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ABSTRACT 40 

B-cell non-Hodgkin’s lymphoma (B-NHL) encompasses multiple clinically and phenotypically 41 

distinct subtypes of malignancy with unique molecular etiologies. Common subtypes of B-NHL 42 

such as diffuse large B-cell lymphoma (DLBCL) have been comprehensively interrogated at the 43 

genomic level. But rarer subtypes such as mantle cell lymphoma (MCL) remain sparsely 44 

characterized. Furthermore, multiple B-NHL subtypes have thus far not been comprehensively 45 

compared using the same methodology to identify conserved or subtype-specific patterns of 46 

genomic alterations. Here, we employed a large targeted hybrid-capture sequencing approach 47 

encompassing 380 genes to interrogate the genomic landscapes of 685 B-NHL tumors at high 48 

depth; including DLBCL, MCL, follicular lymphoma (FL), and Burkitt lymphoma (BL). We 49 

identified conserved hallmarks of B-NHL that were deregulated in the majority of tumor from 50 

each subtype, including the frequent genetic deregulation of the ubiquitin proteasome system 51 

(UPS). In addition, we identified subtype-specific patterns of genetic alterations, including 52 

clusters of co-occurring mutations and DNA copy number alterations. The cumulative burden of 53 

mutations within a single cluster were more discriminatory of B-NHL subtypes than individual 54 

mutations, implicating likely patterns of genetic cooperation that contribute to disease etiology. 55 

We therefore provide the first cross-sectional analysis of mutations and DNA copy number 56 

alterations across major B-NHL subtypes and a framework of co-occurring genetic alterations 57 

that deregulate genetic hallmarks and likely cooperate in lymphomagenesis. 58 

 59 

 60 

 61 

 62 
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INTRODUCTION 64 

Non-Hodgkin’s lymphomas (NHL) are a heterogeneous group of lymphoid malignancies that 65 

predominantly arise from mature B-cells (B-NHL). Although mature B-cell neoplasms 66 

encompass 38 unique diagnostic subtypes, over 85% of cases fall within only 7 histologies(1, 67 

2). Recent next generation sequencing (NGS) studies have shed light onto the key driver 68 

mutations in many of these B-NHL subtypes; for example, large studies of diffuse large B-cell 69 

lymphoma (DLBCL) have led to proposed genomic subtypes that have unique etiologies(3-5). 70 

However, many less common NHL subtypes such as mantle cell lymphoma (MCL) have not 71 

been as extensively characterized(6, 7). Furthermore, until recently(3, 4) genetic alterations 72 

have been considered in a binary fashion as either driver events, which directly promote 73 

disease genesis or progression, or passenger events, which have little/no impact on disease 74 

biology. In contrast to this principal, most B-NHLs do not result from a single dominant driver but 75 

instead result from the serial acquisition of genetic alterations that cooperate in 76 

lymphomagenesis(8). The genetic context of each mutation likely determines its oncogenic 77 

potential, and groups of mutations should therefore be considered collectively rather than on as 78 

singular events. For example, the ‘C5’ and ‘MCD’ clusters identified in DLBCL by Chapuy et al. 79 

and Schmitz et al., respectively, are characterized by the co-occurrence of CD79B and MYD88 80 

mutations(3, 4). In animal models, the Myd88 L252P mutation (equivalent to human L265P) was 81 

found to promote down-regulation of surface IgM and a phenotype resembling B-cell anergy(9). 82 

However, this effect could be rescued by Cd79b mutation, showing that these co-occurring 83 

mutations cooperate(9). The characterization of other significantly co-occurring genetic 84 

alterations are therefore likely to reveal additional important cooperative relationships. We 85 

approached this challenge by performing genomic profiling of 685 B-NHLs across different 86 

subtypes. Through this cross-sectional analysis we characterized genomic hallmarks of B-NHL 87 

and sets of significantly co-associated events that likely represent subtype-specific cooperating 88 
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genetic alterations. This study therefore provides new insight into how co-occurring clusters of 89 

genetic alterations may contribute to molecularly and phenotypically distinct subtypes of B-NHL. 90 

