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Abstract 26 

Chunking mechanisms are central to several cognitive processes and notably to the acquisition 27 

of visuo-motor sequences. Individuals segment sequences into chunks of items to perform 28 

visuo-motor tasks more fluidly, rapidly, and accurately. However, the exact dynamics of 29 

chunking processes in the case of extended practice remain unclear. Using an operant 30 

conditioning device, eighteen Guinea baboons (Papio papio) produced a fixed sequence of nine 31 

movements during 1,000 trials by pointing to a moving target on a touch screen. Response times 32 

analyses revealed a specific chunking pattern of the sequence for each baboon. More 33 

importantly, we found that these patterns evolved during the course of the experiment, with 34 

chunks becoming progressively fewer and longer. We identified two chunk reorganization 35 

mechanisms: the recombination of preexisting chunks and the concatenation of two distinct 36 

chunks into a single one. These results provide new evidence on chunking mechanisms in 37 

sequence learning and challenge current models of associative and statistical learning.  38 

Keywords: chunking, sequence learning, statistical learning, associative learning, non-39 

human primate  40 
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 3 

The Evolution of Chunks in Sequence Learning 41 

A key mechanism allowing our cognitive system to compress information and increase 42 

short term memory capacity is the formation of chunks (Mathy & Feldman, 2012; Miller, 1956). 43 

Chunking is defined as the process of associating and grouping several items together into a 44 

single processing unit (Gobet & al, 2001; Gobet, Lloyd-Kelly and Lane, 2016). In coherence 45 

with the limits encountered by our cognitive system (Cowan, 1988, 2017), the storage capacity 46 

of the chunks themselves seems limited (3 or 4 items per chunk, Allen & Coyne, 1988; Chase 47 

& Simon, 1973; Johnson, 1970). In the field of perceptual-motor learning, chunking has been 48 

considered as the main motor sequence integration mechanism (Diedrichsen & Kornysheva, 49 

2015; Wymbs et al. 2012). 50 

Perceptual-motor sequence learning is commonly described as the process by which a 51 

sequence of movements is acquired and executed with increased speed and accuracy 52 

(Willingham, 1998). Current sequence learning paradigms use a sequential button-press task: 53 

subjects are presented with a series of visual stimuli organized in a sequence and are asked to 54 

press a corresponding response button (e.g., Cohen, Ivry, & Keele, 1990; Nemeth et al., 2010; 55 

Verwey, 2001). A faster and more accurate performance over time reflects learning of the 56 

sequence. Typically, researchers have reported robust effects of sequence’s length on subjects’ 57 

response times (RTs): for short sequences (<4 keypresses), a decrease in the successive RTs 58 

can be observed when the sequence is learned; for longer sequences though, an initial decrease 59 

in RTs for the first 3 to 4 keypresses is followed by a longer RT on the next position. Then, 60 

RTs start decreasing again for the next 3 to 4 keypresses (e.g., Bo & Seidler, 2009; Verwey & 61 

Eikelboom, 2003). Similar results have been observed in non-human subjects (Terrace, 2002; 62 

Scarf et al., 2018). This phenomenon has been interpreted as the long sequence being 63 

spontaneously segmented into shorter motor chunks reflecting the sequence organization in 64 

memory (Sakai et al., 2003). Long temporal gaps between responses are assumed to mark chunk 65 
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boundaries (Abrahamse et al., 2013; Bottary et al., 2016). Yet, few studies have been interested 66 

in the evolution of chunks in the case of extended practice (e.g., Ramkumar et al., 2016; Song 67 

& Cohen, 2014; Wymbs et al., 2012). The present study aims at collecting new evidence on the 68 

evolution of chunking mechanisms in a perceptual-motor sequence learning task.  69 

One of the main issues in most sequence learning studies is the inconsistent transition 70 

probabilities (TPs) between items of the sequence. Indeed, in an experimental set up where only 71 

a few response buttons are available to the subject (e.g., Grafton, Hazeltine and Ivry, 2002; 72 

