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Abstract 40 

A continuing challenge in modern medicine is the identification of safer and more 41 

efficacious drugs. Precision therapeutics, which have one molecular target, have been 42 

long promised to be safer and more effective than traditional therapies. This approach 43 

has proven to be challenging for multiple reasons including lack of efficacy, rapidly 44 

acquired drug resistance, and narrow patient eligibility criteria. An alternative approach 45 

is the development of drugs that address the overall disease network by targeting 46 

multiple biological targets (‘polypharmacology’). Rational development of these 47 

molecules will require improved methods for predicting single chemical structures that 48 

target multiple drug targets. To address this need, we developed the Multi-Targeting 49 

Drug DREAM Challenge, in which we challenged participants to predict single chemical 50 

entities that target pro-targets but avoid anti-targets for two unrelated diseases: RET-51 

based tumors and a common form of inherited Tauopathy. Here, we report the results of 52 

this DREAM Challenge and the development of two neural network-based machine 53 

learning approaches that were applied to the challenge of rational polypharmacology. 54 

Together, these platforms provide a potentially useful first step towards developing lead 55 

therapeutic compounds that address disease complexity through rational 56 

polypharmacology. 57 

 58 

Author Summary 59 

Many modern drugs are developed with the goal of modulating a single cellular pathway 60 

or target. However, many drugs are, in fact, ‘dirty;’ they target multiple cellular pathways 61 

or targets. This phenomenon is known as multi-targeting or polypharmacology. While 62 
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some strive to develop ‘cleaner’ therapeutics that eliminate secondary targets, recent 63 

work has shown that multi-targeting therapeutics have key advantages for a variety of 64 

diseases. However, while multi-targeting drugs that affect a precisely-defined profile of 65 

targets may be more effective, it is difficult to computationally predict which molecules 66 

have desirable target profiles. Here, we report the results of a competitive 67 

crowdsourcing project (the Multi-Targeting Drug DREAM Challenge), where we 68 

challenged participants to predict chemicals that have desired target profiles for cancer 69 

and neurodegenerative disease.  70 

 71 

Introduction 72 

Despite important advances in drug development, many diseases remain partly or 73 

wholly resistant to drug-based treatments. In recent decades, the field has attempted to 74 

address this by developing precision therapeutics with the goal of targeting critical 75 

nodes in disease networks. However, this approach has proven to be challenging. Most 76 

targeted therapeutics do not progress past preclinical research or clinical trials due to 77 

poor efficacy or unacceptable toxicity [1,2]. Additional hurdles are encountered even 78 

after clinical approval. For example, initial efficacy against melanoma by the BRAF 79 

inhibitors dabrafenib or vemurafenib as single-agent therapeutics is generally followed 80 

by emergent tumor resistance [3]. Further, based on biomarkers only a small number of 81 

patients with metastatic tumors are eligible for these target-driven precision therapies, 82 

and fewer still show sustained response [4].  83 

An alternative to developing drugs with single targets is the development of 84 

polypharmacology (multi-targeting) drugs. Many clinically approved drugs bind multiple 85 
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targets (http://ruben.ucsd.edu/dnet) [5,6], and in some cases the drug is improved by 86 

these secondary activities. For example, vandetanib, a drug used in RET-dependent 87 

medullary thyroid cancer (MTC), has a broad range of kinase targets that include RET, 88 

VEGFR, etc. [7]; pre-clinical studies suggest that some of these secondary targets can 89 

contribute to drug efficacy (e.g., [8,9]). Developing optimized polypharmacology-based 90 

drugs remains a challenge, however, as there are few roadmaps for predicting 91 

structures that combine beneficial targets (‘pro-targets’) while avoiding liabilities (‘anti-92 

targets’) in a single molecule.  93 

Current approaches to predict multi-target compounds range from ‘physics-based’ 94 

methods that directly predict binding affinities, to ‘omics-based’ approaches utilizing 95 

large datasets such as those including side-effects or gene expression profiles [10–14]. 96 

Notably, recent advances in machine learning architectures have allowed the 97 

development of more effective methods relying on both physics-based and omics-based 98 

approaches [15,16]. For example, a generative tensorial reinforcement learning 99 

(GENTRL) model was used to design a small-molecule with optimal biological activity 100 

for the discoidin domain receptor 1 (DDR1) with desirable pharmacokinetic properties in 101 

just 21 days [17]. However, several limitations remain: current methods often (i) identify 102 

frequent binders or obvious compounds, (ii) fail to discriminate activities among close 103 

analogs, or (iii) identify small molecule inhibitors of ‘promiscuous kinases’ (e.g., DDR1 104 

[18]) that are inherently easier to target. Notably, exploration of the full chemical 105 

space—estimated between 1024 and 1060 structures—still remains a tremendous 106 

challenge: known binders of, e.g., the kinome together address a limited set of chemical 107 

scaffolds [19].  108 
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Rational polypharmacology will require an improved ability to predict chemical 109 

structures that specifically target optimized target sets. To identify better computational 110 

strategies for this problem, we developed the Multi-Targeting Drug DREAM Challenge 111 

[20]. In this challenge, we challenged participants to predict single chemical entities that 112 

target pro-targets but avoid anti-targets for two unrelated diseases: RET-based tumors 113 

and an inherited form of Tauopathy. Exploring each disease, we used a Drosophila 114 

‘dominant genetic modifier screen’ to identify mediators of Drosophila RETM955T-115 

mediated transformation and of Tau-mediated dysfunction [21,22]. The resulting 116 

functional suppressors and enhancers of RET transformation provide a ‘roadmap’ for 117 

the ideal profile of a lead polypharmacological therapeutic.  118 

These data provide therapeutic roadmaps of suppressors (candidate ‘pro-targets’) 119 

and enhancers (candidate ‘anti-targets’) for RET- and TAU-based disease. We publicly 120 

posted this data, challenging the community to develop computational approaches with 121 

improved ability to predict single chemical structures that successfully inhibit pro-targets 122 

while avoiding anti-targets. Here, we report the development of two artificial neural 123 

network-based machine learning approaches that were applied to the challenge of 124 

rational polypharmacology. Together, these platforms provide a potentially useful first 125 

step towards developing lead therapeutic compounds that address disease complexity 126 

through polypharmacology. 127 

 128 

 129 

  130 
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Results 131 

Rational development of drugs that act through polypharmacology will require 132 

identifying (i) pro-targets that, as a group, are predicted to be effective in addressing a 133 

disease network, and (ii) anti-targets that are predicted to act as liabilities either due to 134 

reduced disease efficacy or increased whole body toxicity. Our work in Drosophila [21–135 

