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Abstract

Single mutations can confer resistance to antibiotics. Identifying such mutations can help to develop and
improve drugs. Here, we systematically screen for candidate quinolone resistance-conferring mutations. We
sequenced highly diverse wastewater E. coli and performed a genome-wide association study (GWAS)
correlating over 200,000 mutations against quinolone resistance phenotypes. We uncovered 13 statistically
significant mutations including one located at the active site of the biofilm dispersal genes bdcA and six silent
mutations in the aminoacyl-tRNA synthetase valS. The study also recovered the known mutations in the
topoisomerases gyrA and parC.

In summary, we demonstrate that GWAS effectively and comprehensively identifies resistance mutations
without a priori knowledge of targets and mode of action. The results suggest that bdcA and valS may be
novel resistance genes with biofilm dispersal and translation as novel resistance mechanisms.
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1 Background
In the sixties, an impurity during the synthesis of
the anti-malarial chloroquine led to the discovery of
nalidixic acid [1, 2]. Two years after its introduction
to the market, resistances were observed, but it took
another ten years before the drug’s target and mecha-
nism of action were understood [3]. Subsequently, im-
proved derivatives of nalidixic acid were found, such
as norfloxacin and ciprofloxacin and then levofloxacin.
Today, there are over 20 fluoroquinolones on the mar-
ket.

Generally, fluoroquinolones act by converting their
targets, gyrase (gyrA) and topoisomerase IV (parC),
into toxic enzymes that fragment the bacterial chro-
mosome [4]. With the wide use of quinolones, however,
bacteria developed resistances through several routes
such as increased expression of efflux pumps, which
transport drugs outside the bacterial cell, or horizontal
gene transfer of resistance genes, whose gene products
bind to the quinolone targets [4]. However, the most
direct route to resistance is mutations in the drug tar-
gets gyrA and parC. Specifically, changes in the amino
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acids Ser83 and Asp87 of gyrA and Ser80 of parC con-
fer resistance [4, 5] to quinolones.

The discovery of these mutations was driven by a
deep understanding of the mechanism of action of
quinolones. Already over 50 years ago, Crumplin et
al. suggested that “a comparative study of [...] mu-
tants and otherwise isogenic bacteria should facilitate
identification of the hitherto unknown [...] target” [3],
which was at the time not possible on a genome-wide
scale. This changed with the advent of deep sequencing
technology. Thus, we want to complement the original
hypothesis-driven approach to understand resistance
[3] with a hypothesis-free, high-throughput approach,
in which we systematically evaluate the mutational
landscape of resistant and susceptible bacteria.

Instead of investigating the quinolone targets in
depth for resistance-conferring mutations, we screen
entire bacterial genomes of many isolates and corre-
late them to patterns of the isolates’ susceptibility and
resistance. This approach termed genome-wide associ-
ation study, GWAS, rose with the advent of deep se-
quencing and was initially applied to human genomes
and disease phenotypes [6]. Recently, the success of hu-
man GWAS sparked interest in microbial GWAS [7, 8].
Genome-wide associations in bacteria are challenging,
as clonal reproduction in bacteria leads to population
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stratification and a non-random association of alleles
at different loci (linkage disequilibrium or LD) [8, 9].
E. coli ’s population structure is predominantly

clonal, allowing the delineation of major phylogenetic
groups, the largest being A (40%), B2 (25%), and B1
and D (both 17%) [10]. Therefore, any model of a
genome-wide association study in E. coli should ac-
commodate these groups. Interestingly, the groups also
relate to pathogenicity: Commensal E. coli, as e.g.
found in human intestines, are more likely to belong
to A and B1 and pathogenic to B2 and D.

Generally, E. coli genomes vary in size between 4000
to 5500 genes, of which only half are shared by all E.
coli [11]. These genes, which are common to all E. coli,
define the core-genome. It can be approximated as the
intersection of genes present in a set of genomes. In
contrast to the core-genome, the pan-genome is defined
as the union of genes in a population. The E. coli pan-
genome exceeds 13000 genes and has possibly no limit
due to their ability to absorb genetic material [11].

