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Mutations in non-coding cis-regulatory DNA sequences can alter gene expression, organismal phenotype, and fitness. 
Fitness landscapes, which map DNA sequence to organismal fitness, are a long-standing goal in biology, but have 
remained elusive because it is challenging to generalize accurately to the vast space of possible sequences using models 
built on measurements from a limited number of endogenous regulatory sequences. Here, we construct a sequence-to-
expression model for such a landscape and use it to decipher principles of cis-regulatory evolution. Using tens of millions 
of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Sacccharomyces 
cerevisiae, we construct a deep transformer neural network model that generalizes with exceptional accuracy, and enables 
sequence design for gene expression engineering. Using our model, we predict and experimentally validate expression 
divergence under random genetic drift and strong selection weak mutation regimes, show that conflicting expression 
objectives in different environments constrain expression adaptation, and find that stabilizing selection on gene expression 
leads to the moderation of regulatory complexity. We present an approach for detecting selective constraint on gene 
expression using our model and natural sequence variation, and validate it using observed cis-regulatory diversity across 
1,011 yeast strains, cross-species RNA-seq from three different clades, and measured expression-to-fitness curves. Finally, 
we develop a characterization of regulatory evolvability, use it to visualize fitness landscapes in two dimensions, discover 
evolvability archetypes, quantify the mutational robustness of individual sequences and highlight the mutational 
robustness of extant natural regulatory sequence populations. Our work provides a general framework that addresses key 
questions in the evolution of cis-regulatory sequences. 

Introduction 
Changes	in	cis-regulatory	elements	(CREs)	play	a	major	role	
in	the	evolution	of	gene	expression(1,	2).	Mutations	in	CREs	
can	 affect	 their	 interactions	 with	 transcription	 factors	
(TFs),	change	the	timing,	location	and	level	of	gene	expres-
sion,	 and	 impact	 organismal	 phenotype	 and	 fitness(3–6).	
While	TFs	evolve	slowly	because	they	each	regulate	many	
target	genes,	CREs	evolve	much	 faster	and	are	 thought	 to	
drive	substantial	phenotypic	variation(7–10).	Thus,	under-
standing	how	cis-regulatory	sequence	variation	affects	gene	
expression,	phenotype	and	organismal	fitness	is	fundamen-
tal	to	our	understanding	of	regulatory	evolution(6).		

A	fitness	function	maps	genotypes	(which	vary	through	
mutations)	 to	 their	 corresponding	organismal	 fitness	 val-
ues	(where	selection	operates)(11,	12).	A	complete	fitness	
landscape(13–17)	 is	defined	by	a	fitness	function	that	can	

accurately	map	each	sequence	in	a	sequence	space	to	its	as-
sociated	 organismal	 fitness,	 ideally	 coupled	 with	 an	 ap-
proach	for	visualizing	the	complete	sequence	space.	Partial	
fitness	landscapes	have	been	characterized	empirically(18,	
19),	 often	using	maximum	growth	 rate	 as	 a	 proxy	 for	 fit-
ness(18,	20–22).	Many	recent	studies	have	favored	molecu-
lar	activities	as	fitness	proxies,	which	are	less	susceptible	to	
experimental	 biases	 and	measurement	 noise(23,	 24).	 For	
example,	studies	have	now	described	empirical	fitness	land-
scapes	 of	 proteins(25,	 26),	 adeno-associated	 viruses(27),	
catalytic	 RNAs(28),	 promoters(29,	 30)	 and	 TF	 binding	
sites(31,	32),	each	using	their	respective	molecular	activi-
ties	as	indicators	of	fitness.	In	particular,	the	molecular	ac-
tivity	of	a	promoter	sequence	as	reflected	in	the	expression	
of	the	regulated	gene	has	been	used	to	build	a	‘promoter	fit-
ness	 landscape’(29).	 However,	 despite	 advances	 in	 high-
throughput	 measurements,	 empirical	 fitness	 landscape	
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studies	remain	limited	to	a	tiny	subset	of	the	complete	se-
quence	space	whose	size	grows	exponentially	with	the	se-
quence	length	(4!	for	DNA	or	RNA,	where	𝐿	is	the	length	of	
sequence)(18,	29),	and	often	sample	sequences	in	the	local	
neighborhood	of	natural	ones(18,	19,	33).		

Predicting	 expression	 phenotype	 and	 fitness	 from	 se-
quence	 would	 allow	 us	 to	 answer	 fundamental	 ques-
tions(33)	 in	 evolution	 and	 gene	 regulation	 in	 addition	 to	
providing	 an	 invaluable	 bioengineering	 tool(33–38).	 A	
model	 relating	 sequence	 to	 expression	 comprehensively	
and	accurately	could	predict	how	cis-regulatory	mutations	
affect	 expression	 and	 fitness	 (when	 coupled	with	 expres-
sion-to-fitness	curves),	design	new	sequences	with	desired	
characteristics,	determine	how	quickly	selection	can	act	to	
reach	a	new	expression	optimum,	identify	signatures	of	the	
selective	pressures	that	have	shaped	natural	cis-regulatory	
sequences	observed	in	extant	species,	visualize	fitness	land-
scapes	 in	sequence	space	and	characterize	mutational	 ro-
bustness	and	evolvability	of	cis-regulatory	sequences(6,	18,	
19,	33,	39,	40).		

Here,	we	tackle	these	long-standing	questions	by	devel-
oping	 a	 framework	 for	 studying	 cis-regulatory	 evolution	
(Fig.	1a)	based	on	a	Saccharomyces	cerevisiae	promoter	se-
quence-to-expression	model.	We	 learned	 this	model	 from	

the	measured	expression	levels	associated	with	tens	of	mil-
lions	of	random	sequences	using	a	deep	transformer	neural	
network.	 The	model	 has	 exceptional	 predictive	 accuracy,	
which	we	leverage	for	model-guided	sequence	design	with	
an	evolutionary	algorithm,	yielding	sequences	that	drive	ex-
pression	beyond	the	natural	range	in	yeast.	We	predict	(and	
validate	experimentally)	the	impact	of	random	genetic	drift	
and	the	strong-selection	weak-mutation	regime	on	gene	ex-
pression,	 show	 that	 optimizing	 conflicting	 expression	 ob-
jectives	 constrains	 expression	 adaptation	 even	 though	 a	
single	expression	objective	can	be	reached	with	few	muta-
tions,	and	 find	 that	stabilizing	selection	on	expression	re-
sults	in	a	moderation	of	regulatory	complexity.		We	use	the	
model-predicted	expression	differences	caused	by	natural	
genetic	variation	in	promoters	to	detect	signatures	of	stabi-
lizing	selection	on	expression	directly	 from	regulatory	se-
quences	(without	concomitant	expression	measurements),	
analogous	 to	 dN/dS	 in	 proteins,	 allowing	 us	 to	 predict	
whether	 a	 gene’s	 expression	 is	 conserved	 across	 species	
and	how	it	affects	organismal	 fitness.	Finally,	we	quantify	
the	evolvability	of	regulatory	sequences	by	the	extent	of	ex-
pression	changes	available	 to	each	sequence	by	mutation.	
We	relate	sequences	by	their	evolvability	in	a	two-dimen-
sional	 representation,	 distinguishing	 mutationally	 plastic	

Fig. 1 | An accurate, comprehensive sequence-to-expression model enables gene expression engineering. a, Approach overview. b,c, Accu-
rate prediction of expression from sequence. Predicted (x axis) and experimentally measured (y axis) expression in complex media for (b) random 
test sequences (sampled separately from and not overlapping with the training data) and (c) native yeast promoter sequences. Pearson’s r and 
associated P-values are shown. d, Engineering extreme expression values beyond the range of native sequences using a genetic algorithm (GA) 
and the sequence-to-expression model. Normalized kernel density estimates of the distributions of measured expression levels for native yeast 
promoter sequences (grey), and sequences designed (by the GA) to have high (red) or low (blue) expression.  
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and	 robust	 sequence	 archetypes.	 This	 representation	 of	
evolvability	allows	us	to	detect	selective	constraint	on	gene	
expression	from	individual	sequences,	shows	that	promot-
ers	of	genes	under	stabilizing	selection	on	gene	expression	
tend	to	be	mutationally	robust,	and	provides	the	basis	for	a	
systematic	exploration	of	cis-regulatory	fitness	landscapes.	

	

Results 
Learning a sequence-to-expression model from tens of mil-
lions of random sequences 
We	begin	by	building	a	model	that	takes	DNA	sequence	as	
input	 and	 predicts	 expression.	 Here,	 we	 consider	 the	 se-
quence	space	comprising	any	80	bp	DNA	sequence	that	oc-
cupies	the	-160	to	-80	region	(with	respect	to	the	Transcrip-
tion	Start	Site	(TSS))	of	a	promoter	construct	in	S.	cerevisiae	
(Methods),	a	critical	location	for	TF	binding(41)	and	deter-
minant	 of	 promoter	 activity(42).	 To	 avoid	 biases(19)	 to-
wards	 extant	 sequences,	we	measured	 the	 expression	 for	
each	of	over	20	million	randomly	sampled	80	bp	DNA	se-
quences	 using	 our	 previously	 described	 approach(42)	
(Methods).	Here,	we	clone	random	sequences	into	a	YFP	ex-
pression	vector,	transform	them	into	yeast	grown	in	a	de-
fined	 medium	 (SD-Ura,	 synthetic	 defined	 lacking	 uracil;	
Methods),	 sort	 the	yeast	 into	18	expression	bins,	and	se-
quence	the	promoters	in	the	yeast	in	each	bin	to	estimate	
expression.	