27] identified whole body pro-targets and anti-targets for RET-associated cancer and 136 

Tauopathy. To leverage this data, we established the Multi-targeting Drug DREAM 137 

challenge (www.doi.org/10.7303/syn8404040) designed to promote and assess novel 138 

rational approaches to polypharmacology (Figure 1). 139 

 140 

Figure 1 - Multi-targeting drug DREAM Challenge overview. This challenge sought 141 

to identify new algorithms for the identification of multi-targeting drugs that bind disease-142 

relevant targets and avoid disease-specific anti-targets. Participating teams used a 143 

broad array of different datasets and computational approaches to develop these 144 

methods. They were then asked to use these methods to predict small molecules that 145 

would bind to RET-driven cancer targets and anti-targets (Problem 1, P1) as well as 146 

Tauopathy targets and ant-targets (Problem 2, P2). A shortlist of these predicted 147 

molecules were then experimentally validated (Kd determination) as binders or non-148 

binders of P1 and P2 proteins. Finally, the submitted compounds were scored using a 149 

combination of criteria including selectivity, novelty, patentability, and drug-like 150 

properties to identify the top performing teams. 151 

 152 
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Pro-targets and anti-targets 153 

To ensure whole animal relevance, we used data from two Drosophila models. To 154 

model RET-dependent oncogenic transformation, we used data from previous work that 155 

screened Drosophila GMR-RETM955T and ptc>RETM955T cancer models [21,22]. Broad 156 

genetic screening identified multiple key ‘pro-targets’ defined as ‘dominant genetic 157 

suppressors’ of GMR-RETM955T-mediated transformation including Drosophila orthologs 158 

of BRAF, SRC, and S6K. Candidate ‘anti-targets’—genetic loci that, when reduced, 159 

acted as ‘dominant genetic enhancers’ of RETM955T-mediated transformation—include 160 

MKNK1, TTK, ERK8, PDK1, and PAK3. Given its central role, we also included RET as 161 

a pro-target. 162 

To provide a second independent test for compound predictions, we used data 163 

recently generated in a screen of a previously-described inherited Drosophila 164 

Tauopathy model [23–27]. Expressing the human disease isoform TAUR406W 165 

exogenously in a transgenic Drosophila line led to nervous system defects and animal 166 

lethality [23–27]. Genetic screening of most of the Drosophila kinome identified several 167 

dominant genetic suppressors of TAUR406W. For example, reducing the activity of the 168 

Drosophila orthologs of AURKA, PAK1, FGFR1, or STK11 suppressed TAUR406W-169 

mediated fly lethality; these loci represent candidate therapeutic targets. Conversely, 170 

reducing activity of PAK3, MAP3K7, or PIK3CA enhanced TAUR406W-mediated lethality 171 

(unpublished data), indicating they should be avoided by candidate therapeutics.  172 

We used these two sets of data as benchmarks for computation-based compound 173 

predictions: ideal therapeutic leads would inhibit most or all pro-targets while exhibiting 174 

minimum activity against anti-targets.  175 
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Participation and Performance 176 

The challenge had 190 registered participants. Of these registrants, 34 submitted 177 

predictions, either as a part of one of 5 teams or as individuals. 10 prediction sets were 178 

submitted for Problem 1, and 8 prediction sets were submitted for Problem 2. Each 179 

prediction was scored using the rubric described in Table 1 (see Methods for additional 180 

details).  181 

Criteria Points Awarded 
Problem 1 
Binds RET[M918T)] 5 
Binds BRAF, SRC, S6K 1, 3 or 9 if binding 1, 2 or 3 of these targets 
Avoids MKNK1* 3 
Avoids TTK, ERK8, PDK, 
PAK3 1, 2, 3, or 4 if it avoids 1, 2, 3, or 4 of these targets 
Problem 2 
Binds AURKA* 5 
Binds PAK1* 5 
Binds FGFR1, LKB 1 or 3 if binding 1 or 2 of these targets 
Avoids PAK3* 3 
Avoids MAP3K7* 3 
Avoids PIK3CA 1 
Predicted to enter CNS 3 
Both Problems 
Novelty 2 
Ability to Patent 2 
Drug-like molecule 3 
Table 1 - Scoring guidelines for Problems 1 and 2. Starred targets indicate that 182 

binding or avoiding that target was a requirement to receive target-based points. 183 

 184 

Problem 1: Prediction of multi-targeting compounds for RET-driven cancers 185 
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Problem 1 asked participants to predict molecules that bound the RETM955T-186 

associated cancer pro-targets RET[M918T], BRAF, SRC, S6K, and did not bind the 187 

anti-targets MKNK1, TTK, ERK8, PDK1, and PAK3. Of the 10 prediction files submitted, 188 

two of the predictions had the same top-ranked molecule and, therefore, 9 compounds 189 

were selected by the challenge organizers for experimental evaluation. Supplemental 190 

Figure 1A shows that while most of the submitted compounds had no similar molecule 191 

submitted by another team (Tanimoto similarity >0.5), the few similar submitted 192 

molecules were mostly predicted by the same method/team.  193 

Binding evaluation revealed that the majority of predicted compounds (7/9) did not 194 

bind any of the pro-targets at 10 μM or any of the anti-targets at 30 μM (Supplemental 195 

Table 1). Two compounds were observed to significantly bind one or more pro-targets: 196 

ZINC98209221 and ZINC40900273 (Figure 2, Table 2). ZINC98209221 was observed 197 

to significantly bind all 4 pro-targets, while avoiding 2 of the 5 anti-targets. Of the 198 

remaining 3 ‘bound’ anti-targets, the Kd was larger than that of the pro-targets, 199 

indicating that ZINC98209221 displayed a lower binding affinity for the Problem 1 anti-200 

targets as compared to the pro-targets. The other compound in Table 2, 201 

ZINC40900273, only significantly bound one of 4 pro-targets (BRAF) but avoided all 5 202 

anti-targets.  203 
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Table 2 - Compounds with activity against the Problem 1 targets. “Submitter or204 

Team” indicates the team that identified the compound as a solution to Problem 1.205 

“Chemical ID” is the ZINC identifier for the molecule. “Structure” is a two-dimensional206 

representation of the molecule. “InChIKey” is the hashed InChI for the molecule.207 

