Postpartum corticosterone and fluoxetine shift the
tryptophan-kynurenine pathway in dams

Wansu Qiu1, Kimberly A. Go2, Yvonne Lamers3, Liisa A. M. Galea1,2,4*

1Graduate Program in Neuroscience, 2Department of Psychology, 3Food Nutrition and Health Program, Faculty of Land and Food Systems, and 4Djavad Mowafaghian Centre for Brain Health

University of British Columbia

*Corresponding Author:
2215 Wesbrook Mall
Vancouver, BC, Canada
V6T 1Z3
liisa.galea@ubc.ca
Highlights

- Tryptophan-kynurenine pathway (TKP) is altered by postpartum corticosterone (CORT)
- Postpartum CORT increased neurotoxic metabolites (3-HK, 3-HAA)
- Postpartum fluoxetine (FLX) increased xanthurenic acid concentrations
- Postpartum CORT and FLX together shifted the TKP balance towards neurotoxicity
Abstract

Perinatal depression (PND) affects 15% of mothers. Selective serotonin reuptake inhibitors (SSRIs) are currently the first-line of treatment for PND, but are not always efficacious. Previously, we found significant reductions in plasma tryptophan concentrations and higher hippocampal proinflammatory cytokine, IL-1β levels, due to maternal SSRI treatment. Both inflammation and tryptophan-kynurenine metabolic pathway (TKP) are associated with SSRI efficacy in individuals with major depressive disorder (MDD). TKP is divided into neuroprotective and neurotoxic pathways. Higher metabolite concentrations of the neurotoxic pathway are associated with depression onset and implicated in SSRI efficacy. Metabolites in TKP were investigated in a rodent model of de novo postpartum depression (PPD) given treatment with the SSRI, fluoxetine (FLX). Dams were administered corticosterone (CORT) (40mg/kg, s.c.), and treated with the SSRI, fluoxetine (FLX) (10mg/kg, s.c.), during the postpartum for 22 days after parturition. Plasma TKP metabolite concentrations were quantified on the last day of treatment. Maternal postpartum CORT increased neurotoxic metabolites and co-enzyme/cofactors in dams (3-hydroxykynurenine, 3-hydroxyanthranilic acid, vitamin B2, flavin adenine dinucleotide). The combination of both CORT and FLX shifted the neuroprotective-to-neurotoxic ratio towards neurotoxicity. Postpartum FLX decreased plasma xanthurenic acid concentrations. Together, our data indicate higher neurotoxic TKP expression due to maternal postpartum CORT treatment, similar to clinical presentation of MDD. Moreover, maternal FLX treatment showed limited efficacy to influence TKP metabolites, which may correspond to its limited efficacy to treat depressive-like endophenotypes. Overall suggesting changes in TKP may be used as a biomarker of de novo PPD and antidepressant efficacy and targeting this pathway may serve as a potential therapeutic target.
Keywords: Postpartum depression, antidepressants, fluoxetine, tryptophan-kynurenine pathway
1. Introduction

Perinatal depression (PND) is a heterogeneous disease, in which symptoms and remission vary depending on depression onset timing and depression history (reviewed in Qiu et al., 2020). Early postpartum is a period of high susceptibility for first time psychiatric disease in females but not in males (Munk-Olsen et al., 2006). Postpartum depression (PPD) affects 15% of females with approximately 40% of these cases being individuals experiencing depressive symptoms for the first time (Wisner et al., 2013). Maternal postpartum corticosterone (CORT) is used to model de novo PPD in rodents (reviewed in Qiu et al., 2020).

Inflammation and altered metabolism in the tryptophan-kynurenine pathway (TKP) are associated with major depressive disorder (MDD) and PND (Corwin et al., 2008; Maes et al., 2011; Haapakoski et al., 2015). The immune system and TKP are related as proinflammatory cytokines, such as interferon (IFN)-γ and interleukin (IL)-1β, can increase enzymatic conversion of tryptophan into its downstream metabolite, kynurenine (reviewed by Maes et al., 2011). Higher expression of proinflammatory cytokines such as IL-6, tumor necrosis factor (TNF)-α, IFN-γ, and IL-1β are associated with both MDD and PND (Corwin et al., 2008; Haapakoski et al., 2015). TKP can be divided into either a “neurotoxic” pathway or a “neuroprotective” pathway and higher activation in the neurotoxic branch is seen in MDD and PND (see Figure 1A; reviewed in Maes et al., 2011). Previously, we found reduced cytokine (TNF-α and IFN-γ) expression and elevated concentrations of a TKP enzyme cofactor (vitamin B6) due to postpartum CORT (Qiu et al., 2020a), indicating an altered immune system and TKP in this model of de novo PPD.
Selective serotonin reuptake inhibitors (SSRIs) are the first line treatment for PND although efficacy of SSRIs with PND is equivocal (reviewed in Qiu et al., 2020). Both inflammation and TKP are implicated in antidepressant efficacy both in humans (Syed et al., 2018; Sun et al., 2020) and in rodents (Qiu et al., 2020a). Individuals with MDD who are non-responsive to SSRI treatment show either no change or an elevation of circulating cytokine levels (Syed et al., 2018) and display higher baseline tryptophan metabolism defined by kynurenine to tryptophan ratio (Sun et al., 2020). Previously, limited efficacy of the SSRI, fluoxetine (FLX), was commensurate with increased levels of hippocampal IL-1β and decreased circulating tryptophan concentrations (Qiu et al., 2020a). Thus, tryptophan catabolism via TKP may be disrupted by CORT and could be a potential biomarker of SSRI efficacy, and the present study sought to understand this relationship. Here, using a model of de novo PPD, we investigated the effects of maternal postpartum CORT, to induce depressive-like endophenotypes, and concurrent FLX to understand how these treatments may affect metabolites in the TKP. We hypothesized that maternal postpartum CORT treatment will alter TKP metabolite concentrations and that postpartum FLX will have limited efficacy to inhibit these effects.

