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S1 Methods Detail

S1.1 Inferring tree sequence topology using tsinfer with
mismatches

The tsinfer matching algorithm is based on a Hidden Markov Model (HMM)
in which a hidden state is inferred at an array of positions (“inference sites”)
along a haplotype1. The hidden state is the identity of the most recent ancestor
of the current haplotype, from among the n possible ancestors at that position.
In other words, the hidden state specifies the ancestor of which the haplotype is
an immediate copy. Finding the most likely array of hidden states — the most
likely “copying path” for a haplotype — requires us to specify HMM transition
and emission probabilities; these correspond to the effects of recombination and
mismatch (arising from error or mutation) respectively.

Transition probabilities are relevant when moving from one position to the
next along the genome. With a recombination rate (i.e. genetic distance, or
mean number of crossovers) of r between the current and previous position, as
calculated from a standard genetic map2, the probability, pr, of a detectable
recombination is given by the standard map function [3]

pr = (1− e−2r)/2. (1)

As in the Li and Stephens formulation4,5, if a recombination occurs, the hid-
den state may switch to any of the n ancestors with equal probability, giving
transition probabilities of pr/n to any alternative state, and a probability of
1− pr + pr/n of the state remaining unchanged6.
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From tsinfer version 0.2, emission probabilities are included in the HMM
matching algorithm. These allow for mismatch between the hidden state and the
observed haplotype: an emission probability of 0 means that the observed allele
at a site is always that indicated by the hidden state, an emission probability of 1
means the the observed allele never matches that indicated by the hidden state.
For biallelic sites with a = 2 alleles, an emission probability of 1⁄2 thus indicates
that the identity of the ancestor at this site has no influence on the observed
allele. As it is only the relative values of emission probabilities, compared to
the transition probabilities, that are important, we parameterize emission via a
mismatch ratio, φ. This is used to calculate a single emission probability used
at all sites, m, as a function of the median recombination rate between adjacent
inference sites, r̃. More specifically, we set

m = (1− e−aφρ̃)/a. (2)

For biallelic sites (a = 2) and small r̃, Equation 2 returns an emission proba-
bility approximately φ times the median recombination probability (p̃r). If a
mismatch is inferred from the Viterbi decoding of the forward algorithm, it is
incorporated into the resulting tree sequence by placing an additional mutation
in the haplotype being matched. Note, however, that such mutations may ei-
ther reflect true recurrent or back mutations, or represent errors of various sorts,
such as in sequencing or in the approximations made in the tsinfer algorithm.

S1.2 tsdate

The tsdate algorithm is an approximate Bayesian method for inferring the age
of ancestral nodes in a tree sequence topology. There are two main components
to the algorithm: the construction of a prior on node age and propagation of
likelihoods up and down the tree sequence using the inside-outside algorithm.
The latter is described in detail in the methods. Here, we explain the prior in
greater detail as well as provide an alternative to the outside pass: the outside-
maximisation pass.

S1.2.1 Conditional Coalescent Prior

The coalescent provides a natural prior for the age of nodes in a tree sequence.
However, the number of lineages remaining at any given time is unknown, so we
instead use the theoretical results of Wiuf & Donnelly (1999) to find the mean
and variance of node age under the “conditional coalescent.” This involves
conditioning on the number of samples descending from each ancestral node.

We begin by considering a coalescent tree with n sequences, partitioned into
i and n − i. We condition on the event E that all samples in i coalesce before
sharing a common ancestor with a sample outside of i. Conditioning on E affects
the order of coalescence events, but not the exponentially distributed waiting
times. We seek to find the mean and variance of the time τ when all i samples
have coalesced. At this time there will be only one ancestor of i remaining,
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but depending on how many lineages outside of i have coalesced, the number of
total ancestors, α, could range from 2 to n− i+ 1.

Equation (10) in Wiuf & Donnelly (1999) shows that the expectation of τ is

E(τ) =
i− 1

n
. (3)

The variance can be found using Equation 3 and the expectation of τ2, which
is calculated as

E(τ2) =

n−i+1∑
m=2

P (α = m)E(τ2|α = m),

where E(τ2|α) is given by Equation 10 in Wiuf & Donnelly (1999) as

E(τ2|α) = 8
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+
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and P (α = m) is Corollary 2 of Wiuf & Donnelly (1999) when only one ancestor
in i remains:

P (α = m) =

(
n−m−1
i−2

)(
m
2

)(
n
i+1

) .

Coalescent simulations using msprime show that the distribution of the log-
arithm of the age of a node with a fixed number of descendant samples is
approximately normal. We can thus use the method of moments to fit a lognor-
mal distribution to the mean and variance of the age of each variant under the
coalescent:

σ =

√
log

(
V ar(τ)

E(τ)2
+ 1

)
;

µ = log(E(τ))− 1

2
σ2.

Although the prior is valid at any given marginal tree topology in the tree
sequence, recombination introduces two complications: nodes may not span the
full tree sequence and a given node may have descendant subsamples of differing
sizes in the various marginal trees in which it appears. To address these points,
we first iterate through each marginal tree in the tree sequence to find the total
length of sequence spanned by node u, which we will refer to as su. We then
determine the “sample weights” for each node by finding the span of sequence
where u has a particular number of descendent samples as a proportion of su.
Since neighbouring marginal trees in a tree sequence are correlated, we use the
difference in edges between each adjacent tree as a highly efficient method for
calculating the sample weights.

Once we have evaluated sample weights for each node in the tree sequence, we
construct a mixture distribution for the prior on node age. This is accomplished
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by finding the weighted average of expectation and variance of the prior distri-
bution using the sample weights. With the weighted means and variances, we
again use the method of moments to determine the parameters of the matched
lognormal distribution.

We show that the lognormal approximation is well calibrated to data simu-
lated under the coalescent both with and without recombination in Fig. S1.

S1.2.2 Outside-Maximisation Pass

Cycles in the undirected graph underlying a tree sequence occur when a node
has more than one parent as a consequence of recombination (an example is
shown in Fig. 1a). These cycles result in the over-counting of information in the
outside pass of the inside-outside algorithm. To account for this, we introduce
the outside-maximisation pass as an alternative. The rationale for this approach
is that the inside value of the MRCA(s) of the sample has accumulated all of
the data encoded in the tree sequence. In our model, the age of a node and the
age of all non-descendant nodes are conditionally independent, given the age of
a node’s parents. Thus, if we fix the age of the MRCA(s), we can then walk
down the tree sequence fixing the age of parent nodes before considering the
age of their children.