We	learned	the	model	using	a	deep	transformer	neural	
network	that	can	predict	expression	values	from	sequence,	
with	a	model	architecture	(Methods,	Supplementary	Fig.	
S1)	designed	to	reflect	known	aspects	of	cis-regulation(43,	
44).	Briefly,	the	model	has	three	blocks,	each	consisting	of	
multiple	 layers,	 and	 analogous	 to	 different	 biological	 as-
pects.	The	 first	 is	a	convolutional	block	with	 three	 layers,	
which	identifies	sites	that	are	important	for	computing	the	
expression	target,	and	are	analogous	to	a	TF	scanning	the	
length	 of	 the	 sequence	 for	 binding	 sites.	 The	 first	 layer	
learns	 an	 abstract	 representation	 of	 first-order	 TF-se-
quence	 interactions	 by	 operating	with	 convolutional	 ker-
nels	 on	 the	 sequence,	 scanning	 the	 forward	 and	 reverse	
strands	 separately	 to	 generate	 strand-specific	 features	
(each	individual	kernel	in	the	first	layer	can	be	thought	of	as	
learning	the	motif	of	one	TF,	or	a	combined	representation	
of	the	motifs)(45–48);	the	second	can	capture	interactions	
between	 strands,	 by	 using	 a	 2D	 convolution	 on	 the	 com-
bined	 features	 from	 the	 individual	 strands;	 and	 the	 third	
layer	can	capture	higher	order	interactions,	such	as	TF-TF	
cooperativity.	The	second	block	is	analogous	to	combining	
the	 biochemical	 activities	 of	 multiple	 bound	 TFs	 and	 ac-
counting	for	their	positional	activities.	It	first	uses	a	trans-
former-encoder	 with	 a	 multi-head	 self-attention	 mod-
ule(49)	to	capture	relations	between	features	extracted	by	
the	 convolutional	 block	 at	 different	 positions	 in	 the	 se-
quence,	by	attending	to	them	simultaneously	using	a	scaled	
dot	product	attention	 function.	Here,	 the	model	 can	 learn	
‘where	 to	 look’	within	 the	sequence.	Then,	a	bidirectional	
Long	Short-Term	Memory	(LSTM)	 layer	 in	 this	block	cap-
tures	 long	 range	 interactions	 between	 the	 sequence	 re-
gions.	 Finally,	 a	multi-layer	 perceptron	block	 can	 capture	
cellular	operations	that	occur	after	TFs	are	recruited	to	the	
promoter	 sequence,	 by	 pooling	 all	 the	 features	 extracted	

from	the	sequence	through	the	previous	layers	and	learning	
a	 scaling	 function	 that	 transforms	 these	 abstract	 feature	
representations	 of	 biomolecular	 interactions	 into	 an	 ex-
pression	estimate.		
The model generalizes in the sequence space to accurately 
predict expression from sequence 
To	 show	 that	 the	 learned	model	 can	 generalize,	 we	 pre-
dicted	the	expression	of	new	test	sequences	not	seen	during	
model	training,	and	compared	them	to	their	experimentally	
measured	levels	(Methods,	assayed	in	the	same	SD-Ura	de-
fined	media	used	for	generating	the	training	data).	We	ob-
tained	exceptionally	accurate	predictions	both	when	testing	
on	a	5,351	random	sequence	test	set	(Pearson’s	r	=	0.969,	P	
<	5*10-324,	Supplementary	Fig.	S2a)	and	when	testing	on	
the	3,978	native	yeast	promoter	sequences	(-160	bp	to	-80	
bp	relative	to	the	TSS	of	native	yeast	genes)	for	which	we	
quantified	expression	using	our	assay	(Pearson’s	r	=	0.95,	P	
<	5*10-324,	Supplementary	Fig.	S2b).		

As	a	contrasting	growth	condition,	we	trained	a	second	
model	using	another	30	million	sequence-expression	pairs	
measured	 separately	 in	 a	 complex	 growth	medium	 (YPD,	
Methods).	 Here,	 too,	we	 observed	 excellent	 performance	
on	9,982	random	test	sequences	(Pearson’s	r	=	0.981,	P	<	
5*10-324,	Fig.	1b)	or	3,929	native	yeast	promoter	sequences	
(Pearson’s	r	=	0.961,	P	<	5*10-324,	Fig.	1c).	These	results	rep-
resent	 a	 decrease	 in	 error	 of	 33%-50%	 compared	 to	 the	
performance	of	our	biochemical	models(42)	when	learned	
here	from	the	same	data,	highlighting	the	superior	predic-
tive	power	of	 the	deep	 transformer	model.	Moreover,	 the	
expression	measurements	 were	 highly	 correlated	 for	 the	
same	 sequences	 between	 the	 two	 media	 (Pearson’s	 r	 =	
0.978,	Supplementary	Fig.	S3a)	and	the	model	trained	on	
the	defined	medium	predicted	 expression	 in	 the	 complex	
medium	 well	 (Pearson’s	 r	 =	 0.970,	 Supplementary	 Fig.	
S3b).	However,	for	some	sequences	we	expect	differences	
between	growth	conditions,	as	we	study	below.		
Model-guided expression engineering beyond the range of 
native expression 
We	leveraged	the	high	predictive	accuracy	of	the	model	for	
a	synthetic	biology	application	of	gene	expression	engineer-
ing,	by	using	our	model	as	the	‘fitness	function’	for	a	genetic	
algorithm	(GA)	to	design	sequences	with	extreme	expres-
sion	 values.	 We	 initialized	 the	 GA	 with	 a	 population	 of	
100,000	 randomly-generated	 samples	 from	 the	 sequence	
space,	and	simulated	10	generations	to	maximize	(or	mini-
mize)	 the	 expression	 output	 (Methods).	 To	 test	whether	
the	designed	sequences	 from	the	GA	 indeed	achieve	 their	
predicted	 extreme	 expression	 levels,	 we	 synthesized	 the	
500	sequences	with	the	top	predicted	maximum	(or	mini-
mum)	 expression	 levels	 and	 tested	 them	 experimentally.	
The	 GA-designed	 sequences	 drove,	 on	 average,	 more	 ex-
treme	expression	 than	>99%	of	 native	 sequences	 (99.6%	
for	high	expressing;	99.3%	for	low),	with	~20%	of	designed	
sequences	more	extreme	than	any	native	sequence	tested	
(23.5%	 for	 high;	 18.4%	 for	 low)	 (Fig.	 1d).	 Thus,	 our	 se-
quence-to-expression	model	can	be	used	 for	gene	expres-
sion	engineering.	
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Expression divergence under random genetic drift 
We	next	assessed	the	impact	on	expression	of	different	evo-
lutionary	scenarios:	random	drift,	stabilizing	selection,	and	
directional	selection	for	extreme	expression	levels,	as	well	
as	 for	 two	 opposing	 expression	 requirements	 (Fig.	 2).	 In	
each	case	we	simulated	the	scenario	using	our	model	to	pre-
dict	the	expression	phenotype	of	each	sequence,	and	then	
tested	 the	 model’s	 evolved	 sequences	 experimentally,	
where	possible.		

We	first	simulated	random	drift	of	regulatory	sequences,	
with	no	selection	on	expression	levels.	We	randomly	intro-
duced	a	single	mutation	in	each	starting	sequence,	repeated	
this	process	for	multiple	consecutive	generations,	and	then	
used	our	model	to	predict	the	difference	in	expression	be-
tween	the	mutated	sequences	in	each	trajectory	relative	to	
the	corresponding	starting	sequence	(Fig.	2a-c).		

Expression	levels	diverged	as	the	number	of	mutations	
increased,	with	32	mutations	resulting	in	nearly	as	different	

expression	from	the	original	sequence	as	two	unrelated	se-
quences	(Fig.	2b).	We	validated	our	results	experimentally	
by	synthesizing	sequences	with	zero	to	three	random	muta-
tions	and	measuring	their	expression	in	our	assay	(Meth-
ods).	The	experimental	measurements	closely	matched	our	
predictions	in	both	complex	(Fig.	2c)	and	defined	(Supple-
mentary	Fig.	S2c)	media,	with	excellent	agreement	in	both	
expression	 change	 (Pearson’s	 r:	 0.877	 and	 0.849,	 respec-
tively;	 Supplementary	 Fig.	 S2f,g)	 and	 expression	 level	
(Pearson’s	r:	0.974	and	0.963	respectively;	Extended	Fig.	
2j,k).		
Stabilizing selection on expression leads to a moderation 
of regulatory complexity extremes 
Although	 gene	 regulatory	 networks	 often	 appear	 to	 be	
highly	interconnected(42,	50–52),	the	sources	of	this	regu-
latory	complexity	and	how	it	changes	with	the	turnover	of	
regulatory	mechanisms(53)	remain	unclear.		We	thus	used	
our	model	to	study	the	evolution	of	regulatory	complexity	