 91 

METHODS 92 

An overview of our approach is shown in Figure S1. For detailed methods, please refer to 93 

supplementary information. 94 

 95 

Tumor DNA samples 96 

We collected DNA from 685 B-NHL tumors, including 199 follicular lymphoma (FL), 196 mantle 97 

cell lymphoma (MCL), 148 diffuse large B-cell lymphoma (DLBCL), 107 Burkitt’s lymphoma 98 

(BL), 21 high-grade B-cell lymphoma not otherwise specified (HGBL-NOS), and 14 high-grade 99 

B-cell lymphoma with MYC, BCL2 and/or BCL6 rearrangement (DHL) (Table S1). A total of 462 100 

samples were obtained from the University of Nebraska Medical Center, and were prioritized for 101 

inclusion in this study if they had been previously undergone pathology review and been 102 

interrogated by Affymetrix U133 Plus 2.0 gene expression microarrays(10-12) (n=284). An 103 

additional series of 223 FFPE tumors were collected from other centers. Samples were de-104 

identified and accompanied by the diagnosis from the medical records, plus overall survival time 105 

and status when available. Medical record diagnosis was used in all cases except for those with 106 

fluorescence in situ hybridization showing translocations in MYC and BCL2 and/or BCL6, which 107 

were amended to DHL. Sequencing results for a subset of 52 BL tumors were described 108 

previously(13). All MCL samples were either positive for CCND1 translocation by FISH or 109 

positive for CCND1 protein expression by immunohistochemistry, depending on the diagnostic 110 

practices of the contributing institution. 111 
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 112 

Next generation sequencing 113 

A total of 500-1000ng of gDNA was sonicated using a Covaris S2 Ultrasonicator, and libraries 114 

prepared using KAPA Hyper Prep Kits (Roche) with TruSeq Adapters (Bioo Scientific) and a 115 

maximum of 8 cycles of PCR (average of 4 cycles). Libraries were qualified by TapeStation 116 

4200, quantified by Qubit and 10- to 12-plexed for hybrid capture. Each multiplexed library was 117 

enriched using our custom LymphoSeq panel encompassing the full coding sequences of 380 118 

genes that were determined to be somatically mutated in B-cell lymphoma (Table S2, 119 

Supplementary Methods), as well as tiling recurrent translocation breakpoints. Enrichments 120 

were amplified with 4-8 cycles of PCR and sequenced on a single lane of an Illumina HiSeq 121 

4000 with 100PE reads in high-output mode at the Hudson Alpha Institute for Biotechnology or 122 

the MD Anderson Sequencing and Microarray Facility. Variants were called using our previously 123 

validated ensemble approach(13, 14), germline polymorphisms were filtered using dbSNP 124 

annotation and the EXAC dataset containing 60,706 healthy individuals(15), and significantly 125 

mutated genes were defined by MutSig2CV(16). Copy number alterations identified by 126 

CopyWriteR(17), which was validated using 3 FL tumors with matched Affymetrix 250K SNP 127 

array (Figure S2), and significant DNA copy number alterations were determined by 128 

GISTIC2(18). Translocations were called using FACTERA(19), which we previously validated 129 

against MYC translocation status determined by FISH(20). Mutation and CNA data are publicly 130 

viewable through cBioPortal: https://www.cbioportal.org/study/summary?id=mbn_mdacc_2013. 131 

Matched gene expression microarray data are available through the Gene Expression Omnibus, 132 

accession GSE132929. For further details, refer to supplementary methods. 133 

 134 

 135 
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 136 

RESULTS 137 

Identification of significantly mutated genes and structural alterations. 138 

We used a 380 gene custom targeted sequencing approach, LymphoSeq, to interrogate the 139 

genomes of 685 mature B-NHLs, sequencing to an average depth of 578X (Min, 101X; Max, 140 

1785X; Table S1) for a total yield of 1.81 Tbp. Somatic nucleotide variants (SNVs) and small 141 

insertions/deletions (InDels) were identified using an ensemble approach that we have 142 

previously validated(14) (Table S3) and significantly mutated genes were identified using 143 

MutSig2CV (Table S4). Matched germline DNA was available from purified T-cells of 20 tumors 144 