First, we set the age of each MRCA in the tree sequence to the time slice with
the maximum probability in the node’s inside matrix (equivalent to assigning
the age with the greatest maximum posterior probability). Next, we establish
a traversal path using the topology such that each node is only visited once
all of its direct and indirect parents have been considered. For each node we
visit on this traversal path, we know the age of all of a node’s ancestors as
well as the relative likelihood of the subtree below each node for a given age.
For any possible node age in the discretised time grid we can also compute the
likelihood of the events on the branches to its direct and already-dated ancestors,
as described in the inside pass. With this information we can compute the
conditional posterior density for the age of the node. We set its age to the time
slice with the maximum value.

Formally, for each node u we seek to calculate the time of the node, Tu as

Tu = arg max
t≤Up

Iu(t)
∏

p∈P (u)

Lpu(Tp − t+ ε;Dpu, θ)

 ,

where UP is the age of the youngest parent of node u and other variables are
defined in the Methods section on the inside and outside passes.

S2 Evaluation of Methods

Code implementing all evaluations can be found at https://github.com/awo

hns/unified genealogy paper.
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S2.1 Evaluating the accuracy of topological inference

There are two phases of matching in tsinfer: firstly matching inferred ances-
tors against older ancestors, secondly matching the known sample haplotypes
against all ancestors1. Two mismatch ratios can therefore be specified, one in
the ancestor-matching phase (φa) and the the other in the sample-matching
phase (φs). We expect optimal ratios to depend on the degree to which as-
sumptions in the inference algorithm are met (for example, the assumption that
frequency of the derived allele can be used as a proxy for ancestral age), and
the amount of error in the analysed dataset (for example, a suitable value of
φs should make inference reasonably robust to sequencing error). To find ap-
propriate mismatch ratios, we performed inference for a range of 15 mismatch
ratios from 10−5 to 104 in both ancestor- and sample-matching phases, using
a variety of datasets. Results are shown in Extended Data Figs. 1 (simulated
datasets) and 2 (real datasets).

Simulated sequences were obtained from a standard three population “Out of
Africa” model7, as implemented in stdpopsim8 version 0.1.2, with uniform mu-
tation and recombination rates of 1.29× 10−8 /bp/gen and 1.72× 10−8 /bp/gen
respectively. 500 chromosomes of 10 megabases (Mb) in size were sampled from
each of the populations in the model, for a total sample size of n = 1, 500.
Accuracy of inference can be directly assessed by comparing the topology of
the inferred trees along the genome with the ground-truth topologies. However,
inferred trees contain polytomies (nodes whose number of direct children, i.e.
arity, is greater than two), which have different effects on different tree distance
metrics. For this reason, we compare accuracy using three separate metrics:
the Kendall-Colijn (KC) metric9 with λ = 0, the same metric but with each
inferred tree having polytomies resolved equiprobably into a randomly chosen
bifurcating topology, and finally the Robinson-Foulds (RF) metric10. The two
KC metrics are normalised by dividing by the value obtained when comparing
the ground truth tree with a “star” topology in the first case, and a random
binary topology in the second. The RF metric, which is notoriously sensi-
tive to minor tree changes but which has been shown to perform reasonably in
practice11, is normalized against the maximum possible number of disagreeing
splits for two bifurcating trees (2n− 4): for this reason the RF with randomly
split polytomies was used, although the metric without polytomy splitting gives
similar qualitative results (data not shown). We can also assess inference per-
formance indirectly by looking at file size or numbers of edges and mutations,
under the assumption that lower values provide a more parsimonious represen-
tation of evolutionary history. This is particularly important when assessing
performance on real data, for which ground-truth topologies are not available.

As expected, for simulations with no injected error, the first KC plot and
the RF plot indicate that the lower the mismatch ratio, the greater the accuracy
(Extended Data Fig. 1a); the KC metric suggests this effect is stronger for φa,
whereas the RF metric suggests it is (slightly) stronger for φs. In contrast,
where inferred trees have had their polytomies split at random, the KC metric
suggests that very low mismatch ratios, particularly in the ancestor matching
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phase, are suboptimal: this is also suggested from the size of the resulting
tree sequence. This difference may be due to the effect of polytomy size (arity
of nodes), as the KC metric returns lower values when comparing a resolved
tree with a polytomy than the average value comparing the same tree with
the polytomy split equiprobably into binary resolutions. Also as expected, as
mismatch ratios tend to zero, the number of mutations tends to the minimum
possible (i.e. the number of sites): however there is a notable decrease in the
number of mutations (and concomitant increase in the number of edges) when
mismatch ratios drop from 10−3 to 104; this is also associated with an increase
in file size.

In seeking optimal mismatch ratios for general use, it is more relevant to
consider inference in which simulated sequences have had error added. Extended
Data Fig. 1b gives results in which the sequences produced by simulation have
had error added before inference. Genotyping error was added on the basis
of estimates from the platinum genomes project12 and ancestral states were
flipped at a randomly chosen 1% of variant sites. As expected, with these
injected errors, better results were obtained with higher mismatch ratios. The
RF metric suggests an optimal φa between 10−4 and 10 but a much higher
φs. The KC metric with polytomies retained suggests lower φa values and φs
somewhere between 10−3 and 102. However, both the file size and the count of
edges plus mutations clearly indicate an optimal range between 10−3 and 10 for
both φa and φs, a range that is mirrored in the case of φa by the KC metric with
randomly resolved polytomies. From these results we deduce that none of the
tree distance measures that we use are an ideal measure of inference accuracy,
but that all agree that a mismatch ratio in the ancestor matching phase between
10−3 and 10 provides good inference. Moreover, within this range, the exact
value is of minor importance. In the sample matching phase, the RF and plain
KC metrics conflict over whether mismatch ratios higher than 10 are of benefit.
However, such high values are not only contraindicated by measures of file size,
but also because we would not expect error rates to be orders of magnitude
higher than recombination rates. The simulated data therefore leads us to
conclude that the value 1 is a reasonable mismatch ratio in both the ancestor
and sample matching phases, that both file size and number of mutations plus
edges are sensible proxies for inference accuracy, and that similar results would
be obtained by using mismatch ratios anywhere between 0.1 and 10.