Parallel to the core and pan-genome, we coin the core
and pan-variome. The former is defined as the intersec-
tion and the latter as the union of all mutations across
all genomes. Mutations correlating with resistance will
- by definition - not be part of the core-variome. Hence,
it is important for a genome-wide association study
that there is a significant gap in size between core and
pan-variome.

A second major challenge besides population strat-
ification is the dependencies of loci (linkage disequi-
librium). The mutations in gyrA and parC correlate
with each other, as they belong to the same resistance
mechanism. However, following terminology from can-
cer biology, all of them are driver mutations, which
cause clonal expansion in contrast to passenger mu-
tations, which do not influence the fitness of a clone
[12].

Driver mutations may impact clonal expansion di-
rectly by changing the amino acid sequence (non-
synonymous mutations) and thus protein structure or
function. As an example, the gyrA and parC muta-
tions are located at the drug’s binding site and there-
fore influence binding. Driver mutations may also act
indirectly as synonymous mutations without changes
to the amino acid sequence. Synonymous mutations
may have an effect on splicing, RNA stability, RNA
folding, translation, or co-translational protein fold-
ing [13]. As an example, Kimchi et al. showed that
a synonymous mutation in the multi-drug resistance
gene MDR1 altered drug and inhibitor interactions.
The authors argue that the reason may be a changed
timing of co-translational folding and insertion into the
membrane [14]. Thus, a genome-wide association study
aiming to uncover novel resistance mechanisms should

consider both non-synonymous and synonymous mu-
tations, which are independent of already known mech-
anisms.

To date, it is not fully understood, how antibiotic
resistance develops. It is ancient and inherent to bac-
teria [15] and can therefore be found in the natural en-
vironment. But with the wide use of antibiotics, major
sources of resistant bacteria are clinics and wastewater
[16]. In particular, the latter plays an important role,
since treatment plants act as melting pots for bacteria
of human, clinical, animal, and environmental origin
[16]. The high genetic diversity of a clinical E. coli
population was substantially exceeded by a wastewa-
ter population [17], which makes wastewater E. coli a
suitable source for a GWAS analysis.

In summary, we aim to show that a bacterial genome-
wide association study can effectively and compre-
hensively identify targets relevant to antibiotic resis-
tance. We aim to recover the known mutations in gyrA
and parC together with novel candidate mutations. To
maximise genomic diversity, we investigate wastewa-
ter E. coli. We employ a computational approach and
implement variant calling on these genomes and then
correlate the identified mutations against resistance
levels of four quinolones covering first to third gen-
eration (nalidixic acid, norfloxacin, ciprofloxacin, and
levofloxacin). We apply stringent filtering and cater for
missing and rare data, population effects, and depen-
dencies among mutations. Building on gyrA and parC
mutations as controls, we expect to characterise the
quantity and quality of the mutational resistance land-
scape. We will answer the question of whether there
are resistance mutations beyond gyrA and parC and
whether they may open new avenues for future drug
discovery.

2 Methods
Sequencing and Phenotyping. Mahfouz et al. col-
lected 1178 E. coli isolates from the inflow and outflow
of the municipal wastewater treatment plant in Dres-
den, Germany. Based on representative resistance phe-
notypes, the authors selected 103 isolates for sequenc-
ing with Illumina MiSeq, 92 of which are available from
NCBI’s assembly database (PRJNA380388 : https:/
/www.ncbi.nlm.nih.gov/assembly/?term=PRJNA38

0388) and the rest by the authors. Phage and virus
sequences were removed [17].