Fig. 2 | Characterizing the effects of random drift, stabilizing and directional selection on cis-regulatory sequences with the sequence-to-
expression model. a-c, Expression divergence under random genetic drift. a. Simulating trajectories. Top: An imaginary fitness landscape with 
trajectories for one (black), two (blue), three (orange), and four (green) random mutations. Bottom: Simulation procedure. b, Predicted expression 
divergence under random genetic drift. Distribution of the change in predicted expression (y axis) for 5,720 starting sequences at each mutational 
step (x axis) for trajectories simulated under random mutational drift. Silver bar: differences in expression between unrelated sequences. Midline: 
median; boxes: interquartile range; whiskers: 1.5x interquartile range. c, Experimental validation. Distribution of measured (light grey) and predicted 
(dark gray) changes in expression in complex media (y axis) for the synthesized sequences at each mutational step (x axis) from predicted mutational 
trajectories under random mutational drift. Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range.  d, Stabilizing selection on 
gene expression leads to moderation of regulatory complexity extremes. Regulatory complexity (y axis) for sequences from sequential mutational 
steps (x axis) under stabilizing selection to maintain the starting expression levels, where the regulatory interactions of starting sequences are initially 
complex (blue; n=47) or simple (orange, n=64), in complex media (YPD). Right bars: regulatory complexity for native (dark gray) and random (light 
gray) sequences. Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range. e-g, Sequences under SSWM can rapidly evolve to 
an expression optimum. e. Simulating trajectories under SSWM. Top: An imaginary fitness landscape with one trajectory to achieve an expression 
optimum. Bottom: Simulation procedure. f, Predicted expression evolution under SSWM. Distribution of predicted expression levels (y axis) in 
complex media at each mutational step (x axis) for sequence trajectories under SSWM favoring high (red) or low (blue) expression, starting with 
5,720 native promoter sequences. Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range.  g, Experimental validation. 
Experimentally measured expression distribution in complex media (y axis) for the synthesized sequences at each mutational step (x axis) from 
predicted mutational trajectories under SSWM, favoring high (red) or low (blue) expression. Midline: median; boxes: interquartile range; whiskers: 
1.5x interquartile range. h, Competing expression objectives constrain expression adaptation. Distribution of predicted expression (y axis) in complex 
(blue) and defined (red) media at each mutational step (x axis) for a starting set of 5,720 native promoter sequences optimizing for high expression 
in defined media (red) and simultaneous low expression in complex media (blue). 
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in	 the	 context	 of	 stabilizing	 selection,	 which	 favors	 the	
maintenance	of	existing	expression	levels.	First,	we	used	an	
interpretable	 biochemical	 model	 we	 previously	 devel-
oped(42)	 to	 quantify	 regulatory	 complexity,	 defined	 as	 1	
minus	 the	 Gini	 coefficient	 of	 TF	 regulatory	 interaction	
strengths	(Methods).	Starting	with	native	sequences	whose	
regulatory	complexity	 is	either	extremely	high	(many	TFs	
with	similar	contributions	to	expression)	or	 low	(few	TFs	
contribute	disproportionately	to	expression),	we	simulated	
how	regulatory	complexity	changed	under	stabilizing	selec-
tion	on	gene	expression	(with	each	starting	set	of	sequences	
chosen	to	span	a	range	of	expression	levels).	We	introduced	
single	mutations	into	each	starting	native	sequence	for	each	
of	32	consecutive	generations,	identified	the	sequences	that	
conserved	the	original	expression	level	and	selected	one	of	
them	at	random	for	the	next	generation.	To	ensure	that	ex-
pression	 levels	 remained	 unchanged,	 we	 experimentally	
measured	expression	for	generations	2,	4,	8,	16,	and	32,	and	
excluded	 any	 trajectories	 for	which	 any	 of	 these	 differed	
from	the	original	expression	level	by	more	than	1.	We	then	
asses	the	regulatory	complexity	of	the	evolved	sequences	as	
before.	

We	 found	 that	 as	 random	mutations	 accumulated,	 the	
regulatory	 complexity	 of	 sequences	 starting	 at	 both	 com-
plexity	extremes	shifted	towards	moderate	regulatory	com-
plexities	(Fig.	2d,	rightmost	blue	and	orange),	closer	to	the	
averages	 for	both	 random	and	native	 sequences	 (Fig.	2d,	
greys).	 This	 suggests	 that	 stabilizing	 selection	 on	 expres-
sion	leads	to	a	moderation	of	regulatory	complexity,	result-
ing	from	gradual	drift	in	the	roles	of	the	different	regulators.	
Further,	the	overall	distribution	of	regulatory	complexity	of	
native	 yeast	 promoters	 is	 similar	 to	 that	 of	 random	 se-
quences	 (Fig.	2d,	grey	boxes),	 suggesting	 that	 the	regula-
tory	complexity	of	native	sequences	primarily	reflects	their	
sampling	from	the	space	of	sequences	with	equivalent	ex-
pression	outcomes.		
Directional selection for extreme expression requires few 
mutations 
To	study	the	impact	of	directional	selection	on	gene	expres-
sion,	we	 used	 our	model	 to	 simulate	 the	 strong-selection	
weak-mutation	(SSWM)	regime(54,	55)	(Fig.	2e,	Methods),	
where	 each	 mutation	 is	 either	 beneficial	 or	 deleterious	
(strong	selection,	with	mutations	surviving	drift	and	fixing	
in	 an	 asexual	 population),	 and	 mutation	 rates	 are	 low	
enough	 to	 only	 consider	 single	 base	 substitutions	 during	
adaptive	 walks(56,	 57)	 (weak	mutation).	 Briefly,	 starting	
with	the	set	of	all	native	sequences,	at	each	iteration	(gen-
eration),	for	a	given	starting	sequence	of	length	L,	we	con-
sider	all	of	its	3L	single	base	mutational	neighbors,	use	our	
model	 to	 assess	 their	 expression,	 and	 take	 the	 sequence	
with	 the	 largest	 increase	 (or	 separately,	 decrease)	 in	 ex-
pression	at	each	iteration	(generation)	as	the	starting	set	of	
sequences	for	the	next	generation	(Fig.	2e,	Methods).		

Sequences	 that	 started	with	 diverse	 initial	 expression	
levels	rapidly	evolved	to	high	(or	separately,	 low)	expres-
sion,	with	the	vast	majority	evolving	close	to	saturating	ex-
treme	expression	 levels	within	3-4	mutations	 in	both	 the	
complex	 (Fig.	2f)	and	defined	 (Supplementary	Fig.	S2d)	
media	models.	We	validated	these	trajectories	experimen-
tally	for	select	series	of	sequences	(Fig.	2g,	Supplementary	
Fig.	S2e),	measuring	the	expression	driven	by	synthesized	

sequences	from	several	generations	along	simulated	muta-
tional	 trajectories	 for	 complex	 media	 (10,322	 sequences	
from	877	trajectories)	and	defined	media	(6,304	sequences	
from	637	trajectories).	We	again	observed	extreme	expres-
sion	within	3-4	mutational	steps,	with	high	agreement	be-
tween	measured	and	predicted	expression	change	(Supple-
mentary	Fig.	S2h,i;	Pearson’s	r:	0.973	and	0.956,	respec-
tively)	and	expression	levels	(Supplementary	Fig.	S2l,m;	
Pearson’s	r:	0.981	and	0.974)	along	the	trajectories	in	both	
the	complex	and	defined	media.		
Conflicting expression objectives in different environments 
constrain expression adaptation 
In	 contrast	 to	 the	 rapid	evolution	 towards	expression	ex-
tremes,	 evolution	 to	 satisfy	 two	 opposing	 expression	 re-
quirements	 (one	 in	 each	 growth	 media)	 is	 more	 con-
strained.	A	concrete	example	is	the	expression	of	the	URA3	
gene,	 which	 codes	 for	 an	 enzyme	 in	 the	 uracil	 synthesis	
pathway:	in	defined	media	lacking	uracil	organismal	fitness	
increases	with	increased	expression,	but	in	complex	media	
containing	5-FOA	fitness	decreases	with	increased	expres-
sion,	due	to	Ura3-mediated	conversion	of	5-FOA	to	toxic	5-
fluorouracil	 (Supplementary	 Fig.	 S3c).	 To	 study	 this	 re-
gime,	we	used	our	model	with	the	set	of	all	native	sequences	
(and	separately,	a	set	of	random	sequences)	as	starting	se-
quences	 and	 simulated	 trajectories	 under	 the	 SSWM	 re-
gime,	simultaneously	optimizing	for	two	competing	objec-
tives:	maximize	 expression	 in	 the	 defined	medium,	while	
minimizing	 it	 in	the	complex	medium.	Here,	we	maximize	
the	difference	in	expression	between	the	two	conditions	at	
each	iteration,	assuming	that	the	cells	are	exposed	to	both	
environments	 before	 the	 mutations	 can	 reach	 fixation	
(Methods).	 While	 the	 difference	 in	 expression	 increased	
with	each	generation	(Supplementary	Fig.	S3d,e),	the	vast	
majority	of	sequences	achieved	neither	the	maximal	nor	the	
minimal	 expression	 in	 either	 condition	 (Fig.	 2h,	 Supple-
mentary	Fig.	S3f),	for	both	native	and	random	starting	se-
quences.	Interestingly,	after	10	generations,	the	evolved	se-
quences	became	enriched	for	motifs	for	TFs	involved	in	nu-
trient	sensing	and	metabolism,	compared	to	the	starting	se-
quences	(Supplementary	Fig.	S3g).	Thus,	while	evolving	a	
sequence	to	achieve	a	single	expression	optimum	requires	
very	few	mutations,	encoding	multiple	opposite	objectives	
within	the	same	sequence	is	more	difficult,	suggesting	that	
conflicting	expression	objectives	in	different	environments	
constrain	expression	adaptation.	
The Expression Conservation Coefficient (ECC) detects 
signatures of stabilizing selection on gene expression us-
ing natural genetic variation in cis-regulatory DNA 
We	next	applied	our	sequence-to-expression	model	to	de-
tect	evidence	of	 selective	pressures	on	natural	 regulatory	
sequences,	 inspired	by	the	way	in	which	the	ratio	of	non-
synonymous	 (“non-neutral”)	 to	 synonymous	 (“neutral”)	
substitutions	 (dN/dS)	 in	 protein	 coding	 sequences	 is	 used	
estimate	the	strength	and	mode	of	natural	selection(58).	By	
analogy(59),	 for	 regulatory	 sequences(6),	 we	 used	 our	
model	 to	 assess	 the	 impact	 (a	 continuum	 between	 “non-
neutral”	 and	 “neutral”)	 of	 naturally	 occurring	 regulatory	
mutations	on	gene	expression,	compared	to	that	expected	
with	 random	mutations,	 and	 summarize	 this	with	 an	 Ex-
pression	 Conservation	 Coefficient	 (ECC)	 (Methods).	 To	
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compute	the	ECC,	we	compared,	for	each	gene’s	promoter,	
the	standard	deviation	of	 the	expression	distribution	pre-
dicted	by	the	model	for	a	set	of	naturally	varying	ortholo-
gous	 promoters	 (sB)	 to	 the	 standard	 deviation	 of	 the	 ex-
pression	distribution	predicted	for	a	matched	set	of	random	