The proposed mismatch ratios of φa = φs = 1 are also supported by infer-
ence of real sequence data from two public datasets: the Thousand Genomes
Project data (using build 37 of the human genome reference sequence), and
the Human Genome Diversity Project (using build 38). The appropriate ge-
netic map for Chromosome 20 was used to specify transition probabilities via
Equation 1, and for reasons of computational efficiency, inference was performed
after subsetting down to sites 1,000,000 to 1,100,000 . Extended Data Fig. 2
shows that mismatch ratios between 0.1 and 10 provide the smallest file sizes
and most parsimonious number of mutations and edges, with the newer and less
error-prone HGDP dataset able to retain small sizes for slightly smaller values
of phis. Reassuringly, the pattern in node arity reflects that in Extended Data
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Fig. 1b, with larger polytomies for low values of φa and φs. This indicates that,
for the tsinfer algorithm, our method of injecting error into simulated datasets
produces a similar effect to error in real data.

Optimal mismatch ratios around 1 might initially appear to be unreasonably
high: recombination is expected to be common, recurrent mutations rare, and
in modern datasets error should affect only a small fraction of the genotype
matrix. However, simulations show that reasonable results are obtained even
for mismatch ratios well above 1, where mismatches are substantially more
probable than recombination events. This indicates that a correctly inferred
recombination event can remove the need for several mismatches at nearby sites.

S2.2 Evaluating the accuracy of the tsdate prior

We evaluate the accuracy of the tsdate coalescent prior in Fig. S1. As described
in Section S1.2.1, tsdate uses results from the coalescent conditioned on the
frequency of an ancestral haplotype13 to determine the mean and variance of
the age of each node in the tree sequence. Moment matching is then used to
fit a lognormal distribution on the age of each node. We evaluate the accuracy
of this prior distribution, and also an alternative using a gamma distribution
approximation, in simulations with and without recombination. The results of
msprime simulations under the neutral coalescent show that the 95% credible
interval of the gamma prior includes the true node ages more frequently than the
equivalent lognormal distribution. However, the credible interval of the gamma
is much wider than the lognormal and skews towards younger ages. For this
reason, the lognormal is the default setting in tsdate.

S2.3 Accuracy of Age Estimation

Simulation-based evaluation of the accuracy and scaling properties of tsinfer
and tsdate were performed with msprime version 1.0,14 and stdpopsim8. We
evaluate neutral coalescent simulations with recombination as well as a more
complex model based on the Out of Africa event7 (also used in Section S2.1).
The effects of genotype and ancestral state errors are modelled using an error
model based on an empirical comparison of the Illumina Platinum Genomes
Project to matched data from the TGP12. Our methods are compared to
Relate15, a leading method for inferring dated genealogies and GEVA12, a method
for estimating allele age based on pairwise haplotype comparisons.

tsdate was evaluated under a variety of inference settings. First, the “true”
topologies produced by msprime were passed to tsdate. This is indicated in
relevant figures as “tsdate (using simulated topology)”. The second method
of evaluation was to run tsdate on tree sequence topologies inferred from the
simulated variation data with tsinfer. This is referred to as “tsdate using
tsinfer topologies”. Both the outside and outside-maximisation passes are
assessed in Fig. S2, as are various ratios of mutation to recombination rates.
Since the outside pass empirically outperforms the outside-maximisation pass,
only results using the former are used in subsequent simulations as well as
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in all results using real data. Variation data was converted to the required
input formats for GEVA and Relate before running these programs using default
settings. Mutation rates of 10−8 per base pair per generation are passed to all
inference methods and recombination maps are passed to tsinfer and Relate.
Ground truth allele ages were provided by msprime. For tsdate and Relate,
allele age point estimates were determined using the arithmetic mean of the
ages of the upper and lower bounding ancestors. The tsdate-estimated age of
these ancestors was given by the mean of each node’s posterior distribution.
The mean age of the joint clock with quality-filtered pairs was used for GEVA.
Only sites which could be dated by all methods were evaluated. This means
that singletons, n − 1 tons, and other sites not dated by one or more methods
were excluded from the evaluation.

Root mean squared log error (RMSLE), Pearson’s r, Spearman’s ρ, and
estimator bias were used to assess the accuracy of allele age estimates. Tree
inference accuracy was measured by comparing simulated and inferred tree se-
quences using the KC tree distance metric9, which includes a parameter, λ,
determining the relative weight given to tree topology vs branch lengths when
performing comparisons. We test both λ = 0, where all weight is given to the
topology, and λ = 1, where all weight is given to branch lengths. See section
S2.1 for details on the advantages and disadvantages of this metric.

Fig. S3 shows that our methods infer genealogies and allele ages with ac-
curacy comparable or superior to the state-of-the-art in neutral coalescent sim-
ulations. When using the simulated topologies, tsdate has high accuracy in
recovering allele age. When using inferred topologies from tsinfer, the accu-
racy of allele age estimation is comparable to GEVA and Relate.

Fig. S4 shows the performance of tsdate on simulations of Chromosome
20 using the Out of Africa model7,8 and the previously described error models.
Demography impacts allele age estimates since tsdate uses a constant value of
Ne and does not currently model population structure. Using mismatch terms
in tsinfer results in improved topological inference in all simulations and im-
provements in allele age accuracy by most metrics. The iterative approach
shows variable effects depending on the simulation model used and evaluation
metric being considered. Inference using the iterative approach provides the
lowest values of KC distance with λ = 1 (corresponding to the highest accuracy
in branch length estimation); however, KC distance with λ = 0 and the various
allele age accuracy measures show that the iterative approach generally only
offers comparable or slightly improved accuracy compared to a single pass of
tsinfer with mismatch terms. However, the simulations in Section S2.5 show
that when inferring genealogies from data simulated with a uniform recombi-
nation map, iteration improves accuracy. Inference using error-prone variation
data leads to lower accuracy by most measures. These same patterns are ob-
served in Extended Data Fig. 4, which compares the accuracy of our methods
with GEVA and a version of Relate that re-estimates effective population size
and branch lengths.
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S2.4 Scaling Simulations

We evaluated the scaling properties of tsinfer and tsdate compared to Relate

and GEVA using msprime neutral coalescent simulations; Extended Data Fig. 5.
The CPU run-time and memory requirements are recorded using two evaluation
schemes. First, the length of the simulated chromosomes is held constant while
increasing sample sizes are used. Second, sample size is fixed while sequence
length increases. Default parameters are used for all methods. The maximum
memory allowance for Relate was set to 32 Gb to allow the scaling analysis to
proceed without error.