Strikingly, two teams identified the same molecule as a solution for Problem 1.  208 

 209 

Figure 2 - Kd values of experimentally tested candidates from Problem 1. A210 

heatmap indicating the Kds of all compounds tested in Problem 1. The best binder of the211 

pro-targets (ZINC98209221) was predicted by two different teams.  212 

 213 
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Problem 2: Prediction of multi-targeting compounds for Tauopathy  214 

Problem 2 asked participants to predict compounds that bind the Tauopathy pro-215 

targets AURKA, PAK1, FGFR1, and STK11 and avoid the Tauopathy anti-targets PAK3,216 

MAP3K7, and PIK3CA. Eight compounds were selected for experimental testing.217 

Kinase binding assays indicated that 6 of 8 of the predicted compounds did not bind any218 

of the pro-targets or anti-targets at 30 μM (Supplemental Table 2). Two compounds219 

were observed to bind one or more pro-targets: ZINC3938668 and ZINC538658 (Figure220 

3, Table 3). Supplemental Figure 1B recapitulates the finding from Problem 1 in221 

Problem 2 - most of the submitted compounds had no similar molecule submitted222 

(Tanimoto similarity >0.5) and when similar molecules were submitted, they were223 

generally predicted within a single method and not across different teams.  224 

 225 
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Table 3 - Compounds with activity against the Problem 2 targets. “Submitter or 227 

Team” indicates the team that identified the compound as a solution to Problem 2. 228 

“Chemical ID” is the ZINC identifier for the molecule. “Structure” is a two-dimensional 229 

representation of the molecule. “InChIKey” is the hashed InChI for the molecule. 230 

 231 

Figure 3 - Kd values of experimentally tested candidates from Problem 2. A 232 

heatmap indicating the Kds of all compounds tested in Problem 1. ZINC3938668 and 233 

ZINC538658 bind a subset of the pro-targets, and also both bind 2 of the three anti-234 

targets. 235 

 236 

      The molecule predicted by Zhaoping Xiong, ZINC3938668, bound 3 of 4 pro-targets 237 

at 10 μM: AURKA, PAK1, and STK11. However, this molecule also bound 2 of 3 anti-238 

targets at 10 μM: PAK3 and MAP3K7. Similarly, the predicted molecule from team 239 

DMIS-MTD, ZINC538658, bound 3 of 4 pro-targets at 10 μM: AURKA, FGFR1, and 240 

STK11, and 2 of 3 anti-targets at 10 μM: PAK3 and MAP3K7.  241 

Overall performance and methods summaries 242 

To identify the top participants, we used the scoring algorithm described in Table 1. 243 

This algorithm considered multiple factors including binding of targets and avoiding anti-244 

targets as well as fulfilling novelty, patentability, and drug-likeness criteria to derive a 245 

numerical score. The top teams for both Problem 1 and Problem 2 were identical: 246 

Zhaoping Xiong and DMIS_MTD, with 16 points each for Problem 1, and 11 and 9 247 

points for Problem 2, respectively (Table 4). The remaining teams received points for 248 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

14 

novelty, patentability, and drug-likeness criteria, but the compounds predicted by these 249 

teams failed to meet binding criteria to receive points. Therefore overall top-performers 250 

for the challenge were Zhaoping Xiong and DMIS_MTD, with overall scores of 28 and 251 

25, respectively (Table 4).  252 

 253 

Submitter or Team Problem 1 Problem 2 Interactome Final 
Points 

Zhaoping Xiong 16 11 TRUE 28 
DMIS_MTD 16 9 FALSE 25 
Lasige-BioISI - Multi-target Drug 
Designing 

7 7 TRUE 15 

SuperModels 7 7 FALSE 14 
Huiyuan Chen 7 7 FALSE 14 
Masahiro Mochizuki 7 7 FALSE 14 
David Koes 7 7 FALSE 14 
Gregory Koytiger 7 7 FALSE 14 
UM-BISBII 8  FALSE 8 
Stratified 7  FALSE 7 
Table 4 - Challenge scoreboard. “Submitter or Team” indicates which team was 254 

scored. The “Problem 1” and “Problem 2” scores indicate each team’s performance in 255 

the two problems as scored using the criteria described in Table 1. “Interactome” 256 

indicates whether the team participated in a text-mining exercise to facilitate team 257 

interaction for bonus points. “Final Points” indicates the final score for each team.  258 
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Across the 10 participating teams a variety of approaches were employed to arrive 259 

at a set of predicted compounds for Problems 1 and 2 (Table 5 and Supplemental 260 

Methods). The majority of these methods utilized multiple steps including (i) combining 261 

structure- and ligand-based approaches, (ii) applying one or more machine 262 

learning/classification algorithms, (iii) use of other computational approaches such as 263 

filtering, ligand docking, or creation and application of confidence scoring metrics to 264 

identify compounds for the two problems, or (iv) manual selection of the top candidates. 265 

Importantly, some teams used fully automated methods, while others used approaches 266 

that required several manual curation steps. While the majority of teams utilized one or 267 

more machine learning approaches, the two top-performing teams specifically relied on 268 

neural network-based approaches to identify the best compounds for Problem 1 and 2 269 

(Table 2 & 3). We therefore examined these two approaches more closely to identify 270 

key similarities and differences. 271 

Team Computational Approach Used 
Manual Selection of 
Top Candidates Method Data Description 

David Koes neural network yes PDB 

Team Stratified ensemble gradient boosting yes pIC50 

DMIS-MTD neural network yes Cmap scores 

UM-BISBII dataset filtering  SEA-TC algorithm 

Lasige-BioISI - Multi-target 
Drug Designing 

random forest, support vector 
machine yes ChEMBL 

Gregory Koytiger neural network  ChEMBL, SwissProt 

SuperModels random forest, logistic regression yes 
ChEMBL, Klaeger et al, 
Eidogen, ExCAPE-DB 

Zhaoping Xiong neural network yes 
Merget and Fulle et al, 
Uniprot 

Masahiro Mochizuki random forest, logistic regression  
unspecified kinase inhibition 
assay dataset 

Huiyuan Chen similarity calculations  Drugbank 
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Table 5 - Methods summary table. “Computational Approach Used” describes the 272 

methods that were mentioned in each team’s writeup (see Supplemental Methods). 273 

