
PhylEx: Accurate reconstruction of clonal structure via integrated1

analysis of bulk DNA-seq and single cell RNA-seq data2

Seong-Hwan Jun1,2,3, Hosein Toosi1,2, Jeff Mold4, Camilla Engblom4, Xinsong Chen5, Ciara3

O’Flanagan7, Michael Hagemann-Jensen4, Rickard Sandberg4, Samuel Aparicio7,9, Johan4

Hartman5,6, Andrew Roth7,8,9, and Jens Lagergren1,25

1SciLifeLab, School of EECS, KTH Royal Institute of Technology, Stockholm, Sweden6
2Science for Life Laboratory, Solna, Sweden7

3Current affiliation: Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, USA8
4Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden9

5Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden10
6Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Stockholm, Sweden.11

7Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada12
8Department of Computer Science, University of British Columbia, Vancouver, Canada13

9Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada14

Abstract15

We propose PhylEx: a clonal-tree reconstruction method that integrates bulk genomics and single-cell tran-16

scriptomics data. In addition to the clonal-tree, PhylEx also assigns single-cells to clones, which effectively produce17

clonal expression profiles, and generates clonal genotypes. By analyzing scRNA-seq integrated with bulk DNA-seq,18

PhylEx can take advantage of co-occurrences of the mutations found in the cells. In the probabilistic model19

underlying PhylEx, the raw read counts from scRNA-seq follow a mixture of Beta-Binomial distributions, which20

accounts for the sparse nature of single-cell gene expression data; the mixture lessens the penalty caused by21

mutations not observed due to mono-allelic expression. We rigorously evaluated PhylEx on simulated datasets as22

well as a biological dataset consisting of a previously well-characterized high-grade serous ovarian cancer (HGSOC)23

cell line. PhylEx outperformed the state-of-the-art methods by a wide margin both when comparing capacity24

for clonal-tree reconstruction and capacity for correctly clustering mutations. By analyzing HGSOC and HER2+25

breast cancer data, we also show that PhylEx clears the way for phylo-phenotypic analysis of cancer, i.e., that the26

clonal expression profiles, induced by the cell-to-clone assignments, can be exploited in a manner beyond what is27

possible with only expression-based clustering.28

Introduction29

Cancer is an evolutionary process with the ongoing mutational processes coupled with selection and drift leading30

to genetic diversity within the tumour cell populations. Though each cell is fundamentally distinct in a cancer,31

there typically exist groups of cells which are genomically nearly identical, so called clonal populations [1]. The32

evolutionary relationship between clones can be represented by a phylogenetic tree or clonal-tree. Inferring clonal33

population structure, genotypes and trees from sequence data has become an active area of research in the past34

decade. Early approaches used bulk sequence data coupled with computational deconvolution to address the35

admixed nature of bulk data [2, 3, 4, 5, 6]. Recent advances in single cell DNA (scDNA) sequencing technologies36

have prompted the development of approaches better tailored to these data types [7, 8, 9, 10, 11].37

Though the aforementioned methods can resolve clonal population structure, they cannot identify functional38

differences that result from the genomic heterogeneity. The increasing availability of single cell RNA (scRNA)39

sequencing data provides a promising approach to address this problem. Recent methods that seek to assign gene40

expression profiles to clones have treated the problem as a two step procedure whereby the clonal population41

structure is identified and then scRNA data is aligned to clonal genotypes [12, 13]. This two stage approach is42

potentially statistically inefficient as information in the scRNA data cannot be used to improve clonal population43

structure. Hence, there is an unmet need for integrative approaches to jointly analyse DNA and scRNA data to44

simultaneously identify clonal population structure and the associated clonal gene expression profiles.45

In this work we consider the problem of performing simultaneous inference of clonal-trees, genotypes, and46

expression profiles by jointly analyzing bulk DNA and scRNA sequencing data. We introduce a Bayesian47

probabilistic method called PhylEx to solve this problem. PhylEx leverages information about the SNVs observed48

within a single cell to both improve clonal-tree reconstruction, and to assign RNA expression profiles to clones.49
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The method takes as input allelic count data from both DNA and scRNA but also copy number data from DNA.50

The outputs of the method are: a clonal-tree, a genotype defined by the presence or absence of SNVs for each51

clone, and an assignment of each cell with scRNA data to a clone. Using this information, we can aggregate the52

scRNA data by clone to infer clonal, pseudo bulk based, gene expression profiles for further analysis.53

There have been several approaches which have considered integrating single cell and bulk sequencing data. The54

most closely related to PhylEx is ddClone which uses both bulk and scDNA data [10]. In contrast to our approach55

ddClone does not infer a clone tree. Additionally ddClone cannot infer clonal gene expression profiles because RNA56

data is not used. Also closely related to PhylEx are approaches which consider the problem of assigning scRNA57

data to clones using known clonal genotypes. The earliest approach we are aware of is clonealign which uses clonal58

copy number profiles and scRNA data to generate clonal expression profiles [12]. In the original publication the59

copy number profiles were inferred from scDNA data, though in principle they could also be inferred from bulk60

sequencing. In contrast to PhylEx, clonealign does not infer a phylogeny. Furthermore, clonealign requires that61

there is sufficient copy number variability between clones to uniquely correlate scRNA expression to genotypes.62