variation	introduced	to	that	promoter	(sC;	Fig.	3a).	The	ran-
dom	variation	was	generated	by	placing	random	mutations	
within	the	gene’s	promoter	consensus	(the	most	abundant	
base	at	each	position	in	the	orthologous	set),	while	preserv-
ing	 the	 Hamming	 distance	 distribution	 observed	 in	 the	

Fig. 3 | The Expression Conservation Coefficient (ECC) detects signatures of stabilizing selection on gene expression using natural genetic 
variation in cis-regulatory DNA. a-c, a, ECC calculation from 1,011 S. cerevisiae genomes60. b, ECC distribution for S. cerevisiae genes. Frequency 
distribution of ECC values (x axis). Dashed line distinguishes regions corresponding to disruptive/positive selection (left) and stabilizing selection 
(right) and GO terms enriched by the ECC ranking. Arrowhead: ECC value for the CDC36 promoter sequence. c, Convergent regulatory evolution 
in the CDC36 promoter. Predicted expression (x axis, left bar plot) and associated number of strains (x axis, right bar plot) of all alleles among the 
analyzed CDC36 promoter sequence within 1,011 yeast isolates, along with an alignment of their UPC2 binding site sequences (left; UPC2 binding 
motif below). Red vertical lines: two independently evolved low-expressing alleles. Grey vertical boxes: key positions in the UPC2 motif with single 
nucleotide polymorphisms. d, Distribution of ECC (y axis, calculated from 1,011 S. cerevisiae genomes, top left) for S. cerevisiae genes whose 
orthologs have divergent (blue) or conserved (purple) expression (within Saccharomyces (left), Ascomycota (middle), or mammals (right) (as 
determined by cross species RNA-seq, top right). P-values: two-sided Wilcoxon rank-sum test. Midline: median; boxes: interquartile range; whiskers: 
1.5x interquartile range. e,f, Genes whose expression changes have stronger effects on organismal fitness have mutationally robust regulatory 
sequences. Mutational robustness (x axes) and fitness responsivity (e, y axis) or ECC (f; y axis) for each of 80 genes (points) for which the expression-
to-fitness curves were quantified21. Spearman’s 𝜌 and associated P-values are shown. 
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natural	sequences	(Methods).	We	define	the	ECC	for	a	gene	
as	log(sc/sB),	such	that	a	positive	ECC	indicates	stabilizing	
selection	 on	 expression	 (lower	 variance	 in	 the	 native	 se-
quences),	a	negative	ECC	indicates	diversifying	(disruptive)	
or	directional	(positive)	selection,	and	values	near	0	suggest	
neutral	drift	(see	Methods	for	definitions).		

We	calculated	the	ECC	for	5,569	S.	cerevisiae	genes	using	
the	natural	variation	observed	in	the	-160	to	-80	regions	of	
over	4.73	million	orthologous	promoter	sequences	from	the	
1,011	S.	cerevisiae	isolates(60)	(Fig.	3a,b,	Supplementary	
Table	1).	Over	70%	of	promoters	had	positive	ECCs,	sug-
gesting	 stabilizing	 selection	 (and	 conserved	 expression)	
(binomial	test	P	<	10-215)	(Fig.	3b),	consistent	with	previous	
reports	 based	 on	 direct	 measurements	 of	 gene	 expres-
sion(61,	62).	Genes	with	high	ECCs	were	enriched	in	highly-
conserved	 core	 cellular	 processes	 (e.g.,	 RNA	 and	 protein	
metabolism(63))	 (Fig.	 3b,	 Supplementary	Table	2),	 and	
those	with	 low	ECCs	were	most	enriched	 in	processes	re-
lated	 to	 carboxylic	 acid	 and	 alcohol	metabolism	 (Fig.	 3b,	
Supplementary	Table	2),	potentially	reflecting	adaptation	
of	fermentation	genes	to	the	diverse	natural	and	industrial	
settings	from	which	these	isolates	were	collected(60).		

A	striking	example	of	predicted	positive	selection	is	the	
promoter	of	CDC36	(ECC=	-2.138,	Fig.	3b),	which	has	com-
mon	natural	alleles	with	either	low	or	high	(predicted)	ex-
pression	 across	 the	 isolates	 (Fig.	 3c).	 Analysis	 of	 CDC36	
promoter	sequences	(Methods)	suggests	that	low-expres-
sion	evolved	at	least	twice	independently,	resulting	in	two	
distinct	variants	with	reduced	expression	(Fig.	3c,	allele	1	
and	2).	Interrogation	of	our	previously	published	biochem-
ical	 model	 to	 identify	 factors	 impacting	 these	 expression	
differences	(Supplementary	Fig.	S4a)	suggested	that	both	
low-expression	 alleles	 are	 explained	 by	 disruption	 of	 the	
same	binding	site	for	Upc2p,	an	ergosterol	sensing	TF	(Fig.	
3c).	The	two	mutation	events	at	adjacent	nucleotides	in	one	
TF	binding	site	support	the	hypothesis	that	these	two	inde-
pendent	mutations	 result	 from	 convergent	 evolution	 of	 a	
common	new	CDC36	regulatory	and	expression	phenotype,	
which	is	captured	by	the	low	ECC	of	CDC36.		
The ECC is consistent with cross-species RNA-seq and ex-
pression-to-fitness measurements 
ECC	values	were	consistent	with	expression	conservation	as	
measured	 for	yeast	orthologs	across	 clades	at	 short	 (Sac-
charomyces),	 medium	 (Ascomycota),	 or	 long	 (mammals)	
evolutionary	scales	(Fig.	3d).	 In	Saccharomyces,	orthologs	
with	 conserved	 expression	 levels	 across	 Saccharomyces	
species	 (as	 measured	 by	 RNA-seq(64))	 had	 significantly	
higher	ECC	(computed	from	the	1,011	yeast	isolates)	than	
genes	whose	expression	was	not	conserved	(two-sided	Wil-
coxon	 rank-sum	 test	 P	 =	 3.1*10-4)	 (Fig.	 3d,	 bottom	 left,	
Methods).	Next,	we	performed	RNA-seq	across	11	Ascomy-
cota	 yeast	 species	 (Methods),	 and	 found	 that	 orthologs	
with	conserved	expression	across	Ascomycota	had	signifi-
cantly	 higher	 ECC	 values	 (Fig.	 3d,	 bottom	 center,	 P	 =	
1.16*10-6).	Finally,	genes	with	high	ECC	values	in	the	1,011	
S.	cerevisiae	isolates	also	reflected	expression	conservation	
of	 their	 orthologs	 (one-to-one	 or	 one-to-many)	 within	
mammals(65)	(Fig.	3d,	bottom	right,	two-sided	Wilcoxon	
rank-sum	 test	P	=	0.00374,	Methods).	 Thus,	while	 yeast-
mammal	 orthologs	 are	 likely	 critical	 to	 an	 organism’s	 fit-
ness,	 those	 under	 stabilizing	 selection	 for	 expression	 in	

yeast	(by	the	ECC)	tend	also	to	be	more	conserved	in	expres-
sion	across	mammals	(by	RNA-seq).	Thus,	the	ECC	quanti-
fied	 stabilizing	 selection	 on	 expression	 in	 yeast	 and	may	
even	predict	stabilizing	selection	on	orthologs’	expression	
in	other	species.	