2. Methods

Forty adult female Sprague-Dawley rats and six male rats (2.5 months old) were purchased from Charles River (Montreal, QC, Canada). Males were used as breeders, and co-housed with two females until pregnancy (determined via sperm in daily vaginal lavage samples). All pregnant rats were undisturbed until parturition. Thirty-seven females were included in the study. Protocols were in accordance with ethical guidelines set by the Canadian
Council for Animal Care and were approved by the University of British Columbia Animal Care Committee.

All methods are previously described in Qiu et al. (2020a). Briefly, all dams received daily injections postpartum, starting from two days after birth, for 22 days. All injections occurred between 08:00-10:00. Dams received CORT (40mg/kg, s.c.; Sigma-Aldrich, St. Louis, MO, USA) or its vehicle (OIL; sesame oil + 10% EtOH, 1ml/kg, s.c.) and either FLX (10mg/kg, s.c.; Sequoia Research Products, Pangbourne, UK) or its vehicle, dextrose (DXT; 5% dextrose in sterile water, 1ml/kg, s.c.). Dams were randomly assigned to one out of four treatment groups (OIL+DXT, n = 9; OIL+FLX, n = 10; CORT+DXT, n = 9; and CORT+FLX, n = 9).

At least 2 hours after the last injection, all animals were euthanized by rapid decapitation, and trunk blood was collected within three minutes of touching the cage. Plasma was collected in cold EDTA coated tubes and centrifuged 4h later for 10min at 4°C. Data for 5 samples were not collected due to human error.

We quantified kynurenine (KYN), kynurenic acid (KYNA), xanthurenic acid (XA), anthranilic acid (AA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid (3-HAA), riboflavin (vitamin B2) and its cofactor, flavin adenine dinucleotide (FAD), using isotope dilution liquid chromatography coupled with tandem mass spectrometry based on a modified method by Midttun et al. (2005). The intra- and inter-assay CVs for the quantitation of these analytes were all < 7%. A neuroprotective-to-neurotoxic z score ratio was calculated to account for multiple neuroprotective metabolites or neurotoxic metabolites/cofactors: (zKYNA + zAA) / (z3-HK + z3-HAA + zB2). All metabolite and metabolite ratio data were analyzed using two-way general linear model of analysis of covariance (ANCOVA) with CORT (CORT or OIL) and FLX (FLX or DXT) as between-subject factors and estrous cycle stage as covariate, unless
otherwise specified. Effect sizes were reported as η^2_p or Cohen’s d. Post hoc comparisons used Newman-Keuls. *A priori* comparisons were subjected to Bonferroni correction. The covariate of estrous cycle stage did not significantly affect any analyses (all p’s ≥ 0.097). Outliers were removed when two standard deviations away from the mean, and this happened in two analyses (one outlier in FAD and two outliers removed for the neuroprotective-to-neurotoxic ratio).

3. Results

Maternal FLX treatment decreased XA compared to vehicle DXT treatment (main effect of FLX: $F(1, 29) = 6.009, p = 0.020, \eta^2_p = 0.172$; Figure 1B), with no other significant effects (all p’s ≥ 0.296).