Thus clonealign is not applicable to cancers without significant copy number variation. Cardelino is another63

approach for aligning scRNA and clonal genotypes which uses SNV data [13]. In contrast to PhylEx, Cardelino64

assumes that (1) the clonal-tree is known and remains fixed during inference and (2) that the genotypes are known65

and remains more or less fixed during inference. As a result Cardelino is sensitive to the clonal information input,66

which can be noisy if inferred purely from bulk DNA.67

In the remainder of this work we describe the PhylEx probabilistic model and the computational techniques68

used for parameter inference. Next we systematically benchmark our approach using synthetic data and compare69

it to existing state-of-the-art clone reconstruction methods. We then evaluate the performance of PhylEx by70

analyzing Smart-Seq3 from cell lines thoroughly investigated using the DLP approach, in [14]. Finally, we apply71

PhylEx to novel breast cancer Smart-Seq3 data to study the clonal expression profiles.72

Results73

Method overview74

PhylEx is a Bayesian statistical tool that simultaneously reconstructs a clonal-tree and assigns single-cells, as75

well as genotypes, to the clones for a tumor characterized by bulk DNA-seq and scRNA-seq data (Figure 1 a).76

The standard bulk data processing is performed, including variant and copy number calls to identify loci with77

SNVs and their copy number profiles (Supplement). For each locus, the bulk data consists of the number of reads78

mapping to the variant allele and the total number of reads mapping to the locus. Similarly, standard scRNA-seq79

data processing is applied to align and map the reads for each cell, yielding data that consists of the total depth80

and the number of reads mapping to the variant allele for each locus. The underlying statistical model is based on81

the tree-structured stick breaking process, a flexible prior distribution over the clonal-tree structure [15], and an82

infinite site model that define a distribution over clonal genotypes. The model has an observational component83

for the single-cell expression and the DNA-seq data given the clonal-tree and the genotypes associated with the84

clones. The inference machinery takes advantage of slice sampling to explore the space of clonal-trees [16] and85

Metropolis-Hastings for exploring the clone fractions [3, 4].86

The observational model specifies that the read counts from the bulk data follow a binomial distribution. The87

probability of observing a variant read is a function of the unobserved cellular prevalence and an estimated clonal88

copy-number (Method), and its definition follows that made for clonal analysis based solely on bulk DNA-seq data89

[2, 3]. The observational model for the scRNA-seq data is a mixture of two Beta-Binomial distributions: one for90

the monoallelic and one for the biallelic expression. The scRNA-seq gene expression data frequently exhibit bursty91

expression [17]. The mixture distribution functions to lessen the penalty of assigning a cell which does not express92

a gene with a mutation to a clone with a genotype that has the mutation. PhylEx marginalizes over all possible93

cell-to-clone assignments to evaluate the likelihood of the single-cell data. The marginalization has the positive94

effect of removing uncertainty in scoring the clonal-tree due to uncertain cell-to-clone membership.95

PhylEx generates samples from the posterior distribution over the clonal-tree as well as a maximum a posteriori96

(MAP) tree. The output also includes clonal genotypes and cell-to-clone assignments. The clone analysis conducted97

by PhylEx then facilitates a range of differential expression investigations on the otherwise inaccessible tumor98

clones.99

Integrating scRNA with bulk DNA improves clonal-tree reconstruction100

We begin with an illustrative example to test the strength of the co-occurrence signal in single-cell data. We101

simulated bulk and scRNA-seq data for 100 SNVs and 20 single-cells over a cherry shaped tree (Figure 1 b) under102

an evolutionary model devoid of copy-number aberrations. We analyzed this data using PhylEx and PhyloWGS103

[4]. Figure 1 c, d show the maximum a posteriori (MAP) trees from PhylEx and PhyloWGS respectively. Both104

methods infer the cellular prevalences correctly, but the tree inferred by PhyloWGS incorrectly has a linear topology.105

The linear and cherry tree explain the observed variant allele frequencies (VAFs) equally well in the sense they106

have equal data likelihoods. This example highlights that estimating clonal-trees from single sample bulk DNA107
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data is an unidentifiable problem. PhylEx correctly infers the clonal-tree by taking advantage of the co-occurrence108

of mutations in the single-cell data and performs co-clustering of the SNVs and cells (Supplementary Figure 1).109

We performed a comprehensive study of simulated data on larger trees and a model of evolution involving110

copy-number changes. Copy-number variation obfuscate the VAF, which renders bulk data-based clonal-tree111

reconstruction an underdetermined problem. We used two clonal-tree reconstruction methods, PhyloWGS and112

Canopy, for comparison. PhyloWGS requires subclonal copy number calls as an input; since such data is not113

available for simulated data, we implemented the methodology underlying PhyloWGS, which we refer to as TSSB,114

to investigate the performance of the PhyloWGS methodology. Canopy [6] is a Bayesian clonal-tree reconstruction115

software that takes advantage of clonal copy-number information.116

As the cancer evolution can involve multifurcating events [18], we simulated the data using multifurcating trees117

and a binary tree with a fixed depth (Supplement). We found that for both binary and multifurcating trees, PhylEx118

outperformed Canopy and PhyloWGS/TSSB in all clustering metrics (Supplementary Figures 2 and 3), and the119

ancestral reconstruction error (Figure 2 a, b). The performance of PhylEx improves progressively with the number120

of cells, as hoped. Comparing PhylEx to bulk-based clonal-tree reconstruction methods further demonstrates that121

scRNA-seq data can mitigate the negative impact of copy-number changes on clonal-tree reconstruction accuracy.122