“Manual Selection of Top Candidates” indicates whether a team described using a 274 

manual curation step to produce their final set of predicted compounds. “Method Data 275 

Description” highlights the data sources and data types used by each team.  276 

 277 

Top performing teams 278 

The two teams that were most effective at predicting binding of pro-targets and 279 

avoidance of anti-targets both used artificial neural network approaches. Method 1 280 

(Zhaoping Xiong) used features derived from the protein and small molecules. Method 2 281 

(Team DMIS_MTD) relied on transcriptional responses in combination with chemical 282 

features of the drug, with a post processing step that included docking. 283 

Method 1 used a graph convolutional neural network deep learning approach 284 

[28,29] to predict candidate bioactive compounds (Figure 4). Ligand-based models are 285 

constrained when testing is done with just a few bioactive compounds. To build a more 286 

generalizable and useful model, this approach incorporated key features of each target 287 

kinase by converting the amino acid sequence into a ‘word embedding’ vector, then 288 

trained together with graph convolutional neural fingerprints. In developing this method, 289 

different combinations were used of extended connectivity fingerprints (ECFP4) of 290 

compounds with known bioactivity data, neural fingerprints, and protein embeddings. 291 

Testing on a 10% internal hold-out test set demonstrated that the combination of neural 292 

fingerprints and protein embeddings performed the best, with an RMSE of 0.414 293 

(Supplemental Table 3). 294 
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 295 

Figure 4 - A schematic summarizing Zhaoping Xiong’s method. The molecule is 296 

embedded with graph neural fingerprints and the target proteins are represented as 297 

sequences and pretrained with a language model (doc2vec) model. These two 298 

embeddings are fused together to classify the binding affinity as inactive, weak, or 299 

potent. 300 

 301 

The Method 1 researcher also made the observation that the majority of -log10 IC50 302 

(pIC50) training data was centered around a pIC50 of 5, making prediction of more 303 

extreme compound-target pIC50 values more challenging. To address this, the method 304 

was developed as a classification problem in which the bioactivity of training data was 305 

classified as “inactive” (pIC50 < 5), “weak” (5 <= pIC50 < 6) or “potent” (pIC50>=6). A 306 

classification model trained on these data was then used to predict compound classes 307 

for the targets/anti-targets posed by the Challenge. Finally, the top predictions were 308 

manually selected based on predicted classes for the query targets and anti-targets. 309 

Overall, this model performed best in the Challenge (Supplemental Figure 3). 310 

Team DMIS-MTD based Method 2 on ReSimNet [30], a Siamese neural network 311 

model that receives the structural information of two drugs and predicts their 312 

transcriptional response similarity. ReSimNet was trained on the Connectivity Map 313 

(CMap) dataset [31], which provides CMap scores of around 260,000 drug pairs from 314 

2,400 unique drugs. The CMap score of a pair of drugs is computed based on the 315 

similarity of the observed drug-induced gene expression profiles of the two drugs. 316 
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Trained on these CMap scores of observed drug pairs, ReSimNet predicts the CMap 317 

scores of any drug pair that includes novel compounds. 318 

Before utilizing ReSimNet to identify novel drug candidates, Team DMIS-MTD first 319 

identified several prototype drugs with kinase inhibition profiles that satisfied most of the 320 

Challenge’s pro-target and anti-target conditions. They used the kinase inhibition 321 

profiles from the KInase Experiment Omnibus (KIEO) database (http://kieo.tanlab.org), 322 

which was constructed from experimental data on kinase inhibitors. The data was 323 

curated from more than 600 published articles (Figure 5A). ReSimNet, trained on the 324 

CMap dataset (Figure 5B), was used to predict the transcriptional response similarity 325 

between a prototype drug and a novel compound from ZINC15 [32] (Figure 5C). Finally, 326 

the top-ranking ZINC15 compounds were aggregated and filtered by Lipinski's rule, a 327 

patent search through PubChem, and a protein-ligand docking algorithm (Figure 5D). 328 

 329 

Figure 5 - A schematic summarizing DMIS-MTD’s method. The method was based on 330 

ReSimNet [30], a Siamese neural network model that predicts their transcriptional 331 

response similarity of two compounds. (A) Several prototype drugs whose kinase 332 

inhibition profiles satisfy most of the pro-target and anti-target conditions of the 333 

challenge problem were identified using the KInase Experiment Omnibus (KIEO) 334 

database. (B-C) ReSimNet, trained on the CMap dataset , was used to predict the 335 

transcriptional response similarity between a prototype drug and a novel compound 336 

from ZINC15. (D) Finally, the top-ranking ZINC15 compounds are aggregated and 337 
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filtered for compounds that fulfill Lipinski's rules, a patent search through PubChem, and 338 

a protein-ligand docking algorithm. 339 

 340 

Translation of hits to in vivo model systems 341 

After identifying the best-binders in the competitive phase of the Challenge, we 342 

assessed the in vivo translatability of the in silico predicted binders from Problem 1 that 343 

were also found to bind the P1 targets in vitro (Table 2, Figure 2A). We obtained and 344 

tested the compounds for their ability to rescue viability of transgenic flies that 345 

expressed the oncogenic form of Drosophila RET in multiple tissues (ptc>RETM955T) as 346 

previously described [22,33]. 347 

Control transgenic ptc>RETM955T (RET2B) flies fail to eclose to adulthood due to 348 

expression of the transgene (0% adult viability; Supplemental Figure 4, Supplemental 349 

Table 4). Feeding ptc>RETM955T flies with food containing AD80 or APS6-45 (50 µM)—350 

experimental multi-targeting kinase inhibitors that reduce ptc>RETM955T lethality 351 

[22,33]—significantly increased survival to 27% and 22% mean eclosure, respectively 352 

(Supplemental Figure 4, Supplemental Table 4). Feeding with ZINC98209221 or 353 

ZINC40900273 (1, 10, or 50 µM final food concentrations) rescued to 1-1.5% of 354 

animals, respectively (Supplemental Figure 4, Supplemental Table 4), a number that 355 

failed to rise to statistical significance. 356 

Ensemble modeling 357 

As a proof-of-concept to identify candidates for future study,  we devised a 358 

“wisdom of the crowds” approach to identify consensus Problem 1 predictions of the 359 
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top-performing models by identifying the nexus of chemical space predicted by these 360 

methods. Specifically, we obtained a larger list of top predictions from the two top-361 

performing teams using the same method and then determined the pairwise Tanimoto 362 

similarity (Supplemental Figure 2A) between these two sets. Using this data, we 363 

performed network analysis (Supplemental Figure 2B), which allowed us to identify 364 

subclusters of structurally similar predicted molecules within the full set of top predicted 365 

molecules. We further profiled these molecules using computationally generated 366 

absorption, distribution, metabolism and excretion (ADME) metrics (Supplemental Table 367 