Verwey, 2001; Willingham, 1999), some stimuli are necessarily presented multiple times 73 

within the same sequence. For instance, in a sequence such as A-B-A-C-D-B-C, A is either 74 

followed by B or C, therefore the probability of B given A is 0.5, whereas D is always followed 75 

by B thus the probability of B given D is 1. This heterogeneity of TPs may constrain the strength 76 

of the connections formed between the successive elements of the sequence and affect the 77 

resulting chunking pattern.  78 

Another characteristic of previous studies is, apart from a few exceptions (e.g., Conway 79 

& Christiansen, 2001), that most sequence learning studies have been conducted with human 80 

participants. However, even if implicit instructions are provided, humans almost systematically 81 

use their inner language and develop strategies to perform the task (Rey et al., 2019). This may 82 

affect both their performance and their chunking processes, and it is hard to tease apart these 83 

verbal and explicit influences from associative and chunking mechanisms.  84 

To avoid these difficulties, we first chose to test non-human primates for neutralizing 85 

the possible effect of language-based strategies. Second, we used sequences composed of items 86 

only occurring once per sequence, i.e., with a transitional probability between elements equal 87 

to 1, using the serial pointing task proposed by Minier et al. (2016). In this task, participating 88 

monkeys had to track and touch target locations in a 3 x 3 matrix of crosses displayed on the 89 

screen. They were exposed to the same sequence of 9 locations that always appeared in the 90 
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same order upon a thousand trials. RTs for each location were recorded, providing us with 91 

detailed information on the temporal dynamics of sequence processing. This extended practice 92 

on a long single repeated sequence allowed us to collect new evidence on the formation and the 93 

evolution of chunks over time. 94 

Method 95 

Participants 96 

Thirteen female and five male Guinea baboons (Papio papio, age range 2.8—23.7 years) 97 

from the CNRS primate facility in Rousset (France), living in a social group of 25 individuals, 98 

were tested in this study. Water was provided ad libitum during the test, and the monkeys 99 

received their normal food ration of fruits every day at 5 PM. For practical reasons, we stopped 100 

the experiment after 18 monkeys completed all scheduled trials. 101 

Materials 102 

Apparatus 103 

This experiment was conducted with a computer-learning device based on the voluntary 104 

participation of baboons (for details, see Fagot & Bonté, 2010). Baboons implanted with a RFID 105 

microchip had free access to 10 automatic operant conditioning learning devices equipped with 106 

touch screens. Each time a monkey entered a test chamber, it was identified by its microchip, 107 

and the system resumed the trial list where the subject left it at its previous visit. The experiment 108 

was controlled by E-prime (Version 2.0, Psychology Software Tools, Pittsburgh, PA, USA).  109 

Task and stimuli 110 

The screen was divided into nine equidistant predetermined locations represented by 111 

white crosses on a black background, virtually labeled as position 1 to 9 (see Figure 1). A trial 112 

began with the presentation of a yellow fixation cross at the bottom of the screen. Once pressed, 113 

the fixation cross disappeared and the nine white crosses were displayed, one of them being 114 

replaced by the target, a red circle. When the target was touched, it was immediately replaced 115 
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 6 

by the cross. The red circle then replaced the next position in the sequence until it was touched, 116 

and a new position was displayed. Reward was provided at the end of a sequence of nine 117 

touches.  118 

 119 

Figure 1 120 

Experimental display and stimuli presentation 121 

 122 

 123 
 124 

To learn the task, baboons initially received random trials that were rewarded after three 125 

touches. Then, the number of touches in a trial was progressively increased up to nine. If 126 

baboons touched an inappropriate location (incorrect trial) or failed to touch the screen within 127 

5,000ms after the red circle’s appearance (aborted trial), a green screen was displayed for 128 