Single-region bulk-seq with scRNA-seq outperforms multi-region bulk-seq123

Multi-region sequencing is a standard approach to improve the accuracy of the clonal-tree reconstruction, e.g.,124

to resolve branching better [2, 3, 4, 19]. For solid tumors, spatial samples are taken as statistical replicates with125

common evolutionary history but possibly with different cellular prevalences. However, depending on the type of126

tumor, spatial sampling may not be feasible. In particular, multi-regional sampling is difficult to perform without127

prior surgical tumor removal, preventing it from being viable for pre-surgical treatment decisions. We evaluated128

the performance of PhylEx on data consisting of a single-region bulk DNA-seq combined with scRNA-seq data129

against bulk methods supplied with multi-region DNA data.130

We used a multifurcating tree and simulated the bulk DNA data both under one model with and one model131

without copy-number evolution. Devoid of copy number evolution and given multi-region data, the bulk methods132

achieved high accuracy (Supplementary Figure 4): for example, PhyloWGS and TSSB achieved 0.85 in the133

V-measure metric on multifurcating trees (Supplementary Figure 5). Nevertheless, when supplied with single-cell134

data, PhylEx performed better, achieving a V-measure metric upwards of 0.95 using 400 cells on all evaluation135

metrics (Supplementary Figure 4). With data simulated under a copy-number evolution model, bulk clonal-tree136

reconstruction methods struggled even when supplied with multi-region data. On the contrary, PhylEx improved137

the accuracy given only a single-region bulk DNA-seq data by integrating scRNA-seq data in the analysis (Figure 2138

c, d, Supplementary Figure 6). This investigation demonstrates that researchers can reconstruct high-quality139

clonal-trees using single region bulk DNA and scRNA sequencing.140

Specialized method to integrate bulk and scRNA-seq are necessary141

We compared PhylEx to two methods for integrating bulk DNA-seq and scDNA-seq, B-SCITE and ddClone [10, 11].142

One of the challenges of using these scDNA-seq methods is that they require a variant calling as a pre-processing143

step, i.e., for each cell and each locus, determine the presence or absence of a mutation. Although variant calling is144

an active field of research, it remains a challenging problem with the potential for high false positive (FP) and145

false-negative (FN) rates. Adopting these methods for scRNA-seq is sure to suffer from FP and FN problems as146

the expression profile is inherently sparse, bursty, with frequent monoallelic expression. A key feature of PhylEx is147

that it works directly with the read counts and does not require variant calling.148

We found that PhylEx outperformed both of these methods on synthetic data generated from both binary149

and multifurcating trees, under evolutionary models with and without copy numbers aberrations (Figure 2 a, b,150

Supplementary Figures 2, 3, 4). Furthermore, PhylEx exhibited an increase in performance with an increasing151

number of cells. In contrast, the other methods did not benefit from having more cells, likely because having152

more cells implies a higher incidence of FP and FN variant calls. Our results suggest that specialized methods for153

integrating bulk genomics with single-cell transcriptomics are needed to extract the signal from scRNA-seq data.154

PhylEx resolves high-grade serous ovarian cancer cell-line155

To assess the performance of PhylEx on real data, we analyzed a set of high-grade serous ovarian cancer cell-line156

which have recently had their clonal structure accurately determined using scDNA sequencing [14]. These cell-lines157

are derviced from the same patient, one from the primary tumor (OV2295) and two from relapse specimens158

(OV2295R2 and TOV2295R). The clonal-tree for these cell-lines was inferred using a combination of copy-number,159

structural variants and SNVs identified using scDNA data. Consequently, by considering their clonal-tree and their160

assignment of SNVs to the clones as de facto ground truth, we could evaluate the performance of PhylEx on a161

realistic biological data set.162

We performed Smart-Seq3 scRNA-seq [20] on OV2295 and OV2295R21. We constructed a single-region163

pseudo-bulk data by combining the scDNA from the two regions. We obtained 360 scRNA-seq cells passing164

1TOV2295R is difficult to grow and we could not use it.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431009
http://creativecommons.org/licenses/by-nc-nd/4.0/


quality control and identified 67 SNVs with coverage in the scRNA data. We excluded 19 SNVs from performance165

evaluation due to the incompatible annotation of SNV-to-clone assignment published in [14] resulting in 47 SNVs166

used for testing. However, we used all 67 SNVs when fitting PhylEx .167

There is strong concordance between the ground truth clonal-tree and the PhylEx MAP clonal-tree. First,168

when disregarding a node, labelled EFGHI, of the ground truth clonal-tree with a single SNV, these trees have the169

same topology (Figure 3 a, b, Supplementary Table 1). PhylEx correctly assigned 23 of 24 ancestral mutations.170