5) to facilitate future prioritization of these molecules for medicinal chemistry and in vivo 368 

screening.  369 

  370 
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Discussion 371 

One approach to overcoming the limitations of precision medicine approaches in 372 

drug development is to develop new drugs with a goal of multi-targeting drugs that 373 

target multiple nodes in a disease network. Developing these drugs is a challenge, as 374 

both desired targets as well as toxic targets must be considered in the design process. 375 

One possible framework for identifying these drugs involves the use of predictive 376 

computational modeling strategies to perform virtual screening and identify compounds 377 

with a desirable target profile. Here, we described our efforts to identify better 378 

computational approaches for this pharmacologic problem.  379 

To provide a disease context to this challenge, we used a set of previously identified 380 

pro-targets and anti-targets to design two challenge problems. Problem 1 asked teams 381 

to predict molecules that bound the RETM955T-associated cancer targets RET[M918T], 382 

BRAF, SRC, S6K, and avoided binding to MKNK1, TTK, ERK8, PDK1, and PAK3. 383 

Problem 2 asked participants to predict compounds that bound the Tauopathy pro-384 

targets, AURKA, PAK1, FGFR1, and STK11 and did not bind PAK3, MAP3K7, and 385 

PIK3CA. The teams collectively identified 3 compounds for Problem 1 and 2 386 

compounds for Problem 2 that were observed to have any binding potency to the pro-387 

targets. Furthermore, the same set of teams in both problems were successful, 388 

indicating that their methods were consistently best-performing. Both of the top-389 

performing teams used neural networks based learning approaches. However, there 390 

were other teams that also employed a neural network based approach but did not 391 

successfully identify any binding compounds, suggesting that the specific approach may 392 

be critical for success. Other approaches (solely manual curation, random forest, 393 
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logistic regression) were unsuccessful in identifying binders, suggesting that these 394 

methods may not be well-poised to perform well in this type of problem. 395 

Another key finding was that most of the submitted methods, including the top-396 

performing methods, required a manual curation/selection step to select the top 397 

performing compounds (Table 5). The decisions and criteria that are used in manual 398 

selection can be difficult to define or reproduce using a decision tree or other algorithm. 399 

A clear direction for future studies is to better define the nature and rationale for these 400 

manual curation steps and devise strategies to automate these steps. The benefits of 401 

such future work would likely be two-fold: it would increase the reproducibility of these 402 

methods, and it could yield ensemble methods that are more successful in identifying 403 

optimal compounds for a given set of targets and anti-targets. 404 

The predominant limitation of this challenge was a relatively small participant pool, 405 

which likely resulted in constrained space of methodology. Remarkably, the top-406 

performing methods predicted the identical compound (ZINC98209221) as the best 407 

candidate for solving Problem 1, which is surprising given the size of the ZINC15 408 

compound library. Furthermore, previous DREAM Challenges have consistently 409 

demonstrated that a variety of methodologic approaches can perform well in many 410 

different applications; therefore, it may be the case that methodologic approaches 411 

beyond neural networks may indeed be applicable to the problems defined in this 412 

challenge, but that the implementation may need to be altered to be successful.  413 

The other key limitation of this study was the difficulty in translating computationally 414 

predicted best binders to activity in an in vivo system. We tested the top prediction from 415 

Problem 1 in the Drosophila RETM955 model system of RET-driven cancer but did not 416 
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observe bioactivity. There are multiple possible explanations for this, such as the 417 

standard ADME challenges faced in drug development, as well as the differences 418 

between the fly and human targets and networks [22,34]. To ameliorate this, 419 

improvements could include increasing the scale of experimentally tested compounds to 420 

identify a larger number of best binders, performing more stringent computational 421 

filtering to eliminate compounds with poorer predicted bioavailability characteristics, and 422 

performing standard medicinal chemistry and structure-activity relationship studies to 423 

identify analogues with better in vivo performance.  424 

In the Results, we described a proof-of-concept approach to use these methods to 425 

identify molecular candidates for future experimental validation. By leveraging a 426 

“wisdom of the crowds” approach, we identified consensus Problem 1 predictions of the 427 

top-performing models by identifying the nexus of chemical space predicted by these 428 

methods. We subsequently evaluated these molecules using computationally ADME 429 

metrics to facilitate future prioritization of these molecules for medicinal chemistry and in 430 

vivo screening. With this in mind, employing a tandem approach where that leverages 431 

ensembled computational models to identify a general region of chemical space with an 432 

appropriate polypharmacological profile, followed by more traditional drug optimization 433 

approaches, may be a worthwhile future avenue to accelerate the development of multi-434 

targeting drugs.   435 
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Materials and Methods 436 

Challenge infrastructure 437 

Multi-targeting Drug DREAM Challenge participants were required to submit a 438 

prediction file following a pre-formatted YAML template that included each team’s top 5 439 

compound predictions for each of the two problems (RETM955T1- and TAUR406W-mediated 440 

phenotypes) (Figure 1). Each prediction included a compound name, vendor name and 441 

ID, a methods description, a rationale explaining why the approach was innovative, how 442 

the approach is generalizable, and why top predicted compounds are chemically novel. 443 

Participants were restricted to compounds that were available through a vendor listed 444 

on ZINC15 or other vendors for no more than $250 per mg. The full set of predictions 445 

and methods descriptions provided by the Multi-targeting Drug DREAM Challenge 446 

community is available as Supplementary Methods.  447 

In vitro testing 448 

Compounds were purchased and delivered to a contract research organization for 449 

experimental testing of binding to the target and anti-target kinases defined for 450 

Problems 1 (Figure 2) and 2 (Figure 3). Binding was evaluated using the DiscoverX 451 

KinomeScan profiling service. In brief, this method evaluated the ability of the predicted 452 

compounds to compete with a bead-immobilized ligand for the active sites of DNA-453 

tagged kinases from Problem 1 and Problem 2. Kinases bound to the immobilized 454 

ligand were exposed to a broad range of concentrations of the prediction compounds 455 