S2.5 Ancient Samples and Allele Age Estimation Accu-
racy

Fig. 1d shows a simulation-based evaluation of allele age inference accuracy when
incorporating ancient samples into the previously described Out of Africa model
[7, 8]. We simulated 5 Mb of Chromosome 20 with a uniform recombination map
and sampled 1008 modern samples split evenly between the three populations
of the Out of Africa model: Yorubans (YRI), Han Chinese (CHB), and Utah
Residents with Northern and Western European Ancestry (CEU). 40 ancient
samples were also sampled. Three ancient sampling schemes were evaluated:
(1) pick samples at times randomly selected from the empirical distribution
of the ages of published ancient samples, (2) pick samples from the human
population immediately prior to the time of the Out of Africa event in this
model (5,650 generations ago), and (3) pick samples from 10,000 generations
ago. 20 simulation replicates were performed with each sampling scheme.

The first sampling scheme used the estimated ages of ancient samples from
the Reich Laboratory’s compiled dataset of published ancient samples available
at https://reich.hms.harvard.edu/downloadable-genotypes-present

-day-and-ancient-dna-data-compiled-published-papers. The ancient
sample times ranged from 90 years to 90,000, with a mean of 4,553 years (stan-
dard deviation: 4,554 years). If the randomly sampled ages were younger than
21,200 years (the split time of CEU and CHB in the Out of Africa model), they
were assigned to CEU or CHB with 50% probability. If older than the split
time, they were assigned to the NB population as described in Gutenkunst et
al. (2009). All mutations only carried by ancient samples were removed from
the simulation.

We then inferred dated tree sequences using three approaches. First, we
inferred and dated a tree sequence using only the modern samples and evalu-
ated the accuracy of the resulting allele age estimates. Second, we used these
estimated allele ages to reinfer tree sequences (still only using modern samples)
and evaluated the result. Third, we again used the allele age estimates to reinfer
tree sequences, but constrained the estimates with progressively larger numbers
of ancient samples. Allele age estimation accuracy was evaluated by compar-
ing the true allele ages from the simulated tree sequence to the estimated allele
ages using root mean squared log error (RMSLE) and Spearman’s ρ. Allele ages
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were determined as described in the previous section. While the initial iteration
step without ancient samples increases allele age estimation accuracy, adding
samples drawn from empirical distribution of ancient sample ages does not have
a noticeable effect on overall accuracy. However, increasing numbers of sam-
ples from sampling schemes (2) and (3) consistently improve both MSLE and
Spearman’s rank correlation. This is likely because older samples will “correct”
larger numbers of derived alleles that are initially estimated to be too young.

S2.6 Archaic Descent Simulation

Tree sequences encode the genetic relationships between modern and ancient
samples at every point in the genome. We used a published simulation model
approximating the Out of Africa Event with archaic introgression into the an-
cestors of Eurasians and Papuans16 to evaluate how well our inferred tree se-
quences reflect these relationships. Using an implementation of the simulation
model from stdpopsim8, we simulated 10 replicates of 15 Mb from Chromo-
some 20, sampling 200 chromosomes each from the African, West Eurasian,
East Asian, and Papuan populations. We slightly modified the ancient sam-
pling scheme from the model by sampling three archaic individuals: the Deniso-
van (two chromosomes from the sampled Denisovan lineage, 2,203 generations
ago), the Vindija (two chromosomes from the introgressing Neanderthal lineage,
1,725 generations ago), and the Altai Neanderthal (two chromosomes from the
ancestral Neanderthal lineage, 3,793 generations ago). See Jacobs et al. (2019)
Fig. S5 for a schematic summarising the model. This model defines a generation
to be 29 years (compared to 25 years in our other analyses).

We used migration records from the simulated tree sequences to determine
patterns of archaic local ancestry. This provided a “ground truth” set of intro-
gressed spans of sequence in modern samples. Migrations from Denisovan and
Neanderthal lineages to the ancestors of modern, non-African samples in the
simulated trees provide the locations of these introgressed spans of sequence in
each modern sample. Importantly, in this simulation setting introgressed tracts
exist regardless of whether or not they carry derived alleles and thus may be
undetectable.

We examined how well patterns of common ancestry between sampled ar-
chaic and modern individuals reflect archaic introgression. The simulation from
Jacobs et al. (2019) modelled introgression as “pulses” of admixture from ar-
chaics to moderns at discrete points in time. Consequently, the time to most
recent common ancestor (TMRCA) between a modern and archaic sample is
only observed to be more recent than TArchaicModern, the split time of modern
and archaic lineages occurring 20,225 generations ago, at marginal trees where
introgression occurred in the ancestors of that modern sample. However, the
TMRCA between sampled archaics and moderns may not be more recent than
TArchaicModern at all introgressed tracts: the TMRCA is older than the split
time at marginal trees where the sampled and introgressing archaics are dis-
tantly related. TMRCAs that are more recent than TArchaicModern, but older
than TDenNea, the split time of Neanderthals and Denisovans occurring 15,090
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generations ago, can be attributed to introgression from either Neanderthals or
Denisovans. Signals of introgression from these two populations may be disen-
tangled at marginal trees where the TMRCA of sampled archaics and moderns
is more recent than TDenNea.

We record tracts of common ancestry in this final category as well as the full
set of introgressed tracts from the migration records using nxc matrices, where
n is the sample size of modern individuals and c is the number of 1 kilobase
(kb) chunks in the simulated chromosome. Two introgression matrices were con-
structed, one each for the introgressing Denisovan and Neanderthal populations.
At each cell in an introgression matrix, a “1” indicates introgression from the
relevant archaic population in a modern individual in any marginal tree over-
lapping the 1 kb chunk. Three common ancestry matrices were constructed, one
each for the Vindija, Altai, and Denisovan samples. In each common ancestry
matrix, a “1” indicates that the TMRCA of the modern individual and either
of the archaic individual’s sampled chromosomes at any tree overlapping the
chunk is less than TDenNea.