One SNV in the ground truth ABCD clone was mistakenly assigned to the ground truth CD clone. The clones171

EF and EFGHI were clumped together, thereby also incorrectly clustering the single SNV in EFGHI along with172

the SNVs in clone EF. We compared the results of PhylEx to those inferred with Canopy, TSSB, ddClone, and173

B-SCITE [6, 3, 4, 10, 11]. To quantify performance, we used the same metrics as in the synthetic data experiments.174

PhylEx outperformed all of the other methods (Table 1).175

Phylo-phenotypic analysis: PhylEx clones are differentially expressed176

To demonstrate PhylEx’s ability to perform phylo-phenotypic analysis we performed gene expression analysis177

on PhylEx clones based on the HGSOC Smart-Seq3 scRNA-seq data. We cannot evaluate the correctness of178

cell-to-clone assignment as ground truth does not exist. However, the co-clustering of SNVs and the cells to clones179

indicates its correctness (Supplementary Figure 7).180

We selected the 1,000 genes with the most variable expression pattern for analysis. We used a zero-inflated181

negative binomial model (ZINB-WaVE) [21] to reduce the dimensionality of the gene expressions data to 2-182

dimensions. There was a clear separation between the expression of the EF clade (OV2295R) and the primary183

ABCD clade (OV2295) (Figure 3 c). Additionally, cells assigned to CD subclone exhibited a clear separation184

from the parental ABCD clone (Supplementary Figure 8 a). We repeated this analysis using t-SNE [22], another185

dimensionality reduction technique. A subset of the cells assigned to the ancestral clone, and cells assigned to the186

EF clone, were well separated (Supplementary Figure 8 b). The exhibition of cluster-specific phenotypes, obtained187

through two independent methods, provides biological evidence of the capacity of PhylEx for phylo-phenotypic188

analysis. We note that PhylEx only uses SNV allele count data from the scRNA sequencing. As a result PhylEx is189

blind to gene expression when assigning cells to clones and thus separation of clones in gene expression space is190

not guaranteed.191

We next sought to explore the relationship between pseudo-time trajectories and evolutionary history. Pseudo-192

time is a popular approach for looking at dynamic changes in gene expression over time. It was first applied in193

developmental biology studies [23], but is increasingly being used in cancer studies [24]. An open question in194

the cancer context is whether pseudo-time trajectories reflect evolutionary history. As pseudo-time analysis is195

based purely on gene expression, this is not guaranteed. We applied the pseudo-time method Slingshot [25] on the196

2-dimensional representation obtained by ZINB-WaVE and t-SNE with the cells clustered by PhylEx clones and197

by gene expression using mclust [26]. Trajectories inferred by slingshot when using PhylEx clusters did not reflect198

the evolutionary histories. Instead, the parent-child clones ABCD and CD appear as siblings in the ZINB-WaVE199

dimensions (Figure 3 c). The gene expression based clustering using mclust was significantly different from the200

clone based clusters, and as a result the pseudo-time trajectories differ dramatically from the evolutionary history201

(Figure 3 d). These results suggest that phylo-phenotypic clone based analysis will lead to significantly different202

interpretations of the data than ones based purely on gene expression.203

We performed differential gene expression analysis (DGE) using edgeR [27, 28] to compare the three major204

clones: (1) the Ancestral clone, the ABCD clone, and the EFclone (Figure 3 E,F). The resulting volcano plots205

reveal an abundance of differentially expressed genes between the Ancestral/ABCD dominant in the primary206

tumour, and the EF clone dominant in the relapse. There appears to be immuno-editing in the relapse clone,207

manifested by a substantial number of down-regulated immune system genes. We performed gene set enrichment208

analysis (GSEA) using limma package [29] on the set MSigDB C5 (gene ontology) [30]. Several pathways related209

to the immune system were significantly down-regulated in the EF clone compared to the ABCD clone (Table 2,210

Supplementary Table 2).211

Taken together, these results demonstrate that additional insights obtained by comparing expression profiles in212

the context of PhylEx clones. PhylEx provides the capacity for phylo-phenotypic analysis which can be used to213

dissect the tumor gene expression patterns beyond what is possible with current single-cell expression analysis tools214

Multi-region HER2+ breast cancer analysis215

We generated Smart-Seq3 scRNA-seq and bulk whole-exome DNA sequencing data for five spatially distinct regions216

of an untreated HER2+ breast cancer tumor (Methods). We applied PhylEx to 369 cells and 418 SNVs that217

were available after pre-processing. The PhylEx MAP tree was a linear expansion, i.e., a path (Figure 4 a), after218

restriction to non-empty clones (Supplementary Table 3, Supplementary Table 4). The clone fraction appeared to219

be well-mixed in each region (Figure 4 d, Supplementary Table 5). The clone fraction of regions D, E differed from220

the other regions; this is perhaps explained by the remoteness of these regions to other regions (Supplementary221

Figure 9).222

We retrieved the NanoString PanCancer human pathway panel gene list of n = 770 curated genes (NanoString223