(11 doses, 3-fold serial dilutions starting at 30 μM of compound). At each dose, the 456 

amount of drug bound to kinase was measured by eluting the non-bead-bound DNA-457 
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tagged kinase and performing quantification by quantitative polymerase chain reaction 458 

(qPCR). 459 

Scoring Algorithm 460 

Submissions were assessed using a point-based approach (Table 1). Points were 461 

awarded for meeting multiple criteria, in which “binding” of a pro-target was a positive hit 462 

at 10 μM and “non-binding” of an anti-target was defined as a negative result at 30 μM 463 

(Supplemental Tables 1,2).  464 

For problem 1, each of the compounds submitted were awarded points for binding 465 

RET[M918T], BRAF, SRC, and/or S6K. Compounds were also awarded points for 466 

avoiding MKNK1, TTK, ERK8, PDK1, and/or PAK3. For problem 2: E, each of the 467 

compounds submitted were awarded points for binding AURKA, FGFR1, LKB1, and 468 

PAK1 and avoiding the anti-targets PAK3, MAP3K7 (TAK1), and PIK3CA. In addition, 469 

points were awarded for predictions for meeting other criteria including: novelty 470 

(ECFP6-based Tanimoto coefficient <0.4 against all other ChEMBL compounds known 471 

to be active against these targets), ability to patent (<2 hits in SciFinder database), and 472 

drug-like features (adheres to ¾ of Lipinski’s rule of 5). In addition, for Problem 2, 473 

predictions predicted to enter the central nervous system (polar surface area <75) were 474 

awarded additional points. 475 

 476 

Chemical similarity calculations 477 

Chemical similarity calculations and visualizations were performed in the R 478 

programming language using rcdk, fingerprint, pheatmap and visNetwork packages. 479 
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SMILES strings for each structure were provided by each team, and then converted to a 480 

binary fingerprint using the “standard” method provided by the fingerprint package (a 481 

1024-bit "path based, hashed fingerprint”). These fingerprints were then used to 482 

generate pairwise similarity matrices using the fingerprint::fp.sim.matrix with the method 483 

parameter set to ‘tanimoto’. Full R notebooks describing these analyses can be found at 484 

https://github.com/Sage-Bionetworks-Challenges/Multi-Target-Challenge.  485 

 486 

Ensemble method 487 

Ensemble predictions were performed by generating lists of top predictions for each 488 

top-performing team and assessing structural similarity as described above. We then 489 

used the SwissADME [35] webapp to calculate the number of Lipinski violations, Ghose 490 

violations, Veber violations, Egan violations, Muegge violations, PAINS alerts, Brenk 491 

alerts, and Lead-likeness violations (Supplemental Table 5). For each compound and 492 

we assigned a score of 1 for each value without a violation or alert, or a score of 0 493 

otherwise. We then summed these values to create a composite score where a larger 494 

score indicates fewer applicable violations/alerts to prioritize compounds for in vivo 495 

screening. 496 

 497 

In vivo validation 498 

Female UAS-RETM955T virgins were mated to ptc-GAL4 males to generate ptc>RETM955T 499 

progeny. Progeny were grown at 25°C and compounds were tested by feeding larvae at 500 

three doses: 10 µM, 5 µM, and 1 µM final food concentration. DMSO alone served as a 501 
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negative control and the experimental compounds AD80 and APS6-45 [22,33] served 502 

as positive controls. Using survival to adulthood (eclosure), each condition was done in 503 

quadruplicate, with 41-110 animals tested for each drug concentration.  504 

 505 

Code availability 506 

Zhaoping Xiong’s top-performing method is available in a Github repository: 507 

https://github.com/xiongzhp/FusedEmbedding. Instructions for running the method can 508 

be found here: 509 

https://github.com/xiongzhp/FusedEmbedding/blob/master/REPRODUCING.md.  510 

Team DMIS-MTD’s top-performing method is available at: 511 

https://github.com/dmis-lab/ReSimNet 512 

https://www.synapse.org/#!Synapse:syn20545440 513 

Instructions for running this method can be found at: 514 

 https://github.com/dmis-lab/ReSimNet/blob/master/README.md.  515 

A detailed description of the implementation and results of these two methods as well 516 

as all other submitted methods can be found in the Supplemental Methods. Post 517 

challenge analysis notebooks can be retrieved from: 518 

     https://github.com/Sage-Bionetworks-Challenges/Multi-Target-Challenge.  519 

 520 

Acknowledgements 521 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

28 

This work was supported by U54OD020353 (ORIP) to RC. RA was partially supported 522 

by the NIH NIGMS R35GM131881 grant. The members of the Multi-targeting Drug 523 

DREAM Challenge Community in addition to the article byline include: Joerg Kurt 524 

Wegner, Janssen Pharmaceuticals; Huub Henkelsma, Gerard JP van Westen, Leiden 525 

Academic Center for Drug Research; Brandon Bongers, Leiden University; Lindsey 526 

Burggraaff; Leiden University, Jesper Van Engelen; Leiden University, Xuhan Liu, 527 

Leiden University; Xuhan Liu; Marina Gorostiola Gonzalez; Marvin Steijaert; Hugo 528 

Gutiérrez de Teran, Uppsala University; Holger Hoos; Anthe Janssen; Andre Falcao, 529 

University of Lisbon; Samina Kausar, University of Lisbon; Miguel Rocha, Centre 530 

Biological Engineering; Delora Baptista; Jorge Miguel Lourenço Ferreira, University of 531 

Minho; Jinhyuk Lee; Hwisang Jeon; Miyoung Ko; Donghyeon Park, Korea University; 532 

Gregory Koytiger, Immuneering Corporation; Team Stratified (4 anonymous members); 533 

Masahiro Mochizuki, DeNA Co., Ltd.; David Koes, University of Pittsburgh; Huiyuan 534 

Chen; Xengie Doan, Sage Bionetworks; Nasim Sanati, Sage Bionetworks  535 

 536 

Contributions 537 

RJA, JG, XG, NS, MJ, AT, HAC, RA, AS, ZX, HJ, MZ, AS, and RC wrote and edited the 538 

manuscript. JG, XG, NS, KD, MJ, KJ, DP, JL, HJ, MK, ACT, AT, HAC, RA, AS, and RC 539 

designed and implemented or competed in the competitive phase of the challenge. RJA, 540 