Genes	with	higher	ECCs	also	had	a	stronger	effect	on	or-
ganismal	 fitness	 in	S.	 cerevisiae	 upon	 changing	 their	 gene	
expression	level,	as	reflected	by	our	interrogation	of	previ-
ously	 measured	 expression-to-fitness	 relationships(21).	
Specifically,	we	analyzed	the	empirically-determined	rela-
tionships	between	 the	expression	 levels	of	each	of	 the	80	
genes	to	organismal	fitness	in	a	published	experiment(21),	
using	the	total	variation	of	the	expression-fitness	curve	as	a	
‘fitness	 responsivity’	 score	of	 how	 fitness	depends	on	 ex-
pression	 (Supplementary	 Fig.	 S5,	Methods).	 Fitness	 re-
sponsivity	was	significantly	positively	correlated	with	 the	
ECC	 (Supplementary	 Fig.	 S4b,	 Spearman	 ρ	 =	 0.326,	P	 =	
0.003).	Additionally,	we	find	the	same	qualitative	relation-
ship	between	a	gene’s	ECC	and	 fitness	responsivity	as	re-
ported	for	other	genes,	including	LCB2	(ECC	2.15	and	high	
fitness	 responsivity(66))	 and	 MLS1	 (ECC	 -1.32	 and	 ex-
tremely	 low	 fitness	 responsivity(67)).	Notably,	 fitness	 re-
sponsivity	was	not	associated	with	regulatory	sequence	di-
vergence	per	se	across	the	promoter	sequence	(as	estimated	
by	 the	mean	 Hamming	 distance	 among	 orthologous	 pro-
moters,	Methods,	Supplementary	Fig.	S4c,	Spearman	ρ	=	
0.083,	P	=	0.46),	suggesting	that	while	stabilizing	selection	
on	gene	expression	(as	determined	by	the	ECC)	can	shape	
the	types	of	mutations	that	accumulate	in	the	population,	it	
may	have	little	effect	on	the	overall	rate	at	which	mutations	
accumulate	in	promoter	regions	within	populations.	
Mutational robustness of gene promoters under stabilizing 
selection on expression 
While	a	gene’s	ECC	(computed	from	the	natural	genetic	var-
iation	in	regulatory	DNA)	represents	the	imprint	of	its	evo-
lutionary	 history,	 its	mutational	 robustness	 (assessed	 di-
rectly	from	the	gene’s	promoter	sequence)	should	describe	
how	 future	mutations	would	affect	 its	expression.	We	de-
fined	the	mutational	robustness	of	a	sequence	length	L,	as	
the	percent	of	its	3L	single	nucleotide	mutational	neighbors	
predicted	 to	 result	 in	 a	 negligible	 change	 in	 expression	
(Supplementary	 Fig.	 S4d,	Methods),	 following	 previous	
descriptions	of	mutational	robustness(68–70).		

The	 mutational	 robustness	 of	 a	 gene’s	 promoter	 se-
quence	was	positively	correlated	with	the	gene’s	fitness	re-
sponsivity	(Fig.	3e,	Spearman	ρ	=	0.476,	P	=	8.18*10-6),	sug-
gesting	 that	 fitness-responsive	 genes	 have	 evolved	 more	
mutationally	 robust	 regulatory	 sequences.	Mutational	 ro-
bustness	which,	unlike	the	ECC,	is	computed	for	single	se-
quences	without	a	set	of	variants	across	a	population,	was	
also	correlated	to	the	ECC	(Fig.	3f,	Spearman	ρ	=	0.515,	P	=	
9.99*10-7).	Similarly,	the	promoter	sequences	of	yeast	genes	
with	 conserved	 expression	 across	 Saccharomyces	
strains(64),	 Ascomycota	 species,	 or	 mammals(65)	 had	
higher	mutational	 robustness	 (P	 =	 8.4*10-3,	 6.5*10-5,	 and	
0.017,	 respectively,	 two-sided	 Wilcoxon	 rank-sum	 test).	
Thus,	genes	whose	expression	level	are	under	stabilizing	se-
lection	have	regulatory	sequences	that	are	more	robust	to	
the	 impact	 of	mutations	 (which	may	 reflect	 their	 history	
and	constrain	their	future).		
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A characterization of cis-regulatory evolvability captures 
evolutionary properties of the sequence space 
Mutational	robustness	can	facilitate	evolvability,	the	ability	
of	a	system	to	generate	heritable	phenotypic	variation,	by	
allowing	the	exploration	of	novel	genotypes	that	may	facili-
tate	 adaptation(40,	 68–70).	 To	 characterize	 regulatory	
evolvability,	we	extended	our	description	of	mutational	ro-
bustness	to	develop	a	general	representation	of	the	evolu-
tionary	properties	of	regulatory	sequences.	To	this	end,	we	
represent	each	sequence	as	a	 sorted	vector	of	 expression	
changes	 (predicted	 by	 our	 model)	 that	 are	 accessible	
through	single	base	substitutions	to	that	sequence:	we	sort	
the	 expression	 changes	 associated	 with	 the	 single	 base	
changes	 in	 every	 possible	 position	 to	 obtain	 a	 monoton-
ically	 increasing	 vector	 of	 length	3L	 for	 each	 sequence	of	
length	L	 (here,	L=80;	3L=240;	Fig.	4a,	 left,	Methods).	We	
term	 this	 representation	 the	 ‘evolvability	 vector’,	 in	 line	
with	previous	definitions	of	 evolvability(40,	68),	 however	
its	relationship	with	evolvability	is	context-dependent.	Se-
quences	for	which	mutations	change	expression	(i.e.,	their	
evolvability	vectors	have	a	large	magnitude)	are	evolvable	
in	the	sense	that	they	can	adapt	to	new	expression	optima	
easily,	but	under	stabilizing	selection	the	majority	of	muta-
tions	in	such	sequences	would	be	maladaptive,	limiting	reg-
ulatory	 program	 evolvability.	 Alternatively,	 sequences	 in	
which	mutations	tend	to	preserve	expression	are	less	evolv-
able	in	terms	of	their	expression	level,	but	are	more	evolva-
ble	in	their	regulatory	program	since	more	mutations	can	
be	tolerated.		

We	next	determined	whether	cis-regulatory	evolvability	
vectors	fell	 into	distinct	classes	by	identifying	evolvability	
archetypes:	 extreme	 canonical	 patterns	 of	 expression	
change	in	mutational	neighborhoods.	Using	our	model,	we	
computed	evolvability	vectors	for	a	new	random	sample	of	
a	million	sequences	and	then	embedded	these	evolvability	
vectors	 into	 a	 two-dimensional	 archetypal(71–73)	 latent	
space	using	an	autoencoder(74)	(Fig.	4a,	right,	Methods).	
This	archetypal	latent	space	is	represented	as	a	convex	pol-
yhedron	whose	vertices	represent	evolvability	archetypes;	
each	sequence	can	be	represented	as	a	single	point	within	
this	space.	This	characterization	of	evolvability	allows	us	to	
encode	and	visualize	sequences	by	their	evolvability	in	the	
context	of	a	fitness	landscape.		

Three	 archetypes	 captured	 most	 of	 the	 variation	 in	
evolvability	 vectors	 (Supplementary	 Fig.	 S6a,b;	 Meth-
ods),	corresponding	to	local	expression	minimum	(AMinima),	
local	expression	maximum	(AMaxima),	and	plastic	expression	
(APlastic)	 (Fig.	 4b).	 AMinima	 and	 AMaxima	 correspond	 to	 se-
quences	 where	 most	 3L	 mutational	 neighbors	 do	 not	
change	 expression,	 and	 the	 ones	 that	 do,	 increase	 it	 (for	
AMinima)	or	decrease	it	(for	AMaxima).	Conversely,	for	the	plas-
tic	 archetypal	 sequences,	 most	 3L	 mutational	 neighbors	
change	expression	and	are	equally	likely	to	decrease	or	in-
crease	 it	 (Fig.	 4b).	 In	 addition	 to	 these	 three	 archetypes,	
mutationally	 robust	 sequences	were	 present	 as	 a	 central	
cleft	 in	 the	 archetypal	 latent	 space	 (Fig.	 4b,c;	 “Robust”).	
Combining	our	sequence-to-expression	model	with	the	ex-
pression-to-fitness	 curves	 characterized	 previously(21),	
and	integrating	them	with	our	two-dimensional	represen-
tation	 of	 evolvability,	 we	 now	 have	 a	 way	 of	 visualizing	

promoter	fitness	landscapes	(Fig.	4d,	Supplementary	Fig.	
S7,	Methods).	

When	 embedding	 the	 evolvability	 vectors	 for	 native	
yeast	 sequences	 into	 the	 learned	 archetypal	 latent	 space,	
there	 was	 a	 strong	 negative	 correlation	 between	 a	 se-
quence’s	proximity	 to	 the	plastic	 archetype	and	 its	muta-
tional	 robustness	 (Fig.	 4e,	 Supplementary	 Fig.	 S6c;	
Spearman's	ρ	=	-0.746,	P	=	1.97*10-15),	the	ECC	(Fig.	4f,	Sup-
plementary	Fig.	S6d,e;	ρ	=	-0.596,	P	=	5.4*10-9),	fitness	re-
sponsivity	(Supplementary	Fig.	S6f;	ρ	=	-0.413,	P	=	1.4*10-
4),	and	expression	conservation	across	species	as	measured	
by	RNA-seq	(Ascomycota:	P	=	0.00002,	Mammals	P	=	0.0083,	
Saccharomyces	 P	 =	 0.000251;	 two-sided	 Wilcoxon	 rank-
sum	 test).	 The	 archetypal	 space	 also	 distinguishes	 native	
regulatory	 sequences	by	 their	associated	expression	 level	
(Fig.	 4g),	with	 intermediate	 expression	more	 likely	 to	 be	
near	the	plastic	archetype	(APlastic)	and	depleted	near	the	ro-
bustness	cleft	(Fig.	4g).	This	depletion	is	unlikely	to	result	
from	a	saturation	artifact	of	our	reporter	construct;	our	ra-
tiometric	sorting	strategy	allowed	us	to	detect	saturation,	
but	none	was	observed.	Instead,	the	robustness	cleft	could	
reflect	sequences	at	the	stable	extremes	of	one	or	more	ac-
tivation	steps	of	gene	expression	(e.g.	near	100%	or	0%	nu-
cleosome	occupied),	while	 the	plastic	archetype	could	 re-
flect	instability	around	the	inflection	points.		