Since TMRCAs of moderns and archaics more recent than TDenNea reflect
introgression from Denisovan or Neanderthal lineages, values of “1” in the com-
mon ancestry matrices are guaranteed to only exist where “1”’s are observed
in the corresponding introgression matrix. Common ancestry between moderns
and the Denisovan more recent than TDenNea encompasses ≥ 99.9% of intro-
gressed Denisovan tracts (Std Dev 0.04%). This is likely attributable to the
simulated population size of only Ne = 100 in the introgressing Denisovan D1
and D2 lineages from Jacobs et al. (2019). The Vindija Neanderthal shares
common ancestry with humans more recently than TDenNea for 61.3% (Std Dev
4.07%) of introgressed Neanderthal tracts. For the Altai, the value is 55.0%
(Std Dev 1.99%).

Next, to investigate how well our inferred tree sequences reflect these ob-
served patterns of introgression and common ancestry, we ran our iterative
approach to infer a tree sequence of modern and archaic samples from the sim-
ulated data. We used an Ne value of 10,000 and a mutation rate of 10−8 per
base pair per generation when running tsdate. We then examined the inferred
tree sequences, noting the spans of genome where the two “proxy ancestors”
associated with each archaic individual have direct descendants among modern
samples.

Observed descent from proxy archaic ancestors should overlap with signals
of introgression where sampled archaic haplotypes are a better approximation
of ancestral material than tsinfer’s inferred ancestors at a given epoch. This
approach enables an understanding of the relationships between sampled ar-
chaic and modern individuals without needing to identify a split time between
moderns and archaics. Results are expected to be heavily influenced by such fac-
tors as the sampling times of ancient individuals, relationships between modern
and ancient populations, error rates, and the quality of ancestors estimated by
tsinfer. Relationships between sampled and introgressing ancient lineages may
particularly affect the amount of introgressed material which can be recovered
from the inferred tree sequences since, as noted previously, in this simulation
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model more recent common ancestry is observed between the sampled and intro-
gressing Denisovans than between the sampled and introgressing Neanderthals.

We used the inferred tree sequences to construct three additional nxc matri-
ces which record direct descent from proxy ancestors associated with the three
sampled archaic individuals. In each cell in a matrix, a “1” records where a mod-
ern individual descends from the relevant proxy archaic sample in a marginal tree
overlapping the 1 kb chunk. Comparing the binary matrices recording ground
truth tracts of introgression or common ancestry from the simulations with the
matrices recording inferred descent from archaic samples yielded true positives
(TP), corresponding to introgression or common ancestry in the simulation and
descent in inferred tree sequence, false positives (FP), where no introgression or
common ancestry is noted in the simulation but descent is inferred, and false
negatives (FN), where introgression or common ancestry is noted in the simula-
tion but no descent is inferred. Table S1 shows the resulting rates of precision
and recall, which are defined as follows:

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
. (5)

The proportion of all modern genetic material that is introgressed from each
archaic population, the proportion of modern genetic material sharing common
ancestry with archaic samples more recently than TDenNea, and the proportion
of modern genetic material which is inferred to descend from archaic samples
are also given in Table S1.

The simulation results indicate that descent from the Vindija and Deniso-
van, and to a lesser extent the Altai, recovers ground truth introgression and
shared ancestry with high precision. In the case of the Neanderthals, where
shared ancestry tracts incompletely represent introgressed tracts, inferred de-
scent recovers more shared ancestry tracts than introgressed tracts.

It is possible to increase recall by examining patterns of common ancestry
between sampled archaics and moderns occurring more recently than a given
split time in the inferred tree sequence, as was performed in the simulated tree
sequence. The precision and recall for recovering ground truth introgressed and
shared ancestry tracts at different split times is analysed in detail in Fig. S5,
where observed precision and recall values are obtained by testing split times
in intervals between the time of each archaic sample and TDenNea. These re-
sults show that progressively older split times recover nearly all shared ancestry
tracts, though at lower levels of precision. While it is possible to use these re-
sults to choose time cutoffs for each sample which maximise recall at a given
level of precision, the optimal values derived from simulations will doubtlessly
differ from the real data due to the imperfect modelling of demographic history
as well as varying levels of error. In this study we chose to report tracts which
directly descend from these samples in order to avoid choosing a cutoff time
while likely maximising precision.
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Vindija Altai Denisovan

Introgressed Common Ancestry Introgressed Common Ancestry Introgressed Common Ancestry

Precision 0.92 (0.03) 0.87 (0.05) 0.69 (0.08) 0.59 (0.08) 0.86 (0.04) 0.86 (0.04)

Recall 0.18 (0.05) 0.28 (0.07) 0.42 (0.04) 0.65 (0.06) 0.61 (0.11) 0.61 (0.11)

Simulated %
of moderns

2.86% (1.12%) 1.77% (0.71%) 2.86% (1.12%) 1.57% (0.60%) 0.99% (0.24%) 0.98% (0.24%)

Inferred %
of moderns

0.53% (0.15%) 1.65% (0.31%) 0.69% (0.12%)

Table S1: Results of archaic descent simulations evaluating how well direct de-
scent from proxy archaic haplotypes in inferred tree sequences recovers ground
truth introgressed tracts of sequence as well as tracts where modern samples and
sampled archaics share common ancestry more recently than TDenNea. Defini-
tions of precision and recall are given in Equations 4 and 5. “Simulated %
of moderns” refers to the percentage of genetic material from all modern indi-
viduals in each simulation which is introgressed from archaics or shares recent
common ancestry with archaics. “Descendant % in moderns” is the percent-
age of modern genetic material in each inferred tree sequence which descends
from each archaic individual. In each cell, the mean values from 10 simulation
replicates is given with the standard deviation in brackets.

S3 Dataset Preparation

S3.1 Downloading and preparing publicly available data

The TGP Phase 3 GRCh37 VCF was accessed from TGP release 2013050217,
while the TGP GRCh38 variant calls were accessed from the European Variation
Archive under accession number ERZ82276618. SGDP data was downloaded
from https://sharehost.hms.harvard.edu/genetics/reich lab/sgdp/

phased data/PS2 multisample public19. The HGDP statistically phased
dataset was downloaded from ftp://ngs.sanger.ac.uk/production/hg

dp/hgdp wgs.20190516/statphase/20. The Reich laboratory provides a
compilation of 3589 genotyped ancient individuals available at https://reic

h.hms.harvard.edu/downloadable-genotypes-present-day-and-anc

ient-dna-data-compiled-published-papers (the full list of citations for
these papers is available from this link). The sequenced Denisovan, Vindija,
Altai, Ust-Ishim, Loshbour, and LBK-Stuttgart samples were downloaded from
http://cdna.eva.mpg.de/neandertal/Vindija/VCF/ and the Chagyrskaya
Neanderthal from http://ftp.eva.mpg.de/neandertal/Chagyrskaya/.