3,000ms as a marker of failure. Aborted trials were not retained and therefore presented again, 129 

while incorrect trials were not. The time elapsed between the appearance of the red circle and 130 

the baboon’s touch on this circle was recorded as the RT. 131 

Design of the sequences  132 

To control the motor difficulty of the transitions to be produced in the sequence, a 133 

random phase of sequence production was first conducted, where thirteen baboons performed 134 

random sequences of six positions for 1,000 trials. Based on these random trials, a baseline 135 

measure for all possible transitions from one location to another was computed by calculating 136 
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mean RTs for each transition (e.g., from position 1 to 9), leading to a 9x9 matrix of mean RTs 137 

calculated over the entire group of baboons (see Appendix A).  138 

Based on these baseline measures, we designed two sequences of nine serial positions 139 

for which each transition T was faster (or equally fast) to produce than the next one (i.e., 140 

T1≤T2≤…≤T8; see Appendix B). This way, a decrease in RT for a given transition can be 141 

interpreted as the anticipation (or learning) of that position from the previous one.  142 

Procedure  143 

Baboons were either presented with Sequence 1 (N=8) or Sequence 2 (N=10) and had 144 

to produce it for 1000 successive trials. RTs for each position of the sequence were recorded 145 

for all the trials.  146 

Results 147 

On average, baboons required 2.9 days to complete the 1,000 trials, with a mean of 148 

339.7 trials per day and a mean accuracy level of 92.5% (SD=6.2%). Incorrect trials were 149 

removed from the dataset (7.8%). A recursive trimming procedure excluded RTs greater or 150 

smaller than 2.5 standard deviations from the subject’s mean for each of the nine possible 151 

positions (24.4%)1. RTs for each of the nine positions and for the 1,000 trials were divided into 152 

10 Blocks of 100 trials. 153 

General sequence learning 154 

Learning of the sequence was estimated on mean RTs by a repeated measures one-way 155 

ANOVA with Block (1-10) as the within factor. The effect of Block was highly significant 156 

(Block 1, M=452.8, SD=45.3; Block 10, M=400.1, SD=56.3), F(1,9)=30.43, p<.001, η2=0.642, 157 

 
1 Inspection of the response times distribution revealed that a majority of responses were produced around 500ms. 
A smaller group of RTs appeared around 1,000 ms and was likely due to situations in which baboon’s response 
was not recorded by the computer, because their hands were dirty. In this situation, they had to touch the screen 
again, and longer RTs were recorded (that are on average twice longer compared to the first responses). This is 
why we have adopted this recursive trimming procedure. After applying this procedure, there was still a mean 
number of 77.9 remaining RTs for each position per participant and per block of 100 trials (the minimum number 
of remaining RTs for one position being 32).  
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indicating that mean RTs decreased throughout the blocks of trials and that monkeys learned 158 

the sequence. 159 

Chunking of the sequence 160 

 To study the chunking pattern of the sequence by monkeys, we adopted the following 161 

reasoning. We considered successive positions A and B to be part of the same chunk as long as 162 

the transition time from one position to the next did not correspond to a significant increase in 163 

RT. Therefore, if RTA<RTB then A and B do not belong to the same chunk, and the AB transition 164 

marks a chunk boundary (Kennerly et al., 2004). This reasoning was applied on each Block and 165 

for each monkey. Statistical significance was assessed through paired-sample t-tests for each 166 

pair of successive positions. Each time the RT of a pair's second position was significantly 167 

higher than the first position, it marked a chunk boundary. Figure 2 illustrates this method on 168 

the performances of one monkey. 169 

  170 
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Figure 2 171 

Evolution of the chunking pattern for one individual (Atmosphere) throughout the task 172 

 173 

Note. Mean RT per position across the 10 blocks of trials for one baboon (Atmosphere) showing the evolution of 174 

the chunking pattern. This individual initially parses the sequence into three chunks of three positions in the first 175 

three blocks of trials. A reorganization starts in Block 4, as Position 4 is integrated into the first chunk. Another 176 

reorganization occurs in Block 8, where the 2nd and 3rd chunks are progressively concatenated (error bars represent 177 