Finally,	 we	 studied	 how	 natural	 yeast	 sequences	 ex-
plored	 evolutionary	 space.	 Using	 the	 1,011	 sequenced	 S.	
cerevisiae	 isolates(60),	we	 placed	 the	 evolvability	 vectors	
for	each	set	of	orthologous	promoters	in	the	archetypal	la-
tent	space.	When	a	gene’s	promoter	from	one	strain	is	near	
the	 plastic	 archetype,	 its	 orthologs	 in	 the	 other	 strains	
tended	to	broadly	distribute	in	the	archetypal	space	(Sup-
plementary	Fig.	S6g),	but	avoid	the	robustness	cleft	(e.g.,	
the	DBP7	promoter	from	strain	S288C;	Fig.	4h).	Conversely,	
when	a	promoter	is	near	the	robustness	cleft	(e.g.,	the	UTH1	
promoter	from	S288C),	so	are	its	orthologs	(Fig.	4i,	Supple-
mentary	Fig.	S6g).	Notably,	many	of	the	native	sequences	
in	S.	cerevisiae	are	near	the	robustness	cleft	(Fig.	4j).		

In	summary,	the	evolvability	vector,	which	can	be	com-
puted	using	our	model	directly	for	any	sequence	(without	
any	population	genetics	data),	encodes	 information	about	
the	sequence’s	evolutionary	history	and	evolvability.		

	

Discussion 
Here,	we	presented	a	framework	for	addressing	fundamen-
tal	questions	in	the	evolution	and	evolvability	of	cis-regula-
tory	 sequences(6,	40).	 The	 use	 of	 large	 scale	 random	 se-
quence	libraries(42)	and	sensitive	reporter	assays(5,	6,	75–
79)	allowed	us	to	measure	the	expression	driven	by	a	large	
number	of	sequences	without	inherent	bias	towards	natu-
rally	occurring	sequences(19).	Using	advanced	deep	learn-
ing	 approaches(49)	 and	 cutting	 edge	 computing	 hard-
ware(80)	for	training	and	inference	(Methods),	we	built	a	
model	 from	 these	 empirical	 measurements	 that	 captures	
the	complexity	of	cis-regulation	and	generalizes	accurately	
in	the	sequence	space.	Our	model	is	useful	for	gene-expres-
sion	engineering,	and	can	be	used	as	an	‘oracle’	when	devel-
oping	and	evaluating	algorithms	for	model-guided	biologi-
cal	sequence	design(34–38).	Importantly,	we	demonstrate		
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Fig. 4 | A characterization of cis-regulatory evolvability captures evolutionary properties of the sequence space and enables the 
visualization of fitness landscapes.	 a, Characterizing cis-regulatory evolvability by computing an evolvability vector and its archetypal 
representation. Left and middle: Generation of evolvability vectors for a given sequence. Right: training an autoencoder with evolvability vectors to 
generate an archetypal representation that is bounded by a simplex, and can be projected onto a 2D MDS-embedding of archetype space to visualize 
sequence spaces. b, Evolvability archetypes discovered by the autoencoder. Left: Evolvability vectors of the rank ordered (x axis) predicted change 
in expression (y axis) for native sequences closest to each of the plastic (green), maxima (red) or minima (blue) archetypes and the ‘robustness cleft’ 
(black). Right: all native yeast (S. cerevisiae S288C) promoter sequences (grey points) projected onto the archetype space by their evolvability 
vectors. Evolvability archetypes (colored circles) and their closest native sequences (s1-s4 as on left) are marked. c, Evolvability landscape captures 
mutational robustness. Evolvability vectors (points) of all native yeast promoter sequences projected onto the archetype space (coloured circles, as 
in b) and colored by mutational robustness. d, Visualizing the ABF1 promoter fitness landscape. Promoter sequences represented by their respective 
evolvability vectors are projected onto the archetype space and colored by their associated fitness as reflected by their predicted growth rate relative 
to the wildtype (color, Methods), estimated by first mapping sequences to expression with our model and then expression to fitness as measured 
and estimated previously21. e,f, The evolvability vectors’ archetypal representation predicts expression conservation from solitary sequences. 
Proximity to the plastic archetype (APlastic) (x axis) and mutational robustness (e, y axis) or ECC (f, y axis), for each of 80 genes with measured fitness 
responsivity. Top right: Spearman’s 𝜌 and associated P-value. g, Evolvability landscape captures expression levels. Evolvability vectors (points) of 
all native yeast promoter sequences projected onto the archetype space (colored circles, as in b) and colored by predicted expression level.  h,i, 
Plastic promoter sequences dynamically traverse the archetype space. Evolvability vector projections of native sequences (points) from all 1,011 S. 
cerevisiae isolates. Red points: natural promoter sequence variants for DBP7, the promoter closest to the plastic archetype (h) and for UTH1, the 
promoter closest to the robustness cleft (i). j, The robustness of native promoter sequences. Density (color) of all native yeast promoter sequences 
when their evolvability vectors are projected onto the archetype space.   
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how	to	use	the	model’s	predictive	power	to	tackle	key	ques-
tions	 in	 the	study	of	 fitness	 landscapes	 for	understanding	
the	 genotype-phenotype-fitness	 relationship(18,	 19,	 33),	
gene	 expression	 variation	 across	 strains	 and	 species(6),	
mutational	robustness(81),	and	evolvability(40,	70).	

It	has	previously	been	suggested	 that	evolution	 favors	
more	 complex	 regulatory	 solutions,	 with	 multiple	 weak	
binding	sites	rather	than	a	single	strong	site,	because	com-
plex	solutions	are	more	likely	to	be	sampled	during	evolu-
tion(82).	We	 showed	 that	 if	 stabilizing	 selection	 is	 acting	
only	on	gene	expression,	extremes	of	regulatory	complexity	
gradually	move	towards	the	intermediate	levels	of	complex-
ity,	closer	to	the	distribution	of	complexity	observed	in	na-
tive	or	 random	sequences	 (Fig.	2d).	The	 similarity	 in	 the	
regulatory	complexity	distributions	of	native	regulatory	se-
quences	and	random	sequences	supports	the	model	where	
most	 evolved	 regulatory	 sequences	 sample	potential	 con-
straint-satisfying	solutions	in	proportion	to	their	frequency	
in	the	sequence	space.	

Recent	work	proposes(83)	that	adaptation	to	new	envi-
ronments	can	be	facilitated	by	DNA	mutations	that	destroy	
or	create	TF	binding	sites	and	thus	cause	gene	mis-regula-
tion	due	to	regulatory	crosstalk,	when	a	TF	binds	the	regu-
latory	 region	of	 a	 gene	 it	 does	not	normally	 regulate.	We	
found	that	while	most	sequences	have	one	or	more	muta-
tions	available	that	are	predicted	to	dramatically	alter	ex-
pression	in	a	single	environment	(Fig.	2f,g),	few	mutations	
are	available	in	any	sequence	that	will	satisfy	competing	ex-
pression	objectives	(Fig.	2h).	This	suggests	that	it	would	be	
difficult	 for	a	single	promoter	sequence	to	encode	the	tis-
sue-specific	expression	constraints	of	a	complex	organism	
(where	 different	 cell/tissue	 types	 are	 different	 environ-
ments).	One	potential	solution	is	to	encode	the	regulatory	
activities	of	each	gene	with	multiple	regulatory	sequences,	
such	 as	 the	 distal	 transcriptional	 enhancers	 that	 regulate	
cell	type-specific	expression	in	higher	eukaryotes(84).		

The	dN/dS	ratio	has	been	used	extensively	to	character-
ize	the	evolutionary	rates	of	protein	coding	genes(85),	and	
we	developed	an	analogous(6,	59)	coefficient,	the	ECC,	for	
detecting	 evidence	 of	 selection	 on	 gene	 expression	 from	
natural	variation	within	regulatory	sequences	of	a	species.	
In	principle,	the	ECC	can	be	calculated	across	orthologous	
regulatory	sequences	 from	many	different	species	(as	op-
posed	to	individuals	within	a	species,	as	we	did	here),	but	
we	 advise	 caution	 if	 doing	 so.	 The	 ECC	 assumes	 that	 the	
function	relating	sequence	to	gene	expression	is	the	same	
across	 the	 orthologous	 sequences	 being	 compared.	 Since	
regulatory	sequences	evolve	much	 faster	 than	 the	regula-
tors	themselves(10),	this	assumption	is	likely	a	reasonable	
approximation	 within	 a	 species,	 but	 as	 evolutionary	 dis-
tances	 increase,	regulators	will	diverge,	gradually	eroding	
this	assumption.	An	alternative	is	to	use	gene	orthology	to	
infer	the	extent	of	expression	conservation	 in	one	species	
using	 ECCs	 calculated	 in	 another	 species	 (Fig.	 3d).	 How-
ever,	 such	 relations	 would	 extend	 only	 to	 well-mapped	
orthologs.	