(11 FL and 9 MCL) and sequenced to validate the filtering of germline variants; 0/632 variants 145 

called within these tumors were identified in the matched germline samples, which indicates that 146 

the filtering of germline variants was effective. Genes that were significantly mutated in the full 147 

cohort or in any one of the 4 subtypes with >100 tumors (BL, DLBCL, FL, MCL) were included, 148 

as well as frequently mutated genes that are targets of AID (Table S5, Figure 1). Predictably, 149 

AID-associated mutations were higher in frequency among GC-derived lymphomas (BL, 150 

DLBCL, FL), but also accounted for 7.6% of all coding and non-coding mutations in MCL (Table 151 

S6). The mutational burden calculated from our targeted region significantly correlated with that 152 

from the whole exome (Figure S3A) and was significantly higher in DLBCL and other high-grade 153 

tumors compared to FL and MCL (Figure 1; Figure S3B).  154 

 155 

The hybrid capture probes utilized in our design also targeted recurrent breakpoint regions in 156 

the immunoglobulin heavy- and light-chain loci, and recurrent breakpoints in or near the BCL2, 157 

MYC and BCL6 genes, and translocations were called using a method that detects discordantly 158 

mapped reads(19) (Figures 1 and 2A). Our prior validation of this approach in cases with 159 
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matched fluorescence in situ hybridization (FISH) data for MYC showed that it is 100% specific, 160 

but only ~40% sensitive for translocation detection(13). This limit of sensitivity likely varies for 161 

different genes depending on how well the breakpoints are clustered into hotspots that are 162 

targeted by our capture probes. Nonetheless, we observed a significantly higher fraction of 163 

BCL6 translocations (57% [27/47]) partnered to non-immunoglobulin loci (eg. CIITA, RHOH, 164 

EIF4A2, ST6GAL1; Table S7) compared to BCL2 (1% [1/114]) and MYC (5% [2/38]) 165 

translocations (Figure 2A; Fisher P-value <0.001). These were more frequent in FL (88% 166 

[15/17] of BCL6 translocations) as compared to DLBCL (39% [9/23] of BCL6 translocations), 167 

presumably because the two immunoglobulin loci in FL are either translocated with the BCL2 168 

gene or functioning in immunoglobulin expression(21). We also employed off-target reads to 169 

detect DNA copy number alterations (CNAs) in a manner akin to low-pass whole genome 170 

sequencing, identified significant peaks of copy gain and losses using GISTIC2(18) (Figures 1 171 

and 2A; Figure S4; Table S8-9), and defined the likely targets of these CNAs by integrative 172 

analysis of matched gene expression profiling (GEP) data from 290 tumors (Figure 2B-C, 173 

Figure S4, Table S10-11). This identified known CNA targets, including but not limited to 174 

deletion of TNFAIP3 (6q24.2)(22), ATM (11q22.3)(23), B2M (15q15.5)(24) and PTEN 175 

(10q23.21)(25), and copy gain of REL and BCL11A (2p15), and TCF4 (18q23)(26). In addition, 176 

we identified novel targets such as deletion of IBTK (6q14.1), UBE3A (11q22.1) and FBXO25 177 

(8p23.3), and copy gain of ATF7 (12q13.13), UCHL5 (1q31.3), and KMT2A (11q23.3). 178 

Importantly, the frequency of DNA copy number alterations in the target genes identified by 179 

NGS-based analysis significantly correlated with those derived from single nucleotide 180 

polymorphism (SNP) microarray-based measurements in independent cohorts of BL, DLBCL, 181 

FL and MCL tumors from previously published studies(6, 20, 26-30) (Figure S5), providing 182 

validation for the accuracy of this approach. The CNA peaks, defined as the smallest and most 183 

statistically significant region, included multiple genes that were significantly mutated (Figure 184 