XG, KD, RA, CH, TK, AS, and RC designed and implemented post-challenge 541 

experiments and analyses. JG, KD, AS, RC were responsible for procuring funding for 542 

this study and supervising the work.  543 

 544 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

29 

Conflict of interest statement 545 

Avner Schlessinger is co-founder of AIchemy, LLC.  546 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

30 

References 547 

1.  Barton P, Riley RJ. A new paradigm for navigating compound property related drug 548 
attrition. Drug Discovery Today. 2016. pp. 72–81. doi:10.1016/j.drudis.2015.09.010 549 

2.  Empfield JR, Clark MP. Reducing Drug Attrition. Springer; 2014. 550 

3.  Sullivan RJ, Flaherty KT. Resistance to BRAF-targeted therapy in melanoma. Eur J 551 
Cancer. 2013;49: 1297–1304. 552 

4.  Marquart J, Chen EY, Prasad V. Estimation of the Percentage of US Patients With 553 
Cancer Who Benefit From Genome-Driven Oncology. JAMA Oncol. 2018;4: 1093–554 
1098. 555 

5.  Allaway RJ, La Rosa S, Guinney J, Gosline SJC. Probing the chemical–biological 556 
relationship space with the Drug Target Explorer. Journal of Cheminformatics. 557 
2018. doi:10.1186/s13321-018-0297-4 558 

6.  Shi D, Khan F, Abagyan R. Extended Multitarget Pharmacology of Anticancer 559 
Drugs. J Chem Inf Model. 2019;59: 3006–3017. 560 

7.  Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. 561 
Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29: 562 
1046–1051. 563 

8.  Vidal M, Wells S, Ryan A, Cagan R. ZD6474 suppresses oncogenic RET isoforms 564 
in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and 565 
papillary thyroid carcinoma. Cancer Res. 2005;65: 3538–3541. 566 

9.  Vitagliano D, De Falco V, Tamburrino A, Coluzzi S, Troncone G, Chiappetta G, et 567 
al. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant 568 
medullary thyroid carcinoma cells. Endocr Relat Cancer. 2011;18: 1–11. 569 

10.  Szalai B, Subramanian V, Holland CH, Alföldi R, Puskás LG, Saez-Rodriguez J. 570 
Signatures of cell death and proliferation in perturbation transcriptomics data-from 571 
confounding factor to effective prediction. Nucleic Acids Res. 2019;47: 10010–572 
10026. 573 

11.  Cichonska A, Ravikumar B, Allaway RJ, Park S, Wan F, Isayev O, et al. 574 
Crowdsourced mapping of unexplored target space of kinase inhibitors. bioRxiv. 575 
2020. p. 2019.12.31.891812. doi:10.1101/2019.12.31.891812 576 

12.  Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison Study of 577 
Computational Prediction Tools for Drug-Target Binding Affinities. Front Chem. 578 
2019;7: 782. 579 

13.  Pabon NA, Xia Y, Estabrooks SK, Ye Z, Herbrand AK, Süß E, et al. Predicting 580 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

31 

protein targets for drug-like compounds using transcriptomics. PLoS Comput Biol. 581 
2018;14: e1006651. 582 

14.  Douglass EF, Allaway RJ, Szalai B, Wang W, Tian T, Fernández-Torras A, et al. A 583 
Community Challenge for Pancancer Drug Mechanism of Action Inference from 584 
Perturbational Profile Data. bioRxiv. 2020. p. 2020.12.21.423514. 585 
doi:10.1101/2020.12.21.423514 586 

15.  Lim H, Xie L. Omics Data Integration and Analysis for Systems Pharmacology. 587 
Methods Mol Biol. 2019;1939: 199–214. 588 

16.  Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA Jr, 589 
et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 590 
2020;19: 353–364. 591 

17.  Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, Aladinskiy VA, Aladinskaya 592 
AV, et al. Deep learning enables rapid identification of potent DDR1 kinase 593 
inhibitors. Nat Biotechnol. 2019;37: 1038–1040. 594 

18.  Hanson SM, Georghiou G, Thakur MK, Miller WT, Rest JS, Chodera JD, et al. 595 
What Makes a Kinase Promiscuous for Inhibitors? Cell Chem Biol. 2019;26: 390–596 
399.e5. 597 

19.  Rahman R, Ung PM-U, Schlessinger A. KinaMetrix: a web resource to investigate 598 
kinase conformations and inhibitor space. Nucleic Acids Res. 2019;47: D361–599 
D366. 600 

20.  Schlessinger A, Abagyan R, Carlson HA, Dang KK, Guinney J, Cagan RL. Multi-601 
targeting Drug Community Challenge. Cell Chem Biol. 2017;24: 1434–1435. 602 

21.  Read RD, Goodfellow PJ, Mardis ER, Novak N, Armstrong JR, Cagan RL. A 603 
Drosophila model of multiple endocrine neoplasia type 2. Genetics. 2005;171: 604 
1057–1081. 605 

22.  Sonoshita M, Scopton AP, Ung PMU, Murray MA, Silber L, Maldonado AY, et al. A 606 
whole-animal platform to advance a clinical kinase inhibitor into new disease space. 607 
Nat Chem Biol. 2018. doi:10.1038/nchembio.2556 608 

23.  Beharry C, Alaniz ME, Alonso ADC. Expression of Alzheimer-like pathological 609 
human tau induces a behavioral motor and olfactory learning deficit in Drosophila 610 
melanogaster. J Alzheimers Dis. 2013;37: 539–550. 611 

24.  Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, et al. 612 
Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in 613 
Drosophila. Hum Mol Genet. 2007;16: 555–566. 614 

25.  Grammenoudi S, Anezaki M, Kosmidis S, Skoulakis EMC. Modelling cell and 615 
isoform type specificity of tauopathies in Drosophila. SEB Exp Biol Ser. 2008;60: 616 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

32 

39–56. 617 

26.  Pfleger CM, Wang J, Friedman L, Vittorino R, Conley LM, Ho L, et al. Grape-seed 618 
polyphenolic extract improves the eye phenotype in a Drosophila model of 619 
tauopathy. Int J Alzheimers Dis. 2010;2010. doi:10.4061/2010/576357 620 

27.  Williams DW, Tyrer M, Shepherd D. Tau and tau reporters disrupt central 621 
projections of sensory neurons in Drosophila. J Comp Neurol. 2000;428: 630–640. 622 