95% confidence intervals).  178 

 179 

Evolution of chunks 180 

With this method, we were able to quantify the number of chunks and their average size 181 

produced on each block by each monkey. For example, the monkey from Figure 2 produced 3 182 

chunks and an average chunk size of 3 in Block 1. In Block 10, the number of chunks was 2 183 

and the average chunk size was 4.5. Figure 3 reports the average number of chunks and chunk 184 

size for all monkeys across the 10 blocks of the experiment. For example, we found that the 185 
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mean chunk size was 2.2 positions (CI=0.31; Min=1; Max=5) in the first block and 3.375 186 

(CI=0.53; Min=1; Max=8) in the last block. Two repeated measures one-way ANOVA were 187 

conducted to test the effect of Block on the mean number of chunks and the average chunk size. 188 

This analysis revealed that the number of chunks significantly decreased across blocks, 189 

F(1,9)=9.421, p<.001, η2=.357, and that the average chunk size significantly increased across 190 

blocks, F(1,9)=4.794, p<.01, η2=.22. 191 

 192 

Figure 3 193 

Evolution of chunks across blocks  194 

 195 

Note. A. Mean number of chunks per block. B. Mean chunk size (i.e. number of elements per chunk) per block 196 

(error bars represent 95%confidence intervals). 197 
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The evolution of these two indicators can be accounted for by two reorganization 198 

mechanisms: the recombination of pre-existing chunks (50.4% of the reorganizations, observed 199 

for 15 monkeys) and the concatenation of two chunks into a single one (49.6% of the 200 

reorganizations, observed for 17 monkeys). An illustration of these reorganizations is provided 201 

in Figure 2: from Block 1 to Block 3, the first six positions of the sequence were parsed into 202 

two equivalent chunks of three positions, indicated by the significant increase in RTs between 203 

Position 3 and 4. Starting Block 4, the chunks are recombined with Position 4 being slowly 204 

integrated to the first chunk as its difference with Position 3 disappears and a significant 205 

increase in RTs is now appearing between Position 4 and 5. The concatenation of two chunks 206 

into a single one is also illustrated in Figure 2: while Chunks 2 and 3 were separated by a 207 

significant increase in RT between Position 6 and Position 7 until Block 8, this difference 208 

disappeared in Block 9, and the two chunks were then grouped into one. Table 1 provides a 209 

detailed description of the chunks appearing in Figure 2. For each block of trials, it counts the 210 

number of chunks, their respective size, and each occurrence of a concatenation or a 211 

recombination. At the group level, Table 2 provides the total number of concatenations and 212 

recombinations obtained for each block and for all monkeys2. A repeated measure ANOVA 213 

with Block and Mechanisms (concatenation vs. recombination) did not reveal any significant 214 

effect (all ps > .05). 215 

  216 

 
2 See Supplementary material for a description of the patterns of responses for each monkey over blocks. The same 
information as the one displayed in Figure 2 and Table 1 for the monkey “Atmosphere” is provided for all monkeys 
from the present experiment (see Figures and Tables S1 to S17). These data clearly show that each monkey 
displays a specific chunking pattern that follows a specific evolution over blocks of trials.  
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Table 1 217 

Summary table of the reorganizations observed throughout the task for one baboon 218 

(Atmophere). 219 

  Chunk size Nb of chunks Concatenation Recombinaison 
  C1  C2  C3    

Block 1  3  3  3 3 - - 
2  3  3  3 3 - - 
3  3  3  3 3 - - 
4  4  2  3 3 - 1 
5  4  2  3 3 - 1 
6  4  2  3 3 - - 
7  4  2  3 3 - - 
8  4  4  1 3 - 1 
9  4  5  - 2 1 - 

10  4  5  - 2 - - 
Total        1 3 

Note. Numbers in columns 2-4 refer respectively to the size of the first (C1), second (C2) and third (C3) chunk (if 220 

any) in the sequence. 221 

 222 
Table 2 223 

Total number of concatenations and recombinations per block. 224 

Block Concatenations Recombinations 
2 11 9 
3 8 7 
4 6 7 
5 6 4 
6 8 5 
7 3 6 
8 1 10 
9 8 3 
10 5 6 