The unbiased sampling and selection of represen-
tative phenotypes were important for the subsequent
GWAS analysis, which requires both resistant and sus-
ceptible isolates. The isolates were phenotyped using
the agar diffusion method measuring the diameters
of inhibition zone for 20 commonly prescribed antibi-
otics, including the four quinolones nalidixic acid, nor-
floxacin, ciprofloxacin, and levofloxacin [17].
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Variant Calling, Quality Control, and Func-
tional Annotation. Reads were mapped onto E.
coli K12 MG1655 with the Burrow-Wheeler Aligner
(BWA) v0.7.12 and sorted with Picard v1.105. Vari-
ants were called using the genomic analysis toolkit
GATK 4.1.1.0 [18] with E. coli K12 MG1655 as ref-
erence. We combined them into a single VCF file and
re-genotyped them. Next, we filtered variants following
standard protocols [19] and settings according to the
GATK 4.1.1.0 website (for SNPs QD < 2.0, QUAL <
30.0, or FS > 60.0 and for INDELs QD < 2.0, QUAL <
30.0, or FS > 200.0). Variants with low genotype qual-
ity (GQ < 20) and variants with > 15% of missing data
were removed. After normalisation with BCFtools 1.7
[20], rare variants with minor allele frequency (MAF)
< 5% were excluded with Pyseer 1.3.0. Finally, vari-
ants were functionally annotated using SnpEff 4.3T
[21].

Genome-Wide Association Study (GWAS).
We performed a GWAS study by Pyseer 1.3.0 [22],
using a generalized linear model for each variant. We
built a phylogenetic tree from the VCF file with VCF-
kit 0.1.6 [23]. Using multidimensional scaling (MDS)
on the distances in the phylogenetic tree, four outlier
isolates were removed. For the remaining 99 isolates,
we drew a scree plot for the eigenvalues of the MDS
model and picked four components, which we used as
covariates for the regression model to control for pop-
ulation structure. Finally, we calculated a Bonferroni-
corrected significance threshold for our GWAS analysis
with pyseer.

Meta-analysis. We visualized GWAS results with
quantile-quantile (QQ) and Manhattan plots using the
R package qqman. ROC Curve and area under the
curve (AUC) were calculated using the matplotlib and
scikit-learn Python packages. We calculated the link-
age disequilibrium (LD) between the loci of significant
variants using PLINK v1.90b6.10 [24]. The R package
LDheatmap [25] was used to visualize LD results. We
applied and visualized MDS on the phylogenetic dis-
tances between the samples using the cmdscale and
scatter3d functions from the stats and plot3d R pack-
ages, respectively. We drew a heatmap with dendro-
gram on the binary matrix of presence/absence of vari-
ants for different samples using the heatmap function
from the R package stats.

3D structures. The 3D Structure of bdcA was re-
trieved from protein databank PDB (4PCV). The
3D structure of valS was retrieved from Swiss-model
(based on PDB structure pdbid 1IVS). The 3d struc-
tures were visualized using PyMOL 2.2.0.

Conservation across other bacterial genomes.
We retrieved the multiple sequence alignment ENOG50
1RQ0S for bdcA across all gammaproteobacteria from
Eggnog 5.0 [26]. Residue 135 in the ungapped bdcA
sequence was shifted to position 207 in the gapped
multiple sequence alignment.

Conservation across other bacterial genomes.
To check the frequency of bdcA G135S in other E. Coli
genomes, we downloaded 1340 E. Coli genomes from
NCBI (https://www.ncbi.nlm.nih.gov/) (accessed on
27th of October 2020) and identified the locus in each
genome by searching for an exact match of the ten
nucleotide long sequence ATTCACGGAG, which fol-
lows after the locus of the bdcA mutation and which
is conserved across all the retrieved genomes.

3 Results
We aimed to identify mutations, which correlate with
quinolone resistance. After extracting raw variants
from 99 wastewater E. coli genomes, we proceeded in
two steps: First, we reduced raw to high-quality and
then high-quality to highly significant variants.