2D) as well as other genes for which we detected mutations at lower frequencies that were not 185 
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significant by MutSig2CV (POU2AF1, TP53BP1, FAS, PTEN). Deletions of ATM, B2M, BIRC3 186 

and TNFRSF14 significantly co-associated with mutations of these genes, suggesting that these 187 

are complementary mechanisms contributing to biallelic inactivation.  188 

 189 

Conserved functional hallmarks of B-NHL. 190 

To understand key hallmarks that are deregulated by genetic alterations, we performed 191 

hypergeometric enrichment analysis of genes targeted by recurrent mutations and DNA copy 192 

number alterations using DAVID(31) (Table S12). This revealed a significant enrichment of 193 

multiple overlapping gene sets that could be summarized into hallmark processes associated 194 

with epigenetics and transcription (Figure 3A), apoptosis and proliferation (Figure 3B), 195 

signaling (Figure 3C), and ubiquitination (Figure 3D). One or more genes within these 196 

hallmarks was altered in the majority (>50%) of tumors from each of the 4 major histologies 197 

included in this study. Genes annotated in epigenetic-associated gene sets were altered in 72%, 198 

70%, 93% and 50% of BL, DLBCL, FL, and MCL, respectively, whereas genes annotated in 199 

transcription-associated gene sets were altered in 94%, 91%, 95% and 88% of BL, DLBCL, FL, 200 

and MCL, respectively. However, there is an extremely high degree of functional overlap 201 

between epigenetics and transcriptional regulation, as well as overlapping gene set annotations 202 

for many genes, leading us to consider these categories collectively as a single hallmark. 203 

Collectively, genes involved in epigenetics and transcription were mutated in 94% of BL, 92% of 204 

DLBCL, 96% of FL and 89% of MCL, and included those that encode proteins that catalyze 205 

post-translational modifications of histones (KMT2D, CREBBP, EZH2, EP300, WHSC1, 206 

ASHL1L and KMT2A), components of the BAF chromatin remodeling complex (ARID1A, 207 

SMARCA4, BCL7A, BCL11A), linker histones (HIST1H1E, HIST1H1C, HIST1H1B), and 208 

transcription factors (BCL6, IRF4, IRF8, TCF3, TCF4, MYC, REL, PAX5, POU2AF2, FOXO1, 209 

CIITA). Genes with a role in signaling included those involved in B-cell receptor (CD79B, ID3, 210 
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TCF3, TCF4, RFTN1), NFĸB (TNFAIP3, CARD11, NFKBIE), NOTCH (NOTCH1, NOTCH2), 211 

JAK/STAT (SOCS1, STAT6), PI3K/mTOR (FOXO1, ATP6V1B2, APT6AP1) and G-protein 212 

(GNA13, GNAI2) signaling. The CD79A and BCL10 genes were also mutated at a lower 213 

frequency that was not significant by MutSig2CV (Figure S6A-B). Among these, the RFTN1 214 

gene (Figure S6C) is a novel recurrently mutated gene that was mutated in 7.4% of DLBCL and 215 

encodes a lipid raft protein that is critical for B-cell receptor signaling(32).  216 

 217 

Deregulation of the ubiquitin proteasome system is important in many cancers(33), but is not a 218 

well-defined hallmark of B-NHL. However, one or more genes with a role in regulating 219 

ubiquitination were genetically altered in 61% of BL, 79% of DLBCL, 61% of FL and 82% of 220 

MCL (Figure 3D). These included previously described genetic alterations such as amplification 221 

of MDM2(34), deletion of TNFAIP3(35) and CUL4A(36) and RPL5(36), and mutations of 222 

KLHL6(37), DTX1(38), UBR5(39), SOCS1(40), and BIRC3(6). In addition, we identified novel 223 

targets such as recurrent deletions of IBTK, a negative regulator of Bruton’s tyrosine kinase 224 

(BTK)(41), and somatic mutation of CDC27 in 14% of MCL, which encodes an E3 ligase for 225 

CCND1(42). Therefore, common hallmark processes are targeted by genetic alterations in the 226 

majority of major B-NHL subtypes, including genes with a role in regulating protein 227 

ubiquitination. 228 

 229 

Subtype-specific patterns of genetic alterations. 230 

We formally tested the over- or under-representation of recurrent genetic alterations in each of 231 

the 4 subtypes with >100 tumors (BL, DLBCL, FL, MCL), compared to all other tumors in the 232 

study (Figure 4; Table S13). We observed some interesting patterns within hallmark 233 

characteristics that differ between subtypes. An illustrative example of this is the alternative 234 
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avenues for BAF complex perturbation between different histologies (Figure 5). Specifically, 235 

mutations of the SMARCA4 (aka. BRG1) component of the ATPase module were significantly 236 

enriched in BL (24%) compared to other subtypes (4%, Q-value<0.001), while mutations of the 237 