Technologies, Seattle, WA) for the downstream analysis. Focusing on this set of genes helps to identify driver224
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mutations for each clone. Among the 432 SNVs used in our analysis, 24 overlapped the NanoString list (Figure 4225

b). We identified a mutation in CDC6 in the progenitor clone (Clone 1), implicating changes to the cell replication226

mechanism, and identified a mutation in TP53 and MAP3K8 in Clone 2, hinting at the proliferation of cancer227

beginning at Clone 2. In Clone 3, we noted mutations to genes involved in PI3K and MAPK pathways (PIK3R3,228

CACNA2D2) and to MDC1 (DNA repair). Clone 4 appears to be characterized by changes to the RAS pathway as229

evidenced by mutations to ETS2. Overall, the clonal-tree provides a vital context in which to analyze and inspect230

mutations in cancer.231

We performed gene set enrichment analysis on the MSigDB Hallmark gene sets to compare the parent-child232

clones (Figure 4 c). GSEA revealed a significant increase of PI3K AKT MTOR signaling pathway expression, one233

of the hallmarks of cancer, in Clone 2 compared to Clone 1. An in-depth inspection of the expression revealed234

an upregulation of PI3K AKT MTOR signaling pathway in all clones descending from Clone 1 (Figure 4 e). We235

then performed DGE to compare the clones (Figure 4 f, Supplementary Figure 10). By performing differential236

gene expression analysis, we confirmed an overexpression of ERBB2 in Clone 2 compared to Clone 1 (FDR < 0.1).237

We observed that 49 cells assigned to Clone 1 had a mutation in CDC6 and only two other mutations, perhaps238

indicating that its cells more closely resemble normal cells than the cancer cells.239

Overall, the PhylEx analysis identifies the driver mutations (Figure 4 b), elucidates spatial distribution of the240

clones (Figure 4 c), and facilitates a downstream analysis of scRNA expression data that sheds light on the clones’241

functional characteristics (Figure 4 d-f).242

Discussion243

In this work we have presented a new method for inferring clonal-trees. By integrating scRNA data during inference244

we are able to improve reconstruction accuracy. A key benefit of this approach is that we also assign scRNA cells245

to clones and generate clonal expression profiles. With the prevalence of bulk DNA sequencing and rapidly growing246

studies conducting scRNA-seq, we expect that PhylEx will prove profitable to cancer researchers studying the247

functional implications of cancer evolution. We have shown how PhylEx can be used to enhances downstream248

analysis by providing a clonal-tree and the context to compare the clones’ functional states – revealing the interplay249

between the evolutionary process and the clones’ phenotypes.250

We established that specialized methods for integrating bulk with single-cell transcriptomics are necessary.251

By modeling read counts PhylEx bypasses the need for a variant calling in the scRNA data and avoids adding252

uncertainty stemming from dichotomizing counts into binary values.253

PhylEx improves over bulk-based clone reconstruction method and should be the preferred choice for inferring254

the guide tree needed for Cardelino. Similarly, PhylEx is a strong alternative to DLP scDNA-seq for mapping255

expression profiles to clones using methods such as clonealign. PhylEx, using only a single region bulk sequencing256

when combined with scRNA-seq, outperforms state-of-the-art bulk-based methods using multi-region bulk data.257

Even in the settings where replicates are available via multi-region sampling, PhylEx outperforms the bulk-based258

methods by integrating scRNA-seq.259

Another related method is Cardelino-free, which performs de novo construction of the clonal-tree when a guide260

tree is unavailable. However, this amounts to building a tree using only the scRNA-seq data; indeed, the authors261

of Cardelino found the performance to deteriorate compared to when a guide tree is provided [13]. Building a262

phylogenetic tree on scRNA-seq has also been considered (e.g., [31]). The phylogenetic tree inferred this way can263

also serve to guide the downstream analysis as PhylEx – however, we consider these methods to be tangential264

to PhylEx in the same way that single-cell phylogenies are different from bulk deconvolution and clonal-tree265

reconstruction problem.266

By including the bulk data in the analysis, we can significantly decrease the number of false-positive SNVs267

detected and incorporate copy number information into the clonal-tree reconstruction. Future extensions of268

PhylEx to characterize clones by both somatic mutations and copy number profiles have the potential for detecting269

subclonal copy number information. Inferring subclonal copy numbers is inherently challenging to achieve using270

only the bulk sequencing data and is only currently feasible using specialized sequencing techniques such as DLP271

WGS on single cells [32, 14, 33]. PhylEx represents substantial progress in reconstructing the full evolutionary272

trajectory of cancer.273
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Methods274

PhylEx probabilistic model275

PhylEx performs a Bayesian posterior inference over the clonal-tree, T , and cellular prevalences, φ, given the bulk276

data B and single-cell data S. The nodes of the tree T represent clones, and we will use the term node and clone277

interchangeably. The likelihood of the bulk and single-cell data is assumed to be conditionally independent given278

the tree and assignment of SNVs to nodes (i.e., clones) of the tree, z:279

`(B,S|T, z,φ) = `(B|T, z,φ)`(S|T, z,φ). (1)

The posterior distribution is expressed in terms of this likelihood and the prior distribution over T,z,φ as follows:280