From raw to high-quality variants. From the
genomes, we extracted 457,554 raw variants, which
we subjected to five quality control steps resulting in
206,633 high-quality variants. Rare variants, which ap-
pear in less than 5% of isolates, led to the greatest
reduction of mutations of nearly 50% (Table 1).

The pan- and core variome. For a genome-wide
association study, it is vital that the mutations spread
across the isolates. To characterise the distribution and
diversity of the high-quality mutations, we computed
the core and the pan-variome (see Figure 2). The core-
variome reflects the number of variants shared by a
given number of genomes. In contrast, the pan-variome
consists of the union of all variants, thus reflecting the
total diversity of variants present in all genomes. As
expected, the pan-variome grows fast and the core-
variome tails off fast. For 20 genomes, the pan-variome
consists already of some 256,000 variants, while the
core variome is reduced to some 600 variants. This
means that there are only very few variants that are
shared across many or even all of the genomes. Simi-
larly, the graph for the pan-variome continually grows.
Each added genome contributes new variants until the
pan-variome reaches 413,283 variants (206,633 high-
quality plus 206,650 rare variants) in total. Overall,
the distribution of variants is thus suitable for GWAS.
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From high-quality to highly significant vari-
ants Next, we carried out a GWAS study correlat-
ing the high-quality variants against resistance levels
of the four quinolones investigated (nalidixic acid, nor-
floxacin, ciprofloxacin, and levofloxacin). Two aspects
were important: We wanted to control the population
structure and ensure the independence of the novel
mutations from the known resistance-conferring mu-
tations.

To assess the control of the study over the popu-
lation structure, we plotted p-values expected under
randomness against observed p-values (see QQ plots
in Figure 3). The plots confirm that the correction for
population structure was satisfactory, as a deviation
from the null hypothesis (the identity line) is only ev-
ident at the tail of the plots.

Next, we visualized the results of the GWAS us-
ing Manhattan plots, which reveal that there are
some highly significant variants passing the rigorous
Bonferroni-corrected p-value (the horizontal line). To
confirm the level of significance, we evaluated how well
these variants predict resistance. To this end, we plot-
ted a receiver operating characteristic (ROC) curve
and calculated the area under the curve (AUC) as a
measure of predictive performance. The AUC for most
of the significant variants was above 90% (see Figure 3)
reflecting that the identified variants very accurately
predict resistance.

Summary statistics of the GWAS analysis. In
total, we obtained 13 highly significant variants, three
in gyrA and parC and ten novel candidate variants
in the five genes bdcA, valS, lptG, lptF, and ivy. The
variant in bdcA leads to an amino acid change, while
the remaining nine do not.

Across all four quinolones, the mutations in gyrA
and parC ranked highest thus confirming the validity
of the approach taken (Table 2). As shown in the table,
the frequency and effect sizes of the novel candidate
variants are on a par with the positive controls. This
means that the existence of an effect (p-value) and the
size of the effect (beta) are both given. While all vari-
ants pass the Bonferroni-corrected p-value threshold
(5.21E-07), the positive controls exceed it very sub-
stantially (Table 3).

Novel candidate variants are independent of
controls. To check the independence of the signifi-
cant variants from one another, we measured the link-
age disequilibrium (LD) for the loci of these vari-
ants (see Figure 4). The known quinolone resistance-
conferring variants, gyrA S83L, gyrA D87N, and parC
S80I are in LD. They are located at the drugs’ binding
sites to gyrA and parC and ensure the correct function
of the gene products despite treatment.

The known resistance-conferring variants are not
in LD with the ten novel loci, which suggests that
they confer resistance by a different mechanism from
gyrA and parC. Among the novel loci, there are de-
pendencies. In particular, the non-synonymous vari-
ant in bdcA is in LD with synonymous mutations in
valS. This may mean that these novel variants act
in a shared mechanism, which raises the question of
whether the biological functions of the novel loci can
be linked to antibiotic resistance.