BCL7A component of the ATPase module were significantly enriched in FL (11%) compared to 238 

other subtypes (4%, Q-value=0.007). In contrast, mutations of ARID1A were frequent in both BL 239 

(19%) and FL (15%), and DNA copy number gains of BCL11A were frequent in both DLBCL 240 

(28%) and FL (22%). The BAF complex is therefore a target of recurrent genetic alterations, as 241 

previously suggested(43), but the manner in which this complex is perturbed varies between B-242 

NHL subtypes (Figure 5). Similar disease-specific patterns were also observed for signaling 243 

genes; for example, TCF3 and ID3 have important functions in normal germinal center B-244 

cells(44), but mutations of these genes are specifically enriched within BL and are rarely found 245 

in the other GCB-derived malignancies, DLBCL and FL. Similarly, the ATP6AP1 and ATP6V1B2 246 

genes that function in mTOR signaling(45, 46) are specifically mutated in FL, and the DUSP2 247 

gene which inactivates ERK1/2(47) and STAT3(48) is specifically mutated in DLBCL. The 248 

disease-specific patterns of genetic alterations therefore reveal subtle but important differences 249 

in how each subtype of B-NHL perturbs hallmark features. 250 

 251 

Clusters of co-associated genomic alterations in B-NHL subtypes  252 

We next defined how each genetic alteration co-associated with or mutually-excluded other 253 

genetic alterations by pairwise assessments using false-discovery rate (FDR)-corrected Fisher’s 254 

tests (Table S14). A matrix of the transformed FDR Q-values (-logQ) was used for unsupervised 255 

hierarchical clustering to identify clusters of co-associated genetic alterations. Together with 256 

patterns of disease-specificity, unsupervised clustering revealed clear groupings of co-257 

associated events for BL, DLBCL, FL and MCL (Figure 4). We identified a single cluster of 258 

significantly co-associated genetic alterations that was specifically enriched in BL (Cluster 1), 259 
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including mutations and translocations of MYC, and mutations of CCND3, SMARCA4, TCF3 260 

and ID3 that have been previously reported in BL(4). A single cluster was significantly enriched 261 

in MCL (Cluster 7), with a high frequency of ATM mutations and deletions, as well as other DNA 262 

copy number alterations. Other mutations that were not significantly co-associated were also 263 

enriched in MCL (Cluster 6), such as those in WHSC1, NOTCH1, NOTCH2, BCOR and UBR5, 264 

though statistical assessment of co-association may be hampered in this context by the low 265 

frequencies of mutations within these genes. A single cluster was also enriched in FL (Cluster 266 

4), with a high prevalence of KMT2D, BCL2, CREBBP, EZH2 and TNFRSF14 mutations and 267 

BCL2 translocations. The genes within cluster 4 also significantly overlapped with the previously 268 

reported C3, EZB and BCL2 clusters from prior whole exome sequencing studies of DLBCL (3, 269 

49, 50) (Fisher test p-values = 0.0006, 0.0148 and 0.0173, respectively). Two clusters (Clusters 270 

2 and 3) were enriched in DLBCL, with lower frequencies of mutations in a larger number of 271 

genes, in line with the genetic heterogeneity of this disease (3, 4). Cluster 2 includes co-272 

associated genetic alterations that overlapped with the previously described C5, MCD, and 273 

MYD88 clusters (3, 4) (Fisher p-values = 0.0004, 0.0002 and 0.0007, respectively) including 274 

CD79B, MYD88 and TBL1XR1 mutations. Genes within cluster 3 significantly overlapped with 275 

those in the previously described C4 and SOCS1/SGK1 clusters (Fisher p-values = 0.0002 and 276 

0.0074, respectively), including SGK1, TET2, SOCS1 and histone H1 genes. We also identified 277 

a cluster consisting of TP53 mutations and multiple CNAs (Cluster 5) similar to the genetically 278 

complex C2/A53 subtype reported in DLBCL (3, 49), however the overlap of features within 279 

these clusters could not be formally assessed due to differing annotations. The CNAs captured 280 

in this cluster were variably represented across B-NHL subtypes, but were most frequent in 281 