The GRCh38 reference assembly was used in all analyses with the exception
of the TGP variant age estimation analysis where GRCh37 was used. Only
a GRCh37 version of the SGDP and ancient datasets were available, so these
datasets were lifted over to GRCh38 using the Picard tool21 and the hg19 to
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hg38 UCSC LiftOver chain22.
The four archaic individuals are phased using Beagle 5.1 without a reference

panel and without imputation23. The lack of a suitable reference panel likely
results in extensive phasing error, but the high levels of homozygosity in archaic
genomes mean that errors will only occur between heterozygous sites. Further-
more, errors will only effect downstream analyses when a descendant haplotype
crosses a switch error. Indeed, these errors seem to have a limited effect, as
running the inference pipeline with unphased archaic genomes does not change
any of the conclusions we draw.

S3.2 Afanasievo Family

We generated between 5 to 8 lanes of shotgun sequencing data using an Illu-
mina HiSeqX10 instrument (2 x 101 cycles and reading out the indices with 2
x 7 cycles) from four individuals from the Afanasievo culture, using sequenc-
ing libraries for which in-solution enrichment data was previously published
in Narasimhan et al. Science 2019 (Supplementary Table 1). We merged the
paired sequences and mapped to the human genome reference sequence using
the samse command in BWA v.0.7.15-r114053 with the parameters -n 0.01, -o
2, and -l 16500, and removed duplicated molecules as described in the origi-
nal publication that generated in-solution enrichment data on these libraries.
The average coverage measured on the autosomal SNP targets used for the in-
solution enrichment experiment was 10.8x for I3388 (the mother in the family),
I3950 (the father in the family), I6714 (one of the sons in the family), and I3949
(the other son of the family).

The Afanasievo “quartet” allows for reliable phasing of ancient genomes. We
used bcftools (v1.10.2) to calculate genotype likelihoods of biallelic SNPs in the
Afanasievo samples. We used Beagle 4.023 by providing a genotype likelihood
file (gl argument) and pedigree file (ped argument) to phase this family without
any reference panel and imputation. We excluded sites with max(GP) < 0.99.

S3.3 Inferring a unified genealogy

Once VCF files from each dataset were prepared, we created .samples files, a
file format used with tsinfer, for each constituent dataset using all biallelic
SNPs with high-confidence ancestral alleles from Ensembl release 10024. The
.samples files were then combined using the merge functionality in tsinfer,
where the genotypes of variants missing from at least one sample were marked
as “missing data” to be imputed by tsinfer. A tree sequence was then inferred
and dated using modern samples from the HGDP, SGDP, and TGP datasets.
Empirical lower bounds on allele age were gathered from all ancient samples
(including unphased and genotyped samples). Variants present in an ancient
individual but missing in all modern datasets were not used. Ancient lower
bounds at each variant site were compared with estimates from the inferred tree
sequence of modern samples. The estimated age of a site in the inferred tree
sequence is defined as the oldest most recent common ancestor which possesses
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a derived variant at each site. At sites where the empirical lower bound from
ancient samples is older than our estimated age, this bound was used as the
variant age. With these constrained age estimates, the tree sequence was re-
inferred using the four archaic individuals and the Afanasievo quartet. Details
of this process can be found at https://github.com/awohns/unified genea

logy paper/all-data.
154 modern individuals appear in more than one dataset. This consists of

130 individuals which appear in both SGDP and HGDP, as well as 24 individuals
which appear in both SGDP and the TGP GRCh38 release. Duplicated individ-
uals are retained in all analyses for the following reasons: the scalability of our
methods mean that removal of these samples would result in negligible savings in
computational resources, none of the analyses we conducted would be adversely
affected by duplicated samples, and inspecting the duplicated samples revealed
disagreements in genotyping and phasing. Across all 154 duplicated samples,
the mean proportion of genotype calls that are incompatible is 1.87% (standard
deviation 1.32%). This figure was found by examining the variant sites shared
between each pair of duplicated individuals and computing what proportion of
these variants had differing numbers of derived alleles. This discrepancy can
be explained by the fact that some of the duplicated samples were sequenced
using different libraries, that different variant calling pipelines were used, by the
imputation of missing genotypes in HGDP individuals, and also potentially by
the effects of lifting over SGDP individuals from GRCh37 to GRCh38. We de-
termined phasing mismatch by examining the heterozygous sites in duplicated
individuals. This resulted in a “mismatch score” for each pair, calculated as the
percentage of derived allele mismatches between the pairs at heterzygous sites.
Two mismatch scores are calculated for each pair, based on the two possible
phasing alignments. At each duplicated pair, we find the lower mismatch score.
The mean across all pairs is 46.8% (standard deviation 2.5%), indicating that
there is almost no consistency in chromosome-wide phasing between the dupli-
cated pairs. Nevertheless, in the unified tree sequence we find that individuals
share a parent node with one another over 61.5% of the tree sequence (standard
deviation 9.9%).

S4 Pairwise Time to Most Recent Common An-
cestor

We use the unified and dated tree sequence to calculate the pairwise TMRCA for
sampled haplotypes from all 215 populations in the combined tree sequence of
HGDP, SGDP, TGP and ancient samples. This was accomplished by iterating
over the trees in the tree sequence and at each tree calculating the TMRCA
between pairs of chromosomes using the mrca function implemented in tskit.
For efficiency, we down-sampled the chromosomes by randomly selecting up to
ten samples from each population. In populations with fewer than 10 samples,
all samples are used. We then find the weighted logarithmic average of all
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TMRCAs associated with each population combination, weighted by the span
of the tree associated with each TMRCA. The logarithmic average is used as
we expect the variance of TMRCAs to increase substantially with age: all date
values are log transformed before analysis for this reason. The constrained age
estimates produced by tsdate were used in this analysis (see Methods).

The histograms of TMRCAs for each population combination can be found
in Supplementary Interactive Fig. 1. Three of these histograms are also shown
in Fig. 2.