Biological function of bdcA. The bdcA gene
plays a role in biofilm dispersal [27, 28] and gener-
ally, biofilm formation increases antimicrobial resis-
tance [29, 30]. It could be hypothesised that a variant
in this gene disrupts biofilm dispersal and leads to
biofilm formation and resistance. However, while this
may happen in nature, it is unclear whether this effect
is also present in the disk diffusion assay underlying
the present data. This gene is present in nearly all
isolates (85-90% in our data and NCBI data), which
means that is close to being a core gene, but that it is
not essential for survival.

Biological function of valS. The valS gene prod-
uct is an aminoacyl-tRNA synthetase (aaRS), which
charges tRNA encoding valine with the valine amino
acid. The aaRS enzymes are promising targets for an-
timicrobial development [31, 32] as targeting them can
inhibit the translation process, cell growth, and finally
cell viability. Although aaRS enzymes are not known
as direct quinolone targets, there is evidence that
non-synonymous mutations in aaRS enzymes increase
ciprofloxacin resistance by upregulating the expression
of efflux pumps [33]. In our data, we found synony-
mous valS mutations for ciprofloxacin just below the
p-value cut-off. For levofloxacin and norfloxacin, they
were above the cut-off. valS provides a very basic func-
tion and is a core gene present in all isolates.

Biological function of ivy. The gene product of
ivy is a strong inhibitor of lysozyme C. Expression of
ivy protects porous cell-wall E. coli mutants from the
lytic effect of lysozyme, suggesting that it is a response
against the permeabilizing effects of the innate verte-
brate immune system. As such, ivy acts as a virulence
factor for a number of gram-negative bacteria-infecting
vertebrates [34].

Biological function of lptG and lptF. The gene
products of lptG and lptF are part of the ABC trans-
porter complex LptBFG involved in the translocation
of lipopolysaccharide from the inner membrane to the
outer membrane. Thus, there is no direct connection

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2021. ; https://doi.org/10.1101/2021.02.12.430739doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430739
http://creativecommons.org/licenses/by-nd/4.0/


Malekian et al. Page 5 of 13

to antibiotic resistance, however, the link to transport
is in line with other resistance mechanisms such as in-
creased expression of efflux pumps [35].

Structural Analysis of bdcA and valS. To shed
more light on the possible causality of the GWAS can-
didate variants, we explored their protein structures
(Figure 5). The variant Gly135Ser in bdcA is in the
vicinity of the active site residues Ser132 and Tyr146
[27]. Serine is bigger than glycine and it may influ-
ence a loop formed by the residues 136-144 and thus
regulate the active site, which may influence biofilm
dispersal.

In valS, the identified variants are synonymous
and thus have no direct impact on the structure of
the protein. However, for some loci, there were non-
synonymous variants such as e.g. D452E. Therefore,
we wanted to understand, where the valS mutations
are located in the 3D structure. Figure 5 shows the
structure of a model for valS in E. coli, which is gener-
ated by Swiss-model based on a template in Thermus
thermophilus. The model reveals that the valS muta-
tions are on the surface of the protein.

Variant bdcA G135S wrt. other antibiotics,
other E. coli, and other bacterial sequences.
For the non-synonymous variant bdcA G135S, we
wanted to understand whether its role in antibiotic
resistance is limited to quinolones or not. For 16 other
antibiotics, [17] there are variants, which significantly
correlated with resistance (data not shown). For all
antibiotics but tobramycin, the bdcA mutation is not
significant. This suggests, that bdcA G135S may act
independently of fluoroquinolone, which would be con-
sistent with biofilm formation being a general mecha-
nism independent of fluoroquinolone.

Next, we wanted to know whether the prevalence
of bdcA G135S in our data is representative of other
E. coli genomes. In 1340 complete E. coli genomes
available from the NCBI, we could find the bdcA gene
in 1209 genomes and bdcA G135S in 24. Thus, about
2% of genomes carry this mutation, which is slightly
less, but comparable to the 5% present in our data.

