
networks. International AAAI Conference on Weblogs and Social Media. 
xi Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software: 
Practice and Experience, 21(11). 
xii S. Martin, W. M. Brown, R. Klavans, and K. Boyack, “OpenOrd: An Open-Source Toolbox for Large Graph 
Layout,” SPIE Conference on Visualization and Data Analysis (VDA)., 2011 
xiii Michael E. Smoot, Keiichiro Ono, Johannes Ruscheinski, Peng-Liang Wang, Trey Ideker, Cytoscape 2.8: new 
features for data integration and network visualization, Bioinformatics, Volume 27, Issue 3, 1 February 2011, 
Pages 431–432 
xiv Bobrowski, T., Chen, L., Eastman, R. T., Itkin, Z., Shinn, P., Chen, C., Guo, H., Zheng, W., Michael, S., 
Simeonov, A., Hall, M., Zakharov, A.V., and Muratov, E.N. (2020). Discovery of Synergistic and Antagonistic Drug 
Combinations against SARS-CoV-2 In Vitro. BioRxiv. 
xv Ellinger, B et al. (2020). Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) 
cells using a large scale drug repurposing collection. Preprint. https://doi.org/10.21203/rs.3.rs-23951/v1. 
xvi https://www.drugbank.ca/ 
xvii https://www.probes-drugs.org/home/ 
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