π(T,z,φ|B,S) ∝ `(B|T,z,φ)`(S|T, z,φ)π0(φ|T,z)π0(z|T )π0(T ), (2)

where π0(φ|T,z), π0(z|T ), π0(T ) denote the prior distributions over the cellular prevalences, assignment of SNVs281

to clones, and the tree respectively.282

The prior on the clonal-tree is a tree-structured stick-breaking process (TSSB) [15]. TSSB is a Bayesian283

non-parametric prior defined on infinite trees that learns the tree shape from the data. TSSB has proven to be284

quite useful in various cancer phylogenetics problems involving both in the context of single-cell and bulk data285

analysis, e.g., [3, 4, 5].286

The prior on the assignment of SNVs to nodes of the tree under TSSB follows a process resembling Polya’s urn
scheme but with the hierarchy of urns. Starting from the root node, the prior probability of assigning an SNV to a
node u is equal to [15]

Nu + 1

Nu +Nu≺ + α(|u|) + 1
,

where Nu is the number of SNVs assigned to u and Nu≺ is the number of SNVs assigned to u or its descendants.
This indicates that an SNV is assigned to a node with probability that is proportional to the number of SNVs
already assigned to u, which is the property that enforces clustering of SNVs. We have a function α(|u|) = α0λ

|u|,
which translates to the probability of assigning an SNV to a new node below u. This function is governed by
hyperparameters α0 > 0, λ ∈ (0, 1), which decays to 0 as the depth of the node, |u|, increases. It serves to ensure
that the tree does not grow infinitely. The prior distribution on the cellular prevalences is as specified in [3]. In
essense, this amounts to converting the cellular prevalences to clone fraction,

ηu = φu −
∑

u′<κ(u)

φu′ ,

where κ(u) denotes the set of children nodes of u. Note that
∑
u ηu = 1 for a fixed tree T and hence, we can place287

a Dirichlet distribution on ηu as a prior distribution, conditioned on tree T .288

We use a likelihood model similar to [2], where clonal copy number information is assumed to be available along
with the number of reads mapping to the variant and reference alleles. Copy number analysis is part of a standard
bulk data analysis pipeline, which typically includes a normal control sample. We assume clonal major and minor
copy numbers, (Mn,mn), covering each SNV, n = 1, ..., N . The bulk data is denoted byB = {(bn, dn,Mn,mn)}Nn=1,
where bn, dn denote the variant reads and depth at locus n. We assume site independence conditional on T,z:

`(B|T,z,φ) ∝
N∏
n=1

P (bn|T, z,φ, dn,Mn,mn).

All possible copy number profiles is marginalized to compute the likelihood of the observed reads

P (bn|T,z,φ, dn,Mn,mn) =
∑

gn∈G(Mn,mn)

P (bn|dn, gn, φzn)P (gn),

where G(Mn,mn) = {A,B,AA,AB,BB,AAA, ...} are possible genotypes compatible with a given major and
minor copy number profile. The probability distribution for the variant reads is given by Binomial distribution:

bn|dn, gn, φzn ∼ Binomial(dn, ψ(gn, φzn , ε)),

with ψ(gn, φzn , ε) being the probability of success given as a function of the genotype, cellular prevalence of clone
zn, and sequencing error probability, ε. Letting v(g), c(g) be the number of variant alleles and total copy numbers
for a genotype g, the success probability is given by,

ψ(gn, φzn , ε) =


ε if v(gn) = 0
φzn(1− ε) + (1− φzn)ε if v(gn) = c(gn)

φzn
v(gn)
c(gn)

+ (1− φzn)ε otherwise.
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The scRNA-seq data is denoted by S = {{bc,n, dc,n}Nn=1}Cc=1, where C denotes the number of cells. We
assume that the scRNA-seq likelihood is conditionally independent over cell and locus given T,z and cell-to-clone
membership, ζ = (ζc)

C
c=1:

`(S|T, z,φ, ζ) ∝
C∏
c=1

N∏
n=1

P (bc,n|T, z, ζc, dc,n).

The cell-to-clone membership variable completely determines the SNVs harbored by cells. For a cell assigned to289

node u, it inherits all of the SNVs assigned to ancestral nodes of u in T . We denote the mutation status of cell c290

for locus n by µc,n ∈ {0, 1}, which can be seen as a function of T,z, ζc.291

We model the number of variant reads, bc,n, for each cell c and locus n using a mixture of two Beta-Binomial
distributions. The mixture is necessary to account for sparse nature of scRNA-seq, in particular, we need one
distribution to model monoallelic expression (i.e., dropout) and another for biallelic distribution (see e.g., [31]).

bc,n ∼
{

(1− δc,n)BetaBinomial(dc,n, α0, β0) + δc,nBetaBinomial(dc,n, αn, βn) if µc,n = 1
BetaBinomial(dc,n, ε, 1− ε) otherwise.

where α0, β0, αn, βn are hyperparameters of the model (Supplement). For the monoallelic distribution, we choose292

the hyperparameters α0, β0 to be small, e.g., α0 = β0 < 0.05 (Supplementary Figure 11). This ensures that most293

of the mass is centered at near 0 and dc,n. Such distribution guards against cases where a cell harbours the294

mutation but only the reference allele is expressed due to the stochastic nature of the transcriptional process,295

leading to unbalanced expression of alleles in scRNA-seq; similar techniques are employed in [34, 31, 13]. The296

hyper-parameters αn, βn for each site j are estimated as part of data pre-processing step (Supplement). In the297

computation of the likelihood, we marginalize out δc,n.298

The prior probability of cell assignment to clone u can be given by the clone fraction, ηu. However, such
an assumption may not hold as cells with certain characteristics may be preferentially selected for sequencing.
Therefore, we use Uniform distribution:

P (ζc|z, T,φ) ∝ 1.