BdcA is present in other bacteria. We investigated
gammaproteobacteria, which comprise pseudomon-
adaceae besides enterobacteria. We analysed 152 bdcA
sequences retrieved from Eggnog 5.0 and found ala-
nine most frequently (65%) and glycine less frequently
(24%). Serine appeared in 2% of the species, which
may mean that the resistance mechanism is not lim-
ited to E. coli.

Phylogenetic groups. A key ingredient of the
GWAS model is the population structure. We ap-

plied dimension reduction and hierarchical cluster-
ing to isolates represented as high-dimensional bi-
nary vectors, where each dimension corresponds to one
of the 206,633 mutations. We identified four clusters
(Figure 6), which broadly correspond to phylogenetic
groups A, B1, B2, and D. Thus, our GWAS model
correctly caters for the main E. coli lineages.

4 Discussion and Conclusion
It took over a decade to move from the discovery of
nalidixic acid to the discovery of its target and mech-
anism of action. Here, we have shown that sequencing
and phenotyping data of a small number of genomes
from a single site are sufficient for a GWAS model to
reveal the quinolone targets with a very high statis-
tical significance. Furthermore, the GWAS model re-
vealed ten new mutations, which correlate significantly
with quinolone resistance. A key to the success of the
GWAS model was an unbiased sampling of isolates,
which contained resistant and susceptible isolates.

The most promising mutation is G135S in the biofilm
dispersal gene bdcA, which is present in nearly all
isolates, but which is not essential for E. coli sur-
vival [36]. Mapping the bdcA mutation onto a pro-
tein structure of bdcA revealed its location on the
surface of the protein and close to the active site.
Hence, this suggests an impact on enzymatic activity,
which may influence biofilm dispersion and hence indi-
rectly relate to antibiotic resistance. In fact, Ma et al.
could show that E. coli bdcA controls biofilm disper-
sal in Pseudomonas aeruginosa [37], which were the
most abundant gammaproteobacteria containing bdcA
in our analysis. This indicates that mutations in E.
coli bdcA may act indirectly on antibiotic resistance.
If consequently, bdcA emerges as a novel drug target,
then the next steps in drug development could target
the active site with residues S132 and Y146, which are
in direct proximity to the mutation bdcA G135S. Im-
portantly, bdcA G135S is a novel candidate resistance
mutation as it is not in LD with the known mutations
in gyrA and parC.

We found bdcA G135S in 5% of the analysed
genomes, which appears in line with a prevalence of
2% in 1209 other E. coli genomes obtained from the
NCBI. We also checked the presence of these muta-
tions in other gammaproteobacteria and revealed that
bdcA is present and well conserved, but that the mu-
tation appears specific to E. coli. Furthermore, we
also checked whether bdcA G135S correlates with re-
sistance to non-quinolone antibiotics. This was the
case for tobramycin, an aminoglycoside, but not for
all other examined antibiotics. Isolates with the bdcA
G135S mutation belonged to the phylogenetic group
A, which is less likely to contain pathogenetic isolates.
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Phylogroup A is equally abundant in human faeces
and wastewater [38], which may point to an origin of
the mutation in a human rather than a natural envi-
ronment.

Besides bdcA G135S, we found nine mutations,
which are synonymous, whose mechanism of action is
likely to be indirect. Most interesting are the abun-
dant mutations in the aminoacyl-tRNA synthetase
valS, which has an essential role in protein synthesis
and which is part of the core-genome and is therefore
present in all isolates. Furthermore, it is classified as
an essential gene [36]. It may be a suitable drug tar-
get [39] due to their evolutionary divergence between
prokaryotic and eukaryotic enzymes, high conservation
across different bacterial pathogens, as well as solubil-
ity, stability, and ease of purification. However, since
the mutations in valS were synonymous, they will not
exert a direct structural or functional effect on their
gene product but may act indirectly.