Total 56 57 
 225 

Additional analyses 226 

 Our data show that a chunking pattern emerges and evolves over time for each monkey 227 

(i.e., Figures S1 to S17). The averaged data on Block 1 indicates that a first chunking pattern 228 
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rapidly emerges after a few dozen of trials. However, we checked that monkeys produced the 229 

same ascending pattern of RTs during their first 10 trials on the repeated sequence than the one 230 

we computed from the random baseline trials (see Figure S18). This ensures that our sequences 231 

were correctly designed and that chunking mechanisms are rapidly efficient.  232 

 We also compared the mean response times computed on every trial and averaged over 233 

blocks in the random and repeated sequence conditions. The result indicates that chunking 234 

mechanisms qualitatively and quantitatively influenced the monkey’s behavior by significantly 235 

increasing their global efficacy in this visuo-motor task (see Figure S19).  236 

Discussion 237 

Three main findings were obtained in the present study. First, we found that non-human 238 

primates spontaneously segmented long sequences into short chunks. Second, with extended 239 

practice, chunks became longer and fewer. Third, based on these observations, we assumed this 240 

decrease in the number of chunks and this increase in chunks’ size was due to two types of 241 

reorganizations: the recombination of several preexisting chunks and the concatenation of two 242 

distinct chunks into a single one. 243 

Our first finding is consistent with previous studies on sequence learning in humans as 244 

participants were found to initially segment the sequence into small chunks (e.g., Nissen & 245 

Bullemer, 1987; Verwey, 1996; 2001; 2003, Verwey et al., 2002). Chunks typically contained 246 

2 to 4 items, sometimes 5 (Sakai et al., 2003), which is similar to what we observed in the first 247 

block of the experiment. With extended practice, the mean chunk size could reach up to 8 248 

successive positions. However, these large chunks are very rare in our data and in the literature, 249 

although Kennerly, Sakai and Rushworth (2004) found in humans a mean chunk size of 7.83 250 

items for sequences of 12 items. This difference is likely due to motor constrains that vary 251 

across experimental paradigms and may facilitate the development of longer chunks. This first 252 

result indicates that chunking is a fundamental mechanism of sequence learning in both human 253 
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and non-human primates, and that the cognitive system spontaneously forms strong 254 

associations between repeated co-occurring events (e.g., Perruchet & Vinter, 1998; 2002; Rey 255 

et al., 2019). However, the results also show that there is an initial limit to the number of 256 

associations that can be formed successively.  257 

Our second finding indicates that extended practice allows the baboons to exceed these 258 

limits, as we found that chunks can be reorganized into longer segments. This feature is not 259 

systematic as we observed reorganizations in 17 monkeys out of 18. Ramkumar et al. (2016) 260 

suggested that to limit the cost of computation, learning new sequences of movements starts 261 

with many short chunks. With practice, the execution of short chunks becomes more efficient, 262 

which reduces the computation’s complexity. This increase in efficiency for short chunks would 263 

promote more complex computations leading to the development of longer chunks. However, 264 

the precise neural mechanisms supporting these changes over time are still unclear, as are the 265 

conditions that promote switching from one pattern to another. 266 

Our third main finding is related to the evolution of chunks and the two reorganization 267 

mechanisms that allow chunks to become longer: the concatenation and recombination of 268 

chunks. Abrahamse et al. (2013) define the concatenation mechanism as the process by which 269 

two successive chunks are performed more fluidly and the temporal gap between them 270 

decreases. This description is consistent with our findings but, to our knowledge, there is no 271 

other report of two successive chunks becoming one and the temporal gap between them 272 

disappearing. As for recombinations, they correspond to the emergence of a new segmentation 273 

pattern across chunks. As shown in Table 2, the occurrence of concatenation or recombination 274 

does not seem related to a specific stage of learning. In both cases, one can assume that these 275 

modifications in the chunking pattern is certainly related to the increase in efficiency in the 276 

realization of some chunks (Ramkumar et al., 2026). This would then modify the stability of 277 

the preexisting chunking pattern and favor either the concatenation of two chunks into a longer 278 
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one or local rearrangements leading to recombinations and to more functional chunking 279 

patterns. 280 

Interestingly, current models of chunking only partially account for the reorganizations 281 

we found. Most models, like the Competitive Chunking model (Servan-Schreiber & Anderson, 282 