In evaluating the single-cell component of the likelihood for a given tree, we marginalize over the cell-to-clone
assignments,

`(S|T, z,φ) =
C∏
c=1

∑
ζc

N∏
n=1

P (bc,n|T, z, ζc, dc,n)P (ζc).

Approval and collection of clinical material for breast cancer samples299

Fresh primary tumor resections were obtained from breast cancer patients at Karolinska University Hospital300

and Stockholm South General Hospital. Experimental procedures and protocols were approved by the regional301

ethics review board (Etikprövningsnämnden) in Stockholm, with reference numbers 2016/957-31 and 2017/742-302

32. Biobank approval was obtained from the Stockholm medical biobank. Before surgery, informed consent in303

accordance with the Declaration of Helsinki was given to patients for signature.304

Whole-exome sequencing for breast cancer samples305

Tumor resections and matching dermal biopsies from 4 individual breast cancer patients were freshly collected.306

Tissues were manually homogenized and genomic DNA samples were isolated by using the QIAamp DNA mini307

kit (QIAGEN). The library was prepared by using Twist Bioscience Human Core Exome kit (Twist Bioscience)308

according to the manufacture protocol. The bulk DNA samples were then sequenced in a S4 flow cell lane by the309

NovaSeq 6000 platform (Illumina) at the National Genomics Infrastructure, Science for Life Laboratory, Uppsala.310

Breast cancer sample preparation for Smart-Seq3 method311

Tissues were homogenized and cells were released by using the gentleMACSTM Octo Dissociator with Heaters312

and the human tumor dissociation kit (both from Miltenyi Biotec), according to the manufacturer protocols.313

Afterwards, the cells were washed two times with F12-DMEM medium (Gibco) and collected by centrifugation at314

300g for 5 minutes. The single cell suspensions were further generated by passing the re-suspended cells through the315

70 mm cell strainers. The single cell suspensions were then further stained with the Zombie Aqua Fixable viability316

dye (Biolegend, 423101) at room temperature for 20 minutes, then washed with Phosphate Buffered Saline (PBS).317

The cells were incubated with Human TruStain Fc block (Biolegend, 422302) for 10 minutes to limit unspecific318

antibody binding, then stained for 20 minutes with anti-EPCAM (1:40, Biolegend, 324206) and anti-CD45 (1:40,319

Biolegend, 304021) in FACS buffer (PBS + 0.5 % Bovine Serum Albumin). The cells were subsequently washed320

and resuspended in FACS buffer. Fluorescence-activated cell sorting (FACS) using an influx flow cytometer (BD321

Biosciences) was performed to sort live EPCAM+CD45- single cells into 384 well plates for Smart-Seq3 analysis.322

Single stain controls (cells and beads) and fluorescence minus one controls (FMO), containing all the fluorochromes323

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.16.431009doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.16.431009
http://creativecommons.org/licenses/by-nc-nd/4.0/


in the panel except the one being measured, were used to set voltages and to define the proper gating strategy.324

Equal numbers of cells from each tumor region was sorted onto the same plate and two plates were prepared in325

total.326

Ovarian cancer cell lines preparation for Smart-Seq3327

Culture of ovarian cancer cell lines OV2295, TOV2295 and OV2295R cells were cultured in a 1:1 mix of Media 199328

(Sigma Aldrich) and MCDB 105 (Sigma Aldrich) supplemented with 10% FBS in a humidified environment at 37C.329

For single cell RNA sequencing, all cells used in this study were sorted on a BD Influx into 384 well plates330

using index-sorting and single-cell purity mode directly into lysis buffer(6,67% Polyethylene Glycol, 0.1% Triton331

X-100, RNAse Inhibitor (Takara), dNTPs (0.67mM/each) and Oligo-dT (0.67uM)). Sorted plates were stored at332

-80C and thawed immediately prior to library generation.333

Smart-Seq3 library preparation and sequencing334

For single cell RNAseq libraries, the Smart-Seq3 method was used according to the published protocol (PMID:335

32518404). In brief, plates were quickly centrifuged before reverse transcription (25mM Tris-HCl pH 8.3 (Sigma),336

30mM NaCl (ThermoFisher), 2,5mM MgCl2 (ThermoFisher), 1mM GTP (ThermoFisher), 8mM DTT (Ther-337

moFisher), 0,5u/ul RNase inhibitor (Takara), 2uM TSO (IDT), 2u/ul Maxima H-minus reverse transcriptase338

(ThermoFisher)) and amplified using KAPA HiFI Hotstart polymerase (Roche) to generate full length cDNA339

libraries (22 cycles PCR). Final library concentrations were determined and normalized for each cell using Picogreen.340