In summary, bdcA G135S and the discovered silent
mutations are statistically significant correlating with
quinolone resistance in wastewater E. coli. They ap-
pear to be mostly specific to E. coli and to quinolones
and independent of known resistance-conferring mu-
tations. Further research is needed to corroborate the
correlation between these mutations and quinolone re-
sistance and to shed light on the molecular mechanism
leading to resistance
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bdcA Mutation(s)

valS Mutation(s)GWAS

Resistance Phenotyping

SequencingE. Coli

Wastewater

Variant Calling

GTGA
TCTA
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Figure 1: Wastewater E. Coli were phenotyped and sequenced. Variants were called and correlated to
quinolone resistance in a GWAS study resulting in novel candidate resistance mutations.

Table 1: Quality control (QC): Reduction of some 457.000 raw variants to 206.633 high-quality variants. Rare variants
(MAF) is the main filter.

Step Change Mutations

1. Variant calling 457,554
2. Hard filters -2% 449,017
3. GQ filter and missingness -15% 382,922
4. Normalisation by allele +8% 413,283
5. Minor allele frequency (MAF) -50% 206,633
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Figure 2: Pan-variome (union of variants) and core-variome (intersection of variants) of 206,633 high-quality
and 206,650 rare variants (413,283 in total). Most variants appear only in a few of the isolates.
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Figure 3: GWAS analysis. Left: QQ plots of observed vs. expected p-values show a few highly significant p-
values. Middle: Manhattan plots of chromosomal position vs. p-value show mutations passing the Bonferroni-
corrected threshold as dots above the red line. Right: Area under the ROC curves show that the significant
mutations predict resistance well (Most AUC > 90%).
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Table 2: Mutations significantly correlating with quinolone resistance. Freq. is the relative frequency among isolates
and Beta the effect size. Effect size is similar for all, p-values differ.

Quinolone Position Allele Gene Effect Freq. Beta SE Call rate P-value AUC

Levofloxacin

3165735 A parC S80I 0.08 -1.56 0.20 100% 2.43E-12 97%
2339162 T gyrA D87N 0.08 -1.56 0.20 100% 2.43E-12 97%
2339173 A gyrA S83L 0.15 -1.20 0.16 99% 4.47E-12 91%
4473651 T bdcA G135S 0.05 -1.58 0.29 90% 1.35E-07 91%
4481639 A valS R733 0.07 -1.15 0.24 100% 4.09E-09 93%
4481393 A valS N815 0.12 -1.11 0.20 100% 6.79E-08 84%
4481216 T valS E874 0.16 -1.61 0.29 100% 7.09E-08 59%
4482482 A valS D452 0.05 -1.58 0.29 100% 1.35E-07 91%
4482443 A valS V465 0.05 -1.58 0.29 100% 1.35E-07 91%
4482440 T ValS L466 0.05 -1.58 0.29 100% 1.35E-07 91%
4486808 A lptF Q197 0.05 -1.58 0.29 100% 1.35E-07 91%
4487635 A lptG V106 0.05 -1.58 0.29 100% 1.35E-07 91%

Norfloxacin

3165735 A parC S80I 0.08 -2.29 0.22 100% 1.10E-18 98%
2339162 T gyrA D87N 0.08 -2.29 0.22 100% 1.10E-18 98%
2339173 A gyrA S83L 0.15 -1.59 0.19 99% 9.25E-14 93%
4473651 T bdcA G135S 0.05 -2.01 0.36 90% 7.56E-08 91%
4481639 A valS R733 0.07 -1.85 0.30 100% 5.24E-09 92%
4481216 T valS E874 0.16 -2.03 0.35 100% 4.36E-08 55%
4481393 A valS N815 0.12 -1.39 0.25 100% 5.40E-08 82%
4482482 A valS D452 0.05 -2.01 0.36 100% 7.56E-08 91%
4482443 A valS V465 0.05 -2.01 0.36 100% 7.56E-08 91%
4482440 T valS L466 0.05 -2.01 0.36 100% 7.56E-08 91%
4486808 A lptF Q197 0.05 -2.01 0.36 100% 7.56E-08 91%
4487635 A lptG V106 0.05 -2.01 0.36 100% 7.56E-08 91%