1990) or the PARSER model (Perruchet & Vinter, 1998) assume that repeated sequences lead 283 

to the formation of chunks that are stored in memory. They also assume that two co-occurring 284 

chunks can lead to a new and larger chunk by concatenating two previously smaller chunks. 285 

Recombination, though, is not a mechanism implemented in any model of chunking. The 286 

present data, therefore, represent a strong challenge for current models of statistical and 287 

associative learning.  288 

To summarize, these data indicate that when non-verbal non-human animals are 289 

repeatedly exposed to a long sequence of 9 elements, associations are formed initially between 290 

a limited number of co-occurring elements (i.e., from 2 to 4 elements). With extended practice, 291 

these patterns of associations can become longer. The reorganization mechanisms supporting 292 

these evolutions are not yet accounted for by any model of associative learning but 293 

understanding the dynamics of these mechanisms represents a strong challenge for the future 294 

generation of computational models of associative and statistical learning.  295 

Context 296 

We continuously learn and encode the statistical regularities appearing in our 297 

environment. Previous empirical and theoretical studies have proposed that chunking and 298 

associative learning mechanisms are good candidates to account for our ability to encode 299 

sequential regularities. We were interested in the present study in determining the dynamics of 300 

these chunking mechanisms when the sequential information was composed of a long, repeated 301 

sequence. This sequence was processed by a non-human primate species that does not have 302 

access to language recoding abilities. Consistent with previous theoretical accounts, we found 303 
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that the long sequence was initially parsed into small chunks. After extensive training, some of 304 

these small chunks were concatenated leading to longer chunks and to a more efficient 305 

processing of the sequence. However, we also found other types of chunk reorganizations, that 306 

we called “recombinations”, that are not predicted by current models of statistical and 307 

associative learning. These results will certainly provide new constraints for elaborating the 308 

next generations of computational models accounting for chunking mechanisms.  309 
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Appendix A 419 

 Mean response times over the entire group of baboons for each of the 72 possible transitions 420 

calculated from the 1000 random trials. 421 

1st position in 
Transition  2nd position in Transition 

  1 2 3 4 5 6 7 8 9 

1  - 519 573 495 482 509 521 497 543 

2  569 - 553 513 474 511 523 491 509 

3  558 519 - 513 472 488 544 493 512 

4  551 517 560 - 464 509 522 482 546 

5  549 504 552 501 - 483 535 479 527 

6  567 515 546 507 484 - 533 483 511 

7  555 504 558 475 463 516 - 484 541 

8  554 512 540 485 448 472 512 - 507 

9  546 512 540 514 460 464 550 485 - 
Note. All transitions are in milliseconds (ms) and correspond to the time elapsed between the 422 

disappearance of the red circle from the 1st position of the Transition and the monkey’s touch on the 2nd position 423 

of the Transition. 424 
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Appendix B 426 

Selected sequences and corresponding mean transition times (based on the baseline 427 

acquisition, see Appendix A) 428 

Sequence Position  Mean transition time (ms) 

 1 2 3 4 5 6 7 8 9  T1 T2 T3 T4 T5 T6 T7 T8 
Seq. 1 
(N=8) 9 5 6 8 2 4 7 1 3  460 483 483 512 513 522 555 573 

Seq. 2 
(N=10) 7 5 6 8 2 4 9 1 3  463 483 483 512 513 522 555 573 

 429 
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