Maternal CORT increased AA (main effect of CORT: $F(1, 29) = 44.506, p < 0.001, \eta^2_p = 0.605$), 3-HK ($F(1, 29) = 9.282, p = 0.005, \eta^2_p = 0.242$), and 3-HAA ($F(1, 29) = 33.693, p < 0.001, \eta^2_p = 0.537$) concentrations compared to vehicle-treated animals (Figure 1C-E), with no other significant effects (all p’s ≥ 0.253). Maternal CORT also increased plasma KYNA ($F(1, 29) = 17.731, p < 0.001; \eta^2_p = 0.379$; Figure 1F) with no other significant effects (all p’s ≥ 0.747). CORT+FLX significantly lowered the neuroprotective-to-neurotoxic z score ratio compared to all other treatment groups, indicating a shift towards the neurotoxic pathway (*a priori* all p’s ≤ 0.007; Cohen’s $d = 1.785$ compared to OIL+DXT, Cohen’s $d = 1.372$ compared to OIL+FLX, Cohen’s $d = 1.963$ compared to CORT+DXT; interaction between CORT and FLX, $F(1, 27) = 3.906, p = 0.058, \eta^2_p = 0.126$; main effect of CORT, $F(1, 27) = 4.265, p = 0.049, \eta^2_p = 0.136$; main effect of FLX, $F(1, 27) = 10.055, p = 0.004, \eta^2_p = 0.271$, Figure 1G).

There were no other significant effects on KYN or other metabolite concentrations ($p = 0.410$).
A. **Tryptophan** (TRP) → Serotonin (5-HT)
 * Kynurenine (KYN) → Kynurenic acid (KYNA)
 * Anthranilic acid (AA) → 3-hydroxykynurenine (3-HK) → Xanthurenic acid (XA)
 * 3-hydroxyanthranilic acid (3-HAA) → Quinolinic acid (QUINA)

 Legend
 - Red: Neurotoxic
 - Green: Neuroprotective
 - Purple: Elevated levels associated with neuropsychiatric disease

B. Plasma xanthurenic acid (nM)
 - OIL, CORT
 - DXT, FLX

C. Plasma anthranilic acid (nM)
 - OIL, CORT
 - DXT, FLX

D. Plasma 3-hydroxykynurenine (nM)
 - OIL, CORT
 - DXT, FLX

E. Plasma 3-hydroxyanthranilic acid (nM)
 - OIL, CORT
 - DXT, FLX

F. Plasma kynurenic acid (nM)
 - OIL, CORT
 - DXT, FLX

G. Neuroprotective-to-neurotoxic z-score ratio
Figure 1

Figure 1. Effects of maternal corticosterone (CORT) and fluoxetine (FLX) on plasma tryptophan-kynurenine pathway metabolites.

A. Scheme of the tryptophan-kynurenine pathway (TKP). B. FLX decreased plasma xanthurenic acid concentrations. C.-F. CORT treatment significantly increased plasma anthranilic acid concentrations (C.), plasma 3-hydroxykynurenine concentrations (D.), plasma 3-hydroxyanthranilic acid concentrations (E.), and plasma kynurenic acid concentrations (F.). G. CORT+FLX significantly decreased the neuroprotective-to-neurotoxic z score ratio compared to all other groups. *p < 0.05. Data represented in means + standard error of the mean, overlaid with individual data points, n’s = 7-10 per group.

Vitamin B2 and its cofactor, FAD, are critical for the enzymatic conversion of KYN to the neurotoxic metabolite 3-HK, playing an important role in the neurotoxic pathway of TKP.

Maternal CORT increased plasma vitamin B2 (main effect of CORT: F(1, 29) = 5.070, p = 0.032, $\eta^2_p = 0.149$), with no other significant effects (all p’s ≥ 0.254, Figure 2A). CORT+FLX had significantly higher FAD than all other groups (all p’s ≤ 0.003; Cohen’s d = 1.718 compared to OIL+DXT, Cohen’s d = 2.166 compared to OIL+FLX, Cohen’s d = 2.332 compared to CORT+DXT; interaction between CORT and FLX, F(1, 28) = 6.862, p = 0.014, $\eta^2_p = 0.197$; main effect of CORT, F(1, 28) = 11.969, p = 0.002, $\eta^2_p = 0.299$; main effect of FLX, F(1, 28) = 4.335, p = 0.047, $\eta^2_p = 0.134$, Figure 2B).
Figure 2

Figure 2. Effects of maternal corticosterone (CORT) and fluoxetine (FLX) treatment on tryptophan-kynurenine pathway coenzyme and cofactor. A. CORT significantly increased plasma vitamin B2 concentrations. B. CORT+FLX significantly increased plasma flavin adenine dinucleotide (FAD) concentrations compared to all other groups. *p < 0.05. Data represented in means + standard error of the mean, overlaid with individual data points, n’s = 7-10 per group.

4. Discussion

Maternal postpartum CORT increased two neurotoxic TKP metabolites, 3-HK and 3-HAA, and one coenzyme of the neurotoxic pathway, vitamin B2. However, postpartum CORT also increased two neuroprotective metabolites, KYNA and AA, without significantly affecting KYN concentrations. Further, maternal postpartum CORT with postpartum FLX shifted the neuroprotective-to-neurotoxic balance towards neurotoxicity and increased FAD, a coenzyme to drive conversion to the neurotoxic pathway. Maternal postpartum FLX treatment alone decreased plasma XA concentration. Together, these data indicate maternal postpartum CORT upregulated TKP towards the neurotoxic pathway, and this effect together with FLX increased neurotoxic signalling in the TKP.