Diluted cDNA of 100pg per sample was used for tagmentation (Nextera Library Preparation Kit, Illumina, ATM341

at 0,1uL per cell). The final samples were analyzed using a Bioanalyzer (Hi-Sensitivity Kit, Agilent) and sent for342

sequencing on a Novaseq S Prime lane, PE 2x150bp (Illumina). Library quality was compared to index sorting343

results to confirm that negative wells yielded low complexity libraries.344

Processing of Smart-Seq3 sequencing files345

Individual fastq files for the cells are obtained using Illumina bcl2fq tool, then converted to ubam format with cell346

and UMI tags using a script that detect Smart-Seq 3 specific pattern at the beginning of reads with UMI. STAR347

version 7.1 with GRCH37 version of Human Genome and Ensembl version 75 annotations were used to align the348

reads. UMI-tools[35] was then used to correct the UMI and group UMI reads. An in-house script was used to349

intersect the reads with bam files and obtain read and UMI counts for each gene.350

Mutation calling from exome sequencing results351

Mutations were called using Mutect2[36] software in multi-sample mode, with recommended filters. Point mutations352

that passed the filters were selected for downstream analysis.353

Code and data availability354

Code implementing PhylEx and the R code for analysis is available on Github at https://github.com/junseonghwan/355

PhylExAnalysis. The simulation data and results, processed bulk DNA-seq and scRNA-seq data for HGSOC and356

HER2+ data along with the results are available at https://doi.org/10.5281/zenodo.4533670.357
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Figure 1: a. Schematic diagram describing the bulk DNA-seq and scRNA-seq data input. The output of PhylEx
includes the tree and assignment of SNVs and cells to clones. b. The cherry shaped tree used in the illustrative
example for identifying branching structure from scRNA-seq. The cellular prevalences are indicated for each clone. c.
Inferred tree from integrated analysis of bulk DNA-seq and scRNA-seq. d. Tree inferred using bulk DNA-seq.
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Figure 2: Simulated data analysis results with n = 20 data replicates generated with 100 SNVs in each replicate from
multifurcating tree with copy number evolution scenario. a. Compared PhylEx to Canopy, TSSB, and B-SCITE on
tree reconstruction error and b. on V-measure clustering metric. c-d. Comparison of PhylEx using single-region bulk
DNA-seq and scRNA-seq to bulk based methods supplied with multi-region DNA-seq; tree reconstruction error and
V-measure clustering metric are used in the comparison.
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Figure 3: Analysis of HGSOC cell line. a. Ground truth tree with the number of SNVs assigned to each clone
indicated beside the clone name. b. The inferred tree from PhylEx with the number of SNVs of the ground truth
clone indicated. The plot of the gene expressions for cells on ZINB-WaVE dimensions: c. cells are color-coded after
assigning to the clonal-tree output from PhylEx, and the trajectory analysis result is overlayed on the figure with the
ancestral clone specified as the starting cluster; d. clustering of cells using mclust with the trajectory analysis with
starting cluster unspecified. The results of differential gene expression analysis using volcano plots: e. the EF clone to
the Ancestral clone, and f. the EF clone to the ABCD clone.
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Figure 4: Multi-region HER2+ breast cancer analysis. a. PhylEx inferred tree with the number of cells assigned to
each clone shown under the clone label. b. Mutation absence/presence heatmap. c. Heatmap of gene set enrichment
analysis on Hallmark pathways to compare parent-child clones. d. Clone (cellular) fraction plot for each clone by
region. e. Box-plot of expression levels for PI3K AKT MTOR signaling pathway by clone. f. Differential gene
expression analysis to compare progenitor cells assigned to Clone 2 to the cells to Clone 1.
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Table 1: Performance metric comparing PhylEx to Canopy, TSSB, B-SCITE, and ddClone. Used n = 20 runs for
PhylEx and TSSB. Canopy and B-SCITE were ran with four MCMC chains.

Method V-Measure Adj. Rand Index Adj. Mut Info Anc. Recon Err
Canopy 0.494 0.386 0.327 0.178
ddClone 0.571 0.240 0.254 NA
B-SCITE 0.445 0.108 0.238 0.259

TSSB 0.237± 0.068 0.283± 0.077 0.180± 0.075 0.204± 0.032
PhylEx 0.866± 0.0018 0.889± 0.00024 0.841± 0.0015 0.0291± 0.0023
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Table 2: Gene set enrichment analysis results comparing the ABCD clone to the EF clone. Top 10 most significantly
down regulated pathways are shown.

Gene ontology P-Value FDR
MHC protein complex 4.85e-15 1.32e-11
Antigen processing and presentation of endogenous antigen 6.40e-15 1.32e-11
MHC class I protein complex 6.57e-14 8.08e-11
Response to type I interferon 2.86e-11 1.60e-08
Antigen processing and presentation of endogenous peptide antigen 2.61e-10 1.14e-07
Positive regulation of T cell mediated cytotoxicity 7.96e-09 2.51e-06
Interferon Gamma mediated signaling pathway 2.08e-08 5.72e-06
Regulation of T cell mediated cytotoxicity 2.37e-08 6.07e-06
Positive regulation of antigen processing and presentation 4.99e-07 9.59e-05
Detection of other organism 6.87e-07 1.28e-04
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