28.  Li X, Li Z, Wu X, Xiong Z, Yang T, Fu Z, et al. Deep Learning Enhancing Kinome-623 
Wide Polypharmacology Profiling: Model Construction and Experiment Validation. J 624 
Med Chem. 2019. doi:10.1021/acs.jmedchem.9b00855 625 

29.  Xiong Z, Wang D, Liu X, Zhong F, Wan X, Li X, et al. Pushing the Boundaries of 626 
Molecular Representation for Drug Discovery with the Graph Attention Mechanism. 627 
J Med Chem. 2019. doi:10.1021/acs.jmedchem.9b00959 628 

30.  Jeon M, Park D, Lee J, Jeon H, Ko M, Kim S, et al. ReSimNet: drug response 629 
similarity prediction using Siamese neural networks. Bioinformatics. 2019;35: 630 
5249–5256. 631 

31.  Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next 632 
Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 633 
2017;171: 1437–1452.e17. 634 

32.  Sterling T, Irwin JJ. ZINC 15--Ligand Discovery for Everyone. J Chem Inf Model. 635 
2015;55: 2324–2337. 636 

33.  Dar AC, Das TK, Shokat KM, Cagan RL. Chemical genetic discovery of targets and 637 
anti-targets for cancer polypharmacology. Nature. 2012;486: 80–84. 638 

34.  Ung PMU, Sonoshita M, Scopton AP, Dar AC, Cagan RL, Schlessinger A. 639 
Integrated computational and Drosophila cancer model platform captures 640 
previously unappreciated chemicals perturbing a kinase network. PLoS Comput 641 
Biol. 2019;15: e1006878. 642 

35.  Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate 643 
pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small 644 
molecules. Sci Rep. 2017;7: 42717. 645 

 646 

  647 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

33 

Supplemental Figure Legends 648 

Supplemental Figure 1 - Chemical similarity comparison of all submitted Problem 1 649 

and Problem 2 solutions.  650 

Supplemental Figure 2 - (A) Similarity heatmap of top predicted compounds for 651 

Problem 1 provided by the top-performing teams. Columns correspond to predictions 652 

from Zhaoping Xiong, while rows correspond to predictions from DMIS-MTD. The 653 

majority of compounds are relatively dissimilar from one another. (B) The similarity 654 

matrix was converted into a network, where nodes are individual predicted compounds 655 

and edges encode compound-compound Tanimoto similarities. Edge thickness 656 

represents similarity (thicker edges = greater similarity). Edges representing similarity 657 

below 0.4 were filtered out, and cluster subnetworks were identified (with each color 658 

representing an individual subnetwork). 659 

Supplemental Figure 3 - Recapitulating Zhaoping Xiong’s three-class classification 660 

model used for screening. (A) The distribution of pIC50; (B) The distribution of classes; 661 

(C) The accuracy of the model across train, valid and test sets 662 

Supplemental Figure 4 - RET2B and control D. melanogaster were treated with DMSO 663 

(negative control), two candidate RET-targeting compounds identified using top 664 

performing methods (ZINC4020 and ZINC9820) and two positive control multi-targeting 665 

RET inhibitors previously demonstrated to rescue the RET2B model (AD80 [33], APS6-666 

45 [22]). Bars show the mean percent survival and error bars show the standard 667 

deviation of four replicates per condition. A Mann-Whitney test was used to assess the 668 

significance of changes to percent survival in the varying conditions. The RET2B Adult 669 

panel (bottom right) indicates that higher concentrations of AD80 or APS6-45 670 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.430538doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.430538
http://creativecommons.org/licenses/by/4.0/


 

 

34 

significantly (p<0.05) rescue the RET2B model, while the two candidate ZINC molecules 671 

have a minimal and non statistically-significant effect on percent survival to adulthood.  672 

 673 

  674 
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Supplemental Table Legends 675 

Supplemental Table 1 - Problem 1 Results. “Submitter or Team” indicates which team 676 

was scored. “Chemical ID” indicates the ZINC or MolPort identifier for each predicted 677 

compound. “InChIKey” indicates the InChiKey for each predicted compound. Columns 678 

4-12 indicate the experimentally-validated binding constant (Kd, nanomolar) for the pro-679 

target or anti-target listed in the column header (>30000 nM indicates it was above the 680 

detection limit for the assay). Columns 13-16 indicate the status of the compound with 681 

respect to the challenge rules for novelty, drug-like properties, and likelihood to pass the 682 

CNS as defined in the challenge scoring rules.  The final column indicates the number 683 

of points the prediction was given based on the defined scoring criteria.  684 

Supplemental Table 2 - Problem 2 Results. “Submitter or Team” indicates which team 685 

was scored. “Chemical ID” indicates the ZINC or MolPort identifier for each predicted 686 

compound. “InChIKey” indicates the InChiKey for each predicted compound. Columns 687 

4-10 indicate the experimentally-validated binding constant (Kd, nanomolar) for the pro-688 

target or anti-target listed in the column header (>30000 nM indicates it was above the 689 

detection limit for the assay). Columns 11-14 indicate the status of the compound with 690 

respect to the challenge rules for novelty, drug-like properties, and likelihood to pass the 691 

CNS as defined in the challenge scoring rules. The final column indicates the number of 692 

points the prediction was given based on the defined scoring criteria.  693 

Supplemental Table 3 - Zhaoping Xiong’s method predictive performance on 694 

regression models. A summary of the performance of various model architectures 695 

tested by top performer Zhaoping Xiong using root-mean-square-error calculated using 696 

true pIC50 values. 697 
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Supplemental Table 4 - Top Problem 1 predictions fail to rescue the RET2B fly 698 

model. The RET2B model was treated with two positive controls expected to rescue 699 

this model (AD80 and APS6-45), a vehicle control (DMSO), and two test compounds 700 

(ZINC4090, ZINC9820) predicted by the challenge results to rescue the RET2B model.  701 

“tx”: the treatment (compound and concentration) used; “genotype”: WT or RET2B flies; 702 

stage: class of counted animal - adult or pupae; “mean_percent_surv”: the mean 703 

percent survival across 4 replicates; “std_dev_survival”: the standard deviation of the 704 

percent survival across 4 replicates. 705 

Supplemental Table 5 - in silico chemical modeling of Problem 1 predictions from 706 

top performers. Additional hits from top performing teams were characterized using 707 

SwissADME to identify compounds with preferred absorption, distribution, metabolism, 708 

excretion, and other medicinal chemistry properties.  709 

 710 
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