DLBCL. B-NHL subtypes therefore harbor characteristic clusters of co-associated genetic 282 

alterations that likely cooperate in disease etiology. 283 

 284 
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Combinations of genetic alterations define molecular subtypes of B-NHL 285 

Our data have revealed statistical enrichment of individual genetic alterations in subtypes of B-286 

NHL, and pairwise relationships between different genetic alterations that define clusters of 287 

subtype-specific events. To validate and expand upon these observations we leveraged gene 288 

expression microarray data from 284 tumors that underwent pathology review and were profiled 289 

as part of prior studies(10-12). We utilized BL, DHL, HGBL-NOS and DLBCL tumors to perform 290 

classification into molecular-defined BL (mBL) and non-mBL using a Bayesian classifier with 291 

previously described marker genes(51), and subclassified non-mBL into activated B-cell (ABC)-292 

like and germinal center B-cell (GCB)-like subtypes as we have described previously(26) 293 

(Figure S7). We evaluated the frequency of cumulative (≥2) genetic alterations within each 294 

cluster among mBL, ABC-like DLBCL, GCB-like DLBCL, FL and MCL (Figure 6). This showed 295 

that Cluster 1 genetic alterations that were individually enriched in BL are cumulatively acquired 296 

in molecularly-defined BL (mBL), with 87% of tumors having ≥2 of these alterations compared to 297 

only 22% of GCB-like DLBCL. Similarly, Cluster 4 and Cluster 7 alterations were cumulatively in 298 

77% and 72% of molecularly-annotated FL and MCL, respectively. Cluster 4 mutations were 299 

also cumulatively acquired in 51% of GCB-like DLBCL, likely capturing the C3/EZB/BCL2 300 

subtype that has genetic similarities to FL(3, 4, 50). Furthermore, Cluster 2 and Cluster 4 301 

alterations were cumulatively acquired in 58% of ABC-like DLBCL and 60% of GCB-like DLBCL, 302 

respectively, further supporting their respective overlap with the C5/MCD/MYD88 and C4/ST2 303 

subtypes of DLBCL. CNAs within the Cluster 5 were cumulatively acquired at high but variable 304 

frequencies in all of the subtypes, but showed subtype-specific patterns within this cluster such 305 

as higher frequencies of 18q21 and 18q23 gains in ABC-like DLBCL, and higher frequencies of 306 

chromosome 7 gains in GCB-like DLBCL and FL. B-NHL tumors therefore cumulatively acquire 307 

co-associated sets of genetic alterations in a manner that is characteristically associated with 308 

histologically- and molecularly-defined subsets of disease.  309 
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 310 

 311 

 312 

DISCUSSION 313 

By performing cross-sectional genomic profiling of a large cohort of tumors, we have developed 314 

a resource of genes and functional hallmarks that are recurrently targeted by genetic alterations 315 

in B-NHL, and shown that the cumulative acquisition of combinations of genetic alterations are 316 

characteristic of histological and molecular subtypes of disease. Some of the functional 317 

hallmarks that we identified have been previously appreciated, with a few exceptions. For 318 

example, the mutation of genes with roles in epigenetic and transcriptional control of gene 319 

expression are known to be a hallmark of FL(52) and we observed that 96% of FL tumors 320 

possessed mutations in one or more of the genes in this category. However, mutations within 321 

these genes were also observed in the majority of BL, DLBCL and MCL tumors, highlighting the 322 

conservation of this functional hallmark across B-NHL subtypes. There are subtype-specific 323 

patterns of chromatin modifying gene alterations, such as those that we highlighted for BAF 324 

complex mutations, but we suggest that the genetic deregulation of epigenetic and 325 

transcriptional control of gene expression should be considered a general hallmark of B-NHL. In 326 

addition, we suggest that the deregulation of the ubiquitin proteasome system is a hallmark of 327 

B-NHL that requires further investigation. Mutations in genes such as KLHL6(37) and UBR5(39) 328 

have been recently shown to play an important role in B-cell lymphoma, while the roles of other 329 

frequently mutated genes such as DTX1 and SOCS1 have not yet been functionally dissected. 330 