Complementing	 the	 ECC,	 which	 requires	 multiple	
orthologs	of	 the	 regulatory	 region,	mutational	 robustness	
as	calculated	with	our	model	is	predictive	of	selective	pres-
sures	on	individual	sequences	(Fig.	3e,f).	While	we	find	that	
strong	constraint	on	 the	 function	of	 regulatory	sequences	

can	shape	them	to	be	robust	to	future	mutations,	we	con-
sider	it	unlikely	that	robustness	itself	 is	the	selected	trait,	
since	increased	robustness	to	future	mutations	is	likely	to	
be	of	little	marginal	benefit(81).	Instead,	this	may	reflect	a	
secondary	benefit	of	having	evolved	decreased	expression	
noise(86,	 87),	 or	 another	 as-yet-unknown	 mechanism.	 It	
may	also	reflect	the	fact	that	some	ancestral	sequences	may	
be	similar	in	sequence	to	the	mutational	neighbors	of	extant	
sequences,	and,	if	selective	constraints	on	gene	expression	
have	remained	stable,	these	ancestral	sequences	likely	have	
similar	expression	levels	to	the	extant	sequences.			

Our	 approach	 for	 relating	 sequences	 using	 model-de-
rived	evolvability	vectors	allows	us	to	study	the	evolution-
ary	properties	of	the	sequence	space.	Overall,	we	find	that	
sequences	 span	 an	 evolvability	 spectrum	 from	 robust	 se-
quences,	where	few	mutations	alter	expression	appreciably	
and	natural	genetic	variation	tends	to	preserve	expression,	
to	plastic,	where	most	mutations	alter	expression	and	natu-
ral	 genetic	 variation	 produced	 great	 expression	 diversity	
(Fig.	 4c,g-j).	 It	 also	 helps	 visualize(88)	 fitness	 land-
scapes(18)	 (Fig.	 4d,	 Supplementary	 Fig.	 S7)	 and	 future	
work	can	further	improve	our	understanding	of	their	global	
shape,	dimensionality	and	topography(18,	19).	

While	our	sequence-to-expression	model	produces	ex-
ceptionally	 accurate	 predictions	 and	 the	 evolutionary	 in-
sights	we	gained	 from	our	 framework	were	supported	by	
multiple	lines	of	evidence,	its	direct	application	is	currently	
limited	by	regulatory	region,	environment,	and	species.	Fur-
thermore,	while	we	explored	the	interplay	of	competing	se-
lective	pressures	in	two	environments,	most	organisms	are	
exposed	to	far	more	than	two	environments.	In	particular,	
for	multicellular	 organisms,	 selection	 acts	 simultaneously	
on	expression	levels	in	many	different	cell	types.	As	similar	
models	of	gene	regulation	are	created	for	other	species,	en-
vironments,	and	additional	regulatory	regions	(e.g.	enhanc-
ers),	we	anticipate	that	the	framework	we	presented	here	
will	continue	to	provide	insights	into	cis-regulatory	evolu-
tion.		
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Methods 
Experimental measurement of sequence-expression pairs using a Sort-
seq strategy	
We	experimentally	measured	expression	using	the	GPRA	Sort-seq	strategy	
we	previously	described(42).	Briefly,	for	each	set	of	expression	measure-
ments	mentioned,	 random	or	 designed	 single	 stranded	 oligonucleotides	
were	ordered	from	IDT	(Supplementary	Table	3),	cloned	into	a	library	as	
previously	described(42)	and	transformed	into	yeast	(strain	Y8205	for	the	
training	dataset	of	random	sequences,	and	strain	S288C::ura3	 for	all	 the	
rest	 of	 the	 sequences	 measured).	 Yeast	 were	 grown	 in	 continuous	 log	
phase,	diluting	as	necessary	to	maintain	an	OD	between	0.05	and	0.6	for	8-
10	generations	up	until	the	time	of	harvest.	Cells	were	harvested,	washed	
once	in	ice	cold	PBS,	and	kept	on	ice	in	PBS	until	sorting.	Cells	were	sorted	
into	18	uniformly-sized	expression	bins	covering	 the	majority	of	 the	ex-
pression	distribution.	Post	sort,	cells	were	re-grown	in	SD-Ura	until	satu-
ration,	plasmids	isolated,	and	sequencing	libraries	created	with	a	150	cycle	
NextSeq	kit.	For	libraries	with	random	80	bp	sequences,	sequences	were	
consolidated	as	previously	described(42).	Reads	from	other	(defined,	non-
random;	synthesized	by	Twist	Biosciences)	 libraries	were	aligned	to	the	
pre-defined	sequences	using	Bowtie2(89),	 including	only	reads	that	per-
fectly	matched	 a	 designed	 sequence.	 For	 each	 sequence,	 the	 expression	
level	was	 the	 average	 of	 the	 expression	 bins	 in	which	 it	 was	 observed,	
weighted	by	the	number	of	times	it	was	observed	in	each	bin.	These	ex-
pression	measurements	were	carried	out	separately	in	defined	media	lack-
ing	 uracil	 (SD-Ura	 (Sunrise	 Science,	 #1703-500))	 and	 complex	 media	
(YPD:	yeast	extract,	peptone,	dextrose).	
Architecture of the sequence-to-expression model	

We	 captured	 the	 relationship	 between	 promoter	 DNA	 sequence	 (s)	
and	gene	expression	level	(e)	as	a	deep	transformer	neural	network	model	
with	the	following	architecture	(Supplementary	Fig.	S1a)	:	

Input.	The	input	is	the	sequence	(s)	represented	in	one-hot	encoding	
as	previously	described	 for	DNA	sequences(45–48,	90–92).	 Input	Shape:	
(110	, 4	)	

Convolution	 Block.	 The	 convolution	 block	 is	 constructed	 in	 the	
following	order	(Supplementary	Fig.	S1b)	:	

- Revere	Complement	Aware	1D	Convolution.	 The	 forward	 and	
reverse	strand	are	operated	on	separately	with	a	convolutional	
kernel	 to	 generate	 strand	 specific	 sequence-	 environment	
interaction	features.	Kernel	Shape:	(30,	4,	256).	

- Batch	Normalization	
- Rectified	Linear	Unit	(ReLU)	
- Concatenation	of	Features	from	the	forward	and	reverse	strand	
- 2D	 Convolution:	 Convolve	 over	 the	 combined	 features	 from	

both	 the	 strands	 to	 capture	 interactions	 between	 strands.	
Kernel	Shape:	(2,	30,	4,	256)		

- Batch	Normalization	
- ReLU	
- 1D	Convolution.	Kernel	Shape:	(30,	64,	64)		
- Batch	Normalization	
- ReLU	
Transformer	Encoder	Blocks.	Two	 transformer	encoder	blocks(49)	

are	constructed	in	the	following	order	(Supplementary	Fig.	S1c):	
- Multi-Head	 Attention:	 8	 heads,	 capturing	 relations	 between	

features	 from	 different	 positions	 of	 (s)	 to	 compute	 a	
representation	for	the	features	extracted	from	the	convolution	
block	from	(s).	

- Residual	Connection	
- Layer	Normalization	
- Feed	Forward	Layer	with	8	units	
- Residual	connection	
- Layer	Normalization		
Bidirectional	LSTM	layer.	A	bidirectional	LSTM	layer	to	capture	the	

long-range	interactions	between	different	regions	of	the	sequence	with	8	
units	and	0.05	dropout	probability.	

Fully	 Connected	 Layers	 (Supplementary	 Fig.	 S1d).	 Two	 Fully	
connected	 layers	 with	 64	 Hidden	 Units,	 each	 consisting	 of	 ReLU	 and	
Dropout	(0.05	dropout	probability).	

Output.	Linear	Combination	of	64	features	extracted	as	a	result	of	all	
the	 previous	 operations	 on	 the	 sequence	 (s)	 to	 generate	 the	 predicted	
expression	(e).	
Training of the sequence-to-expression model	
For	 training,	 we	 used	 20,616,659	 random	 sequences	 for	 the	 defined	
medium	and	30,722,376	random	sequences	for	the	complex	medium	(each	
to	 train	 a	 separate	 model),	 	 along	 with	 their	 experimentally	 measured	

expression	 as	 described	 above.	 Model	 architecture	 was	 written	 in	
TensorFlow(93)	 1.14	 using	 Python	 3.6.7	 with	 multiple	 open	 source	
libraries	(citations,	where	relevant,	are	included	in	code	for	them).	A	mini-
batch	size	of	1,024	was	used	for	training	and	a	mean	squared	error	 loss	
was	 optimized	 using	 a	 RMSProp	 optimizer(94)	 with	 a	 learning	 rate	 of	
0.001.	Training	was	carried	out	on	a	Google	Cloud	Tensor	Processing	Unit	
(TPU)(80)	 v3-8.	 Evaluation	 was	 carried	 out	 on	 4	 Tesla	 M60	 GPUs.	 The	
model	 architecture	 visualization	 was	 generated	 using	 Netron	 4.5.1.	 All	
processed	 data	 and	 models	 are	 publicly	 available	 on	 Zenodo	 at	
https://zenodo.org/record/4436477	and	all	code	is	available	on	GitHub	at	
https://github.com/1edv/evolution.	 These	 TPU-compatible	 models	 (for	
both	 media)	 were	 used	 for	 computing	 the	 predicted	 expression	
corresponding	to	a	sequence	throughout	the	manuscript	unless	explicitly	
stated	otherwise	in	the	Methods	sections	below,	in	which	case	a	simpler	
version	 of	 the	model	 architecture	was	 used	 (which	 could	 be	 trained	 on	
GPUs	rather	than	TPUs).		
Architecture of the GPU-based sequence-to-expression model	
An	initial	model	trained	on	GPUs	(“GPU	model”)	used	for	some	of	the	initial	
sequence	design	and	evolutionary	simulation	sections	as	indicated	below.	
This	model	is	highly	similar	to	that	described	above	and	used	throughout	
most	 of	 the	 paper,	 	 except	 that	 it	was	 trained	using	GPUs	 (Tesla	M60s)	
rather	 than	 TPUs.	 The	 model	 did	 not	 have	 transformer	 blocks	 or	
bidirectional	 LSTM	 layers,	 which	 we	 incorporated	 into	 the	 TPU	model,	
which	required	access	to	TPUs.		