S5 Empirical Estimates of Thousand Genome
Project Variant Ages on Chromosome 20

We compared the estimated ages of GRCh37 Chromosome 20 TGP Variants
from tsdate, Relate and GEVA. We used tsinfer to infer a tree sequence of
TGP individuals with the GRCh37 recombination map, mismatch ratios of 1,
and a precision setting of 15. The tree sequence was dated using tsdate with
Ne set to 10,000 and a mutation rate of 10−8 mutations per base pair per
generation. Default settings were used for all other parameters. Allele ages
were estimated by using the arithmetic mean of the nodes above and below the
oldest mutation. Allele age estimates from GEVA were gathered from https:

//human.genome.dating/download/index. We used the mean allele age
estimate from the joint clock as a point estimate of allele age and the upper
limit of the 95% confidence interval from the joint clock as an upper bound
estimate12. Relate TGP allele age estimates were downloaded from https:

//zenodo.org/record/3234689#.X8EXyapKhTZ. Since the publically available
Relate age estimates are calculated separately in each TGP population, we
averaged age estimates and upper bounds for alleles appearing in more than
one population. The point estimate of allele age was obtained by taking the
mean of the upper and lower age bounds.

Empirical lower bounds were provided by radiocarbon dates of ancient sam-
ples. These dates were derived from the Reich Laboratory dataset for all ancient
individuals with the exception of the Afanasievo family (which we assigned to
4.1 kya), Chagyrskyaya Neanderthal (Chagyrskaya 8) (80 kya)25, Vindija Ne-
anderthal (Vindija 33.19) (50 kya)26, Altai Neanderthal (Denisova 5) (110 kya),
Denisovan (Denisova 3) (63.9 kya)27, Ust’-Ishim (45 kya)28, Loshbour (8 kya)29

and LBK (7 kya)29. If multiple ancient samples carried a derived allele, the
oldest sample carrying the allele was used as the lower bound on the age of that
allele. This resulted in a combined dataset of 3,734 ancient individuals.

A set of 659,804 sites for which age estimates can be found from all three
methods was assembled. This excluded singletons and n − 1 tons, which GEVA

did not estimate, sites where the derived and alternate alleles were inconsistent
(as GEVA estimates the age of alternate alleles), indels, and sites with low quality
ancestral states. The relationship of allele age estimates from each method to
allele frequency is shown in Fig. S6, the distribution of ages is shown in Fig. S7,
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and the comparisons of allele ages from the differing methods to one another is
shown in Fig. S8. The combined set of ancient samples carried derived alleles at
76,889 of these sites. At each site, the oldest ancient sample carrying a derived
allele was used as the empirical lower bound on the age of the site. A comparison
of the estimated allele ages from the three methods with these bounds is shown
in Fig. 3a.

It is important to note that the distribution of age estimates varies between
the three methods (see Fig. S7), with Relate showing a higher mean estimated
age compared to the other two methods. The tsdate mean estimated allele age
at the 659,804 comparable sites is 5,919 generations and the mean upper bound
on allele age is 9,012 generations. For Relate, the equivalent values are 6,816
and 11,732 generations. Since Relate provides an estimate for each population,
these values were first found by averaging the available population-based esti-
mates for each site, then averaging all the sites. For GEVA the equivalent values
are 5,192 and 6,147 generations.

S6 Descent from Ancient Individuals

We used the unified, inferred tree sequence to investigate the genealogical rela-
tionships of ancient and modern samples. A number of studies have sought to
infer introgressed haplotypes from archaic individuals30–33 and one has inferred
an ancestral recombination graph from modern and archaic individuals34. As
shown in S2.6, our approach identifies tracts of introgressed sequence, partic-
ularly regions where sampled and introgressing archaic individuals share more
recent common ancestry, and requires no assumptions about the nature of in-
trogression.

We evaluate descent from the Afanasievo family and four archaic individuals
among younger samples in Fig. 2 and Extended Data Figs. 6-8. The simpli-
fied tree sequence of 3,754 individuals on Chromosome 20 (with unary nodes
retained) is used for this analysis. Regions of over 1 Mb without variant sites
were trimmed from the inferred tree sequence, as well as regions before the
first variant site and after the last variant site. We establish descent using the
proxy nodes associated with each ancient sample in the inferred tree sequence,
as detailed in the Methods section.

Descent from ancient individuals is described using two statistics. First, the
genomic descent statistic defined in Scheib et al. 2019 is used to evaluate the
overall amount of genetic material in each population which descends from the
proxy ancestors associated with ancient individuals. The results of this analysis
are shown for the Denisovan (Fig. 3b and Extended Data Fig. 7), Afanasievo
(Extended Data Fig. 6a), and Vindija (Extended Data Fig. 8). Second, we split
chromosomes into 1 kb chunks and assess descent from the ancient individuals in
each chunk, as described in section S2.6. Pearson product-moment correlation
coefficients were calculated using Numpy35 for the n x c matrices of descent,
where n is the number of descendants and c is the number of 1 kb blocks. The
correlation coefficients were then hierarchically clustered using the UPGMA
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algorithm implemented in Scipy36. The results of this analysis are shown for
the Denisovan (Fig. 3c) and Afanasievo (Extended Data Fig. 6b).
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Figure S1: Accuracy of the tsdate node age prior distribution. The subplots in
the left column show node ages from ten msprime simulations of length 500 kb
with 1000 samples, Ne =10,000, and r = 0. The right column shows shows re-
sults of ten simulations using r = 10−8 and the same parameters otherwise. The
top plots show the accuracy of the lognormal approximation to the conditional
coalescent and the bottom show the gamma approximation.
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Figure S2: Accuracy of tsdate at various mutation rate settings. Each row
shows the results of ten msprime simulations of 1 Mb with 500 samples, Ne=
10,000, and r = 10−8. Three different values of µ were used, 10−9, 10−8, and
10−7. In each subplot simulated allele ages are on the x-axis and estimated
allele ages are on the y-axis. The first two columns show the results of running
tsdate on topologies simulated by msprime. The third and fourth columns
show the results when running tsdate on topologies inferred by tsinfer from
the simulated genotype data. The results of the inside pass followed by either
an outside pass or outside-maximisation pass are shown.
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Figure S3: Comparison of the accuracy of tsdate, GEVA, and Relate on sim-
ulated tree sequence topologies. Thirty msprime simulations with 250 samples,
5 Mb of sequence, Ne = 10,000, and µ = r = 10−8 were used. The x-axis in
all plots is the age of derived alleles from the simulation; estimated allele ages
from the labeled method are on the y-axis. Top left subplot shows derived allele
age estimates from running tsdate on simulated topologies. Top right subplot
shows results from inferring a tree sequence topology with tsinfer, dating the
tree sequence with tsdate, and using the resulting date estimates to reinfer
and redate the tree sequence. Lower subplots show allele age estimates from
GEVA and Relate. Only alleles which were dated by all methods are shown: this
excludes singletons, n − 1 tons, and alleles which were deemed to map poorly
by tsdate or Relate.
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Figure S4: Evaluation of tsdate on simulated Chromosome 20 data.
stdpopsim and msprime were used to simulate human Chromosome 20 using
the three population Out of Africa model7. 100 samples from YRI, CEU, and
CHB were used. The top row shows the results of using tsdate on the simu-
lated tree sequence topology. The second row shows the accuracy of tsdate on
topologies from tsinfer. The third row shows the results of using topologies
produced using tsinfer’s full Li and Stephens model with error. The final row
shows the results of feeding the inferred dates from row two back into tsinfer