240711 T ivy T123 0.05 -2.00 0.36 100% 1.04E-07 91%

Ciprofloxacin
3165735 A parC S80I 0.08 -1.90 0.25 100% 7.37E-12 97%
2339162 T gyrA D87N 0.08 -1.90 0.25 100% 7.37E-12 97%
2339173 A gyrA S83L 0.15 -1.22 0.22 99% 7.13E-08 87%

Nalidixic acid 2339173 A gyrA S83L 0.15 -1.57 0.24 99% 1.32E-09 90%

Table 3: Ranking of mutations significantly correlating with quinolone resistance.

Levofloxacin Norfloxacin Ciprofloxacin Nalidixic acid

Position Allele Gene Effect Rank/P-value Rank/P-value Rank/P-value Rank/P-value

3165735 A parC S80I 1 / 2.43E-12 1 / 1.10E-18 1 / 7.37E-12 7 / 1.82E-05
2339162 T gyrA D87N 1 / 2.43E-12 1 / 1.10E-18 1 / 7.37E-12 7 / 1.82E-05
2339173 A gyrA S83L 3 / 4.47E-12 3 / 9.25E-14 3 / 7.13E-08 1 / 1.32E-09
4473651 T bdcA G135S 7 / 1.35E-07 7 / 7.56E-08 10 / 1.00E-05 152 / 6.44E-04
4481639 A valS R733 4 / 4.09E-09 4 / 5.24E-09 4 / 8.50E-07 182 / 8.00E-04
4481393 A valS N815 5 / 6.79E-08 6 / 5.40E-08 6 / 3.90E-06 405 / 2.14E-03
4481216 T valS E874 6 / 7.09E-08 5 / 4.36E-08 8 / 5.75E-06 162 / 6.67E-04
4482482 A valS D452 7 / 1.35E-07 7 / 7.56E-08 10 / 1.00E-05 152 / 6.44E-04
4482443 A valS V465 7 / 1.35E-07 7 / 7.56E-08 10 / 1.00E-05 152 / 6.44E-04
4482440 T valS L466 7 / 1.35E-07 7 / 7.56E-08 10 / 1.00E-05 152 / 6.44E-04
4486808 A lptF Q197 7 / 1.35E-07 7 / 7.56E-08 10 / 1.00E-05 152 / 6.44E-04
4487635 A lptG V106 7 / 1.35E-07 7 / 7.56E-08 10 / 1.00E-05 152 / 6.44E-04

240711 T ivy T123 68 / 4.69E-05 13 / 1.04E-07 9 / 9.07E-06 395 / 2.08E-03
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Figure 4: Linkage disequilibrium. High values (red) indicate a dependence of the loci. As expected, the loci
in gyrA and parC are in linkage disequilibrium. Importantly, they are not in LD with the remaining novel
candidate loci. Interestingly, there is some dependence within the novel loci, in particular, bdcA is in LD
with valS.

a) bdcA b) valS

Figure 5: 3D structures of bdcA and valS. Significant mutations (red) are at the surface and bdcA G135S is
near the active site (green).
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Figure 6: a) Dimension reduction of isolates represented as high-dimensional vectors of all mutations. Four
clusters are found, which reflect the population structure in the GWAS model and which broadly coincide
with phylogroups A, B1, B2, and D. b) Same as a) but hierarchical clustering. Here, the presence of a
mutation is shown by black and its absence by gray.
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