Furthermore, while the nature of AID-driven mutations in genes such as DTX1 and SOCS1 331 

remain to be defined, other genes that are recurrently mutated by AID such as BCL7A (53) and 332 

linker histone genes (54) have been shown to play driving role in lymphomagenesis. Genetic 333 
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deregulation of the ubiquitin proteasome system has the potential to influence the activity or 334 

abundance of a range of substrate proteins, and represents a current gap in our knowledge of 335 

B-NHL etiology. 336 

 337 

The role of cooperative interactions between co-occurring genetic alterations is also an 338 

emerging field that requires further investigation. These interactions are not uncommon in 339 

cancer(55), and have been recently highlighted in DLBCL(3, 4), but our data show that they are 340 

pervasive and characteristic features of the B-NHL genetic landscape. Cooperation between co-341 

associated genetic alterations identified in this study requires formal validation in cell line and/or 342 

animal models. However, there are many instances in which co-occurring genetic alterations 343 

that we observed have already been shown to cooperate in lymphomagenesis. In addition to the 344 

aforementioned example of MYD88 and CD79B mutations, transgenic mouse models of Ezh2 345 

activating mutations or conditional deletion of Crebbp or Kmt2d have shown that these events 346 

are not alone sufficient for lymphomagenesis(56-61). We and others have observed a co-347 

association between the mutation of these genes and BCL2 translocations(14, 62), and the 348 

addition of a Bcl2 transgene to these murine models indeed promoted lymphoma at a 349 

significantly higher rate than that observed with the Bcl2 transgene alone(56-61). These genetic 350 

alterations are therefore significantly more lymphomagenic in combination than they are alone, 351 

which provides proof of principal that a cooperative relationship exists between these co-352 

occurring genetic alterations. Future studies focusing on other co-occurring mutations, such as 353 

MYC translocation and SMARCA4 mutation in BL, CREBBP and KMT2D mutation in FL, TCF4 354 

copy gain and MYD88 mutation in DLBCL, and ATM mutation and RPL5 deletion in MCL, 355 

should therefore be performed to further explore these concepts and define their underlying 356 

functional relationship. We suggest that combinations of genetic alterations are likely to more 357 

accurately recapitulate the biology of B-NHL than single gene models, and may reveal 358 
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contextually different functional roles of genetic alterations depending on the co-occurring 359 

events.  360 

 361 

The caveats of this study include the targeted nature of the LymphoSeq platform which may 362 

preclude consideration of a subset of important genes, the lack of germline DNA for the majority 363 

of samples that may lead to a small number of germ-line variants being falsely assigned as 364 

somatic, and the sample size for any given histological subtype being below that required to 365 

identify genes that are mutated at low frequency. Nonetheless, these data represent the first 366 

broad cross-sectional analysis of multiple histological and molecular subtypes of B-NHL using 367 

the same methodology and provide a framework of functional hallmarks and co-occurring 368 

genetic alterations that are enriched within these subtypes of B-NHL. These functional 369 

hallmarks are genetically perturbed in the majority of B-NHLs, but our cross-sectional approach 370 

enabled us to elucidate subtype-specific preferences for genetic alterations within each 371 

functional hallmark. Furthermore, the subtype-specific clusters of co-occurring genetic 372 

alterations likely represent cooperative interactions that underpin the biology of different 373 

subtypes of B-NHL. These combinations identify opportunities for moving from single-allele to 374 

multi-allele designs in cell line or animal models to better understand the molecular etiology of 375 

B-NHL subtypes. Together, these hallmarks and clusters of co-associated genetic alterations 376 

represent processes that are potentially drugable with targeted therapies (63-66), but that are 377 

likely influenced in a non-binary fashion by different combinations of genetic alterations. 378 

Deciphering the relationships between complex sets of genetic alterations and targetable 379 

dependencies will be a next step towards developing new rationally targeted therapeutic 380 

strategies in B-NHL. 381 

 382 
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 601 

 602 

FIGURE LEGENDS 603 

Figure 1: Recurrently mutated genes in B-NHL subtypes. An oncoplot shows significantly 604 

mutated genes, DNA copy number alterations and translocations (Tx.) across our cohort of 685 605 