and running tsdate. The first column in rows 2-4 shows simulations without
genotype error, the second shows simulations with an empirical genotype error
model and the third shows an empirical genotype error model and 1% ancestral
state assignment error.
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Figure S5: Precision-recall curves for recovering relationships between archaic
and modern samples using inferred tree sequences. (a) Accuracy of recovering
introgressed tracts from archaic populations. Dotted vertical lines indicate total
amount of modern genetic material where modern samples and each archaic
individual share common ancestry in the simulated tree sequence more recently
than TDenNea as a proportion of total introgressed material. Common ancestry
in the inferred tree sequences occurs when the TMRCA of modern samples and
an archaic sample occurs more recently than a specified time cutoff. Cutoffs
ranging from the time of each archaic sample to TDenNea are tested, scatter plots
show the results from each archaic sample at each cutoff and each simulation
replicate. Dashed lines show the average precision and recall across replicates at
each cutoff. Older time cutoffs result in progressively lower precision and higher
recall. Precision is maximised at points marked with an “X”, where the cutoff
is equal to the time of the sample, i.e. where only material directly descending
from archaic proxy samples is used. (b) Precision-recall curves for recovering
only the shared ancestry tracts for the three sampled archaics indicated by the
dotted vertical lines in (a).
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Figure S6: Estimated age of TGP variants from tsdate, GEVA and Relate com-
pared to allele frequency. Estimates of allele age are found using the arithmetic
mean of the node ages above and below the mutation for tsdate and Relate.
For GEVA, the mean age of the joint clock estimate is used. The same set of
alleles is also used in Figs. 3a, S7, and S8

Figure S7: Average age of TGP variants from tsdate, GEVA and Relate. Note,
the age range of tsdate depends on the number of time slices specified by the
user (default settings were used for this paper).
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methods.



26

References

1. Kelleher, J. et al. Inferring whole-genome histories in large population
datasets. Nature genetics 51, 1330–1338 (2019).

2. Consortium, I. H. et al. A second generation human haplotype map of over
3.1 million SNPs. Nature 449, 851 (2007).

3. Haldane, J. The combination of linkage values and the calculation of dis-
tances between the loci of linked factors. J Genet 8, 299–309 (1919).

4. Li, N. & Stephens, M. Modeling linkage disequilibrium and identifying re-
combination hotspots using single-nucleotide polymorphism data. Genetics
165, 2213–2233 (2003).

5. Donnelly, P. & Leslie, S. The coalescent and its descendants. arXiv preprint
arXiv:1006.1514 (2010).

6. Rosen, Y. M. & Paten, B. J. An average-case sublinear forward algorithm
for the haploid Li and Stephens model. Algorithms for Molecular Biology
14, 11 (2019).

7. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante,
C. D. Inferring the Joint Demographic History of Multiple Populations
from Multidimensional SNP Frequency Data. PLOS Genetics 5, 1–11
(2009).

8. Adrion, J. R. et al. A community-maintained standard library of popula-
tion genetic models. eLife 9 (eds Coop, G., Wittkopp, P. J., Novembre, J.,
Sethuraman, A. & Mathieson, S.) e54967 (2020).

9. Kendall, M. & Colijn, C. Mapping phylogenetic trees to reveal distinct pat-
terns of evolution. Molecular biology and evolution 33, 2735–2743 (2016).

10. Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees. Math-
ematical biosciences 53, 131–147 (1981).

11. Kuhner, M. K. & Yamato, J. Practical Performance of Tree Comparison
Metrics. Systematic Biology 64, 205–214 (2014).

12. Albers, P. K. & McVean, G. Dating genomic variants and shared ancestry
in population-scale sequencing data. PLOS Biology 18, 1–26 (2020).

13. Wiuf, C. & Donnelly, P. Conditional genealogies and the age of a neutral
mutant. Theoretical Population Biology 56, 183–201 (1999).

14. Kelleher, J., Etheridge, A. M. & McVean, G. Efficient Coalescent Simula-
tion and Genealogical Analysis for Large Sample Sizes. PLOS Computa-
tional Biology 12, 1–22 (2016).

15. Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide
genealogy estimation for thousands of samples. Nature Genetics 51, 1321–
1329 (2019).

16. Jacobs, G. S. et al. Multiple deeply divergent Denisovan ancestries in
Papuans. Cell 177, 1010–1021 (2019).



27

17. 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature 526, 68–74 (2015).

18. Lowy-Gallego, E. et al. Variant calling on the GRCh38 assembly with
the data from phase three of the 1000 Genomes Project. Wellcome Open
Research 4 (2019).

19. Mallick, S. et al. The Simons genome diversity project: 300 genomes from
142 diverse populations. Nature 538, 201 (2016).

20. Bergström, A. et al. Insights into human genetic variation and population
history from 929 diverse genomes. Science 367 (2020).

21. Picard toolkit http://broadinstitute.github.io/picard/. 2019.

22. Kuhn, R. M., Haussler, D. & Kent, W. J. The UCSC genome browser and
associated tools. Briefings in Bioinformatics 14, 144–161 (2012).

23. Browning, S. R. & Browning, B. L. Rapid and Accurate Haplotype Phas-
ing and Missing-Data Inference for Whole-Genome Association Studies By
Use of Localized Haplotype Clustering. The American Journal of Human
Genetics 81, 1084 –1097 (2007).

24. Hunt, S. E. et al. Ensembl variation resources. Database 2018 (2018).

25. Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya
Cave. Proceedings of the National Academy of Sciences 117, 15132–15136
(2020).
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