Maternal postpartum CORT increased plasma concentrations of neurotoxic metabolites, 3-HK and 3-HAA, which is consistent with findings using inflammation-induced depression models (Parrott et al., 2016; Tao et al., 2020). Inflammation-induced depression, via lipopolysaccharide, results in higher concentrations of 3-HK in the frontal cortex and hippocampus of male mice (Tao et al., 2020). Lipopolysaccharide-induced depressive endophenotypes are dependent on the activation of the neurotoxic pathway of TKP, via 3-HK, at least in male mice (Parrot et al., 2016). Maternal CORT, also increased the neuroprotective metabolite AA, which is consistent with findings showing elevated peripheral concentrations in
both male and female individuals with high risk for MDD and in an animal model of depression (Sakurai et al., 2020). Together these results suggest that maternal postpartum CORT activates the neurotoxic pathway of TKP, which shares similarities to other models of depression as well as in individuals with MDD, and therefore may prove to be an effective therapeutic target in the future.

Maternal postpartum CORT increased depressive-like endophenotypes (Qiu et al., 2020a) and in the present study increased plasma KYNA, a neuroprotective metabolite, which is consistent with another study showing higher gestational KYNA concentrations in women with the onset of postpartum depressive symptoms compared to healthy controls (Teshigawara et al., 2019). It is possible the increases in both neuroprotective and neurotoxic metabolites by maternal postpartum CORT reflects higher TKP activation, which is upregulated by glucocorticoids in both rodents and humans (reviewed in Maes et al., 2011). Regardless, postpartum CORT increased activation of the neurotoxic pathway via elevated concentrations of two neurotoxic metabolites (3-HK and 3-HAA), and the neurotoxic branch coenzyme vitamin B2, and its cofactor FAD. Thus, higher activation of the neurotoxic branch may have contributed towards the CORT-induced depressive-like endophenotypes reported previously in Qiu et al. (2020a) and future studies could use this as therapeutic target and/or increase the efficacy of FLX by targeting this pathway.

Previously, we reported a significant decrease in plasma tryptophan concentration and higher levels of the proinflammatory cytokine, IL-1β, in the maternal hippocampus as well as higher peripheral CXCL1 levels due to FLX treatment in the same animals (Qiu et al., 2020a). Higher levels of IL-1β can also upregulate TKP (reviewed in Maes et al., 2011), so this may have contributed to the current findings. Maternal postpartum FLX decreased plasma XA
concentration, which is consistent with data in individuals with MDD (Colle et al., 2020). XA has not been specifically described as either neuroprotective or neurotoxic, but its downstream effects on the glutamnergic system have been implicated in psychiatric diseases (reviewed Fazio et al., 2018). Moreover, maternal postpartum FLX with CORT increased FAD, a cofactor in the neurotoxic branch, and shifted the balance of the neuroprotective-to-neurotoxic ratio towards the neurotoxic branch. Previously, FLX failed to reverse depressive-like endophenotypes in this model (Qiu et al., 2020a). The present findings coupled with the results of higher IL-1β and reduced TRP concentrations with maternal postpartum FLX (Qiu et al., 2020a) may have contributed towards the limited efficacy of FLX previously reported in this model of de novo PPD.

Conclusion

Overall, maternal postpartum CORT upregulated metabolites in the neurotoxic pathway of the TKP, consistent with the profiles of TKP in MDD. Maternal postpartum CORT also led to higher concentrations of neuroprotective metabolites, KYNA and AA, both of which have been associated with MDD and PPD. This suggests that the association between TKP metabolites and depression may be an important therapeutic target. Maternal postpartum FLX commensurate with maternal CORT increased TKP activation by increasing FAD concentrations and shifting the neuroprotection-to-neurotoxic balance towards the neurotoxic pathway of TKP. These results indicate that higher activation of metabolites of the neurotoxic TKP pathway may be a biomarker of depression and targeting this pathway may lead to novel therapeutic targets for PND and MDD.

Declaration of conflict
Acknowledgements

The authors would like to thank all the wonderful staff members at the Centre for Disease Modelling animal facility at the University of British Columbia for the continuous support and help throughout the project. Financial support for this research was provided by an operating grant from the Canadian Institutes for Health Research (MOP142308) to LAMG. WQ is supported by a 4-year Fellowship granted by the University of British Columbia, Faculty of Medicine, Graduate Program in Neuroscience, and the University of British Columbia Institute of Mental Health Marshalls Scholars Program in Mental Health, Department of Psychiatry.

References