B-NHL tumors. Mutation types and frequencies are summarized for each gene/CNA on the 606 

right, and the mutational burden for each case are shown at the top.  607 

 608 

Figure 2: Structural alterations in B-NHL subtypes. A) A circos plot shows translocations of 609 

the MYC (purple), BCL2 (orange) and BCL6 (green) genes, and GISTIC tracks of DNA copy 610 

number gains (red) and losses (blue). B-C) Volcano plots of integrative analysis results showing 611 

the changes in gene expression of genes within peaks of DNA copy number gain (B) or loss (C). 612 

Positive T-test score indicate increased expression in tumors with a given CNA, and vice versa. 613 

Significant genes with the correct directionality are highlighted in the shaded areas. D) 614 

Oncoplots show the overlap of structural alterations and mutations that target the same genes. 615 

P-values are derived from a Fisher’s exact test (ns, not significant). 616 

 617 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2021. ; https://doi.org/10.1101/674259doi: bioRxiv preprint 

https://doi.org/10.1101/674259
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

Figure 3: Functional enrichment of targets of somatic mutations and DNA copy number 618 

alterations. Genes targeted by somatic mutation and/or DNA copy number alteration were 619 

evaluated for enrichment in curated gene sets, and significant gene sets subsequently grouped 620 

according to overlapping gene set membership and functional similarity. In addition to genes 621 

assigned by DAVID (purple), some genes were manually curated into hallmark processes by 622 

literature review of their function (pink). Enriched gene sets could be summarized into 4 major 623 

hallmark processes, including (A) epigenetic and transcriptional control of gene expression, (B) 624 

regulation of apoptosis and proliferation, (C) regulation of signaling pathway activity, and (D) 625 

regulation of protein ubiquitination. The frequency of each genetic alteration is shown for each 626 

of the 4 major histologies included in this study, and the fraction of tumors in each histology 627 

bearing genetic alterations of one or more of the genes is summarized by a pie graph at the 628 

bottom for each hallmark. HMT, histone methyltransferase. HAT, histone acetyltransferase. 629 

DDR, DNA damage response. BCR, B-cell receptor. 630 

 631 

Figure 4: Subtype-specific clusters of co-occurring genetic alterations. The frequency (bar 632 

graph) and over/under-representation (blue to red scale) of mutations and structural alterations 633 

is shown on the left for BL, DLBCL, FL and MCL. The correlation matrix of co-associated 634 

(green) and mutually-exclusive (purple) relationships was clustered to identify 7 groups of co-635 

occurring genetic alterations that were predominantly over-represented in a single B-NHL 636 

subtype. 637 

 638 

Figure 5: Subtype-specific patterns of BAF complex mutations. A) An oncoplot shows the 639 

frequency of genetic alterations in genes that encode components of the BAF complex. B) A 640 

schematic of the BAF complex shows recurrently mutated genes, ARID1A, SMARCA4 and 641 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2021. ; https://doi.org/10.1101/674259doi: bioRxiv preprint 

https://doi.org/10.1101/674259
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

BCL7A, and the BCL11A gene that is targeted by 2p15 DNA copy number gains. C-E) Lollipop 642 

plots show the distribution of mutations in the BAF components ARID1A (C), SMARCA4 (D), 643 

and BCL7A (E). F) A heatplot shows the location of chromosome 2p DNA copy number gains 644 

(red) ordered from highest DNA copy number (top) to lowest (bottom, copy number = 2.2). The 645 

BCL11A gene is in the peak focal copy gain. 646 

 647 

Figure 6: Cumulative acquisition of co-occurring genetic alterations. A) An oncoplot shows 648 

the presence or absence of genetic alterations according to their clusters of co-association in 649 

molecularly-defined Burkitt Lymphoma (mBL), activated B-cell (ABC)-like DLBCL, germinal 650 

center B-cell (GCB)-like DLBCL, FL and MCL with available gene expression microarray data. 651 

Shading shows histological or molecular subtypes with ≥50% of tumors bearing ≥2 genetic 652 

alterations within a given cluster. B) Bar plots shows the frequency of tumors with ≥2 genetic 653 

alterations from each cluster.  654 
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