Input.	The	 input	 is	 the	sequence	(s)	represented	 in	one-hot	encoding	as	
before.	Input	Shape:	(1, 110, 4	)	

Convolution	Block.		

- For	the	forward	and	reverse	strand,	separately,		
o Strand-specific	 convolution	 layer	 1.	 Kernel	 Shape:	

(1, 30, 4, 256)	

o Strand-specific	 convolution	 layer	 2.	 Kernel	 Shape:	
(30, 1, 256, 256)	

- Concatenation	of	features	from	the	forward	and	reverse	strand	

- Convolution	layer	3.	Kernel	Shape:	(30,	1,	512,	256)		
- Convolution	layer	4.	Kernel	Shape:	(30,	1,	256,	256)		

- A	 bias	 term	 and	 a	 ReLU	 activation	 was	 added	 to	 each	
convolution	layer	in	this	block.	

Fully	Connected	Layers.		

- Fully	connected	layer	1.	Kernel	Shape:	(110*256,	256).		

- Fully	connected	layer	2.	Kernel	Shape:	(256,	256)	
- A	bias	term	and	a	ReLU	activation	were	added	to	each	layer	in	

this	block.	

Output.	Linear	Combination	of	the	256	features	extracted	as	a	result	of	all	
the	 previous	 operations	 on	 the	 sequence	 (s)	 to	 generate	 the	 predicted	
expression	(e).	

Every	 layer	was	L2	 regularized	with	a	0.0001	weight	and	had	a	dropout	
probability	of	0.2.	A	mini-batch	size	of	1,024	was	used	for	training	and	a	
mean	squared	error	loss	was	optimized	using	the	Adam	optimizer	with	an	
initial	learning	rate	of	0.005.	The	GPU	model	was	trained	on	the	same	data	
as	the	TPU	model.	Training	and	evaluation	were	carried	out	on	4	Tesla	M60	
GPUs.	
Gene expression engineering using a genetic algorithm for sequence 
design	
To	 predict	 new	 sequences	 with	 desired	 expression	 we	 implemented	 a	
genetic	 algorithm	 (GA)	 with	 the	 distributed	 evolutionary	 algorithms	 in	
python	(DEAP)	package(95).	The	mutation	probability	and	the	two-point	
crossover	probability	were	 set	 to	0.1	 and	 the	 selection	 tournament	 size	
was	3.	The	initial	population	size	was	100,000	and	the	GA	was	run	for	10	
generations.	 The	 GPU	 model	 was	 used	 as	 the	 basis	 for	 the	 objective	
function	for	GA,	which	was	maximized	for	high	expression	and	minimized	
for	low	expression	(maximizing	negative	predicted	expression).	 	The	top	
500	sequences	were	synthesized	(by	IDT)	and	expression	was	measured	
experimentally	using	our	reporter	assay,	as	described	above.	
Characterizing random genetic drift	
To	 simulate	 neutral	mutational	 drift	 (Fig.	 2a),	 we	 started	with	 a	 set	 of	
5,720	 random	 sequences,	 in	 generation	 0.	 For	 each	 sequence	 in	 this	
starting	 set,	 we	 picked	 a	 new	 single	 sequence	 from	 its	 3L	 mutational	
neighborhood	(the	set	of	all	sequences	at	a	Hamming	distance	of	1	from	a	
sequence	of	length	L)	randomly	and	calculated	the	difference	in	expression	
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between	the	new	sequence	and	the	starting	sequence	using	the	model.	This	
was	done	for	each	starting	sequence	to	get	generation	1.	Each	subsequent	
generation	n,	was	produced	by	picking	a	single	sequence	randomly	from	
the	 3L	 mutational	 neighborhood	 of	 each	 sequence	 in	 the	 preceding	
generation	n-1.	The	simulation	was	carried	out	for	40	generations.		

For	 experimental	 validation,	 we	 synthesized	 1,000	 random	 starting	
sequences,	 and	 introduced	 between	 one	 to	 three	 random	mutations	 to	
these	sequences.	The	expression	levels	of	starting	and	mutated	sequences	
were	measured	in	both	complex	and	defined	media	experimentally	using	
our	 reporter	 assay.	 For	990	of	 these	1,000	 starting	 sequences,	we	were	
able	 to	 make	 experimental	 measurements	 for	 all	 three	 mutational	
distances.	 Additionally,	 we	 introduced	 20	 (median)	 separate	 single	
mutations	each	to	196	native	sequences,	synthesized	and	measured	their	
expression	similarly	for	both	of	these	media;	these	were	also	included	in	
the	boxes	for	one	mutational	step	in	Fig.	2c	and	Supplementary	Fig.	S2c.	
Characterizing the regulatory complexity of a sequence	
To	estimate	the	regulatory	complexity	of	a	sequence,	we	calculated	the	Gini	
coefficient	 of	 the	 regulatory	 interaction	 strengths	 for	 each	 TF.	We	 first	
trained	 a	 new	 biochemical	 model	 with	 our	 defined	 media	 data	 to	
complement	 the	 existing	 one	 trained	 on	 complex	 media,	 using	 our	
published	 model	 architecture	 of	 TF	 binding	 and	 position-aware	
activity(42)	and	the	training	procedure	previously	described(42).	We	then	
individually	 calculated	 the	 regulatory	 interaction	 strength	 for	 each	
regulator	by	setting	the	concentration	parameter	for	that	TF	(individually)	
to	0	 in	 the	 learned	model,	 and	used	 the	model	 to	quantify	 the	 resulting	
change	in	expression,	as	previously	described(42).	The	resulting	vector	of	
interaction	 strengths	 was	 used	 to	 calculate	 a	 Gini	 coefficient	 for	 each	
sequence,	 separately	 for	 the	 complex	 and	 defined	 media	 models.	
Regulatory	complexity	for	a	sequence	is	then	1-Gini.	As	starting	points	for	
our	trajectories,	we	selected	200	native	promoter	sequences	(from	-160	to	
-80,	relative	to	the	TSS)	with	relatively	high	regulatory	complexity	and	200	
with	relatively	low	regulatory	complexity,	spanning	the	range	of	predicted	
expression	levels,	as	starting	points	for	our	trajectories.	

Trajectories	 for	 stabilizing	 selection	 on	 regulatory	 complexity	 ex-
tremes	 were	 designed	 using	 the	 GPU	 model.	 Here,	 we	 required	 all	 se-
quences	to	maintain	a	predicted	expression	level	within	0.5	of	the	original	
expression	levels	at	all	steps	along	the	trajectory.	In	order	to	ensure	that	
expression	was	unchanged,	we	measured	expression	level	experimentally	
for	sequences	along	a	trajectory	at	growing	mutational	steps	from	the	ini-
tial	sequence	(2,	4,	8,	16,	32	mutations),	as	before,	and	excluded	any	trajec-
tories	where	one	or	more	of	these	points	were	missing	measurements.	Fi-
nally,	we	restricted	analysis	to	only	those	trajectories	for	which	the	meas-
ured	expression	at	no	point	differed	from	the	starting	measured	expres-
sion	level	by	more	than	1.	This	resulted	in	a	final	set	of	47	trajectories	start-
ing	with	high	regulatory	complexity,	and	64	trajectories	starting	with	low	
regulatory	complexity.		
Characterizing directional trajectories under SSWM	
To	simulate	trajectories	under	a	Strong	Selection-Weak	Mutation	(SSWM)	
regime,	we	started	with	the	set	of	all	native	yeast	sequences	(defined	as	the	
subset	 from	-160	to	-80	relative	to	the	TSS	for	all	 the	genes	 in	the	yeast	
reference	genome	for	which	we	had	a	good	TSS	estimate	(Supplementary	
Table	 3	 in	 (42))	 as	 the	 starting	 generation	 0.	 For	 each	 sequence	 in	 this	
starting	generation,	we	picked	the	sequence	from	its	3L	mutational	neigh-
borhood	that	had	the	maximal	(or	separately,	minimal)	predicted	expres-
sion	using	our	model	 to	get	generation	1.	Each	subsequent	generation	n	
was	produced	by	picking	for	each	sequence	in	generation	n-1	the	sequence	
from	 its	 3L	 mutational	 neighborhood	 with	 the	 maximal	 (or	 separately,	
minimal)	expression.	The	simulation	was	carried	out	for	10	rounds.		

For	 experimental	 validation,	 we	 synthesized	 a	 subset	 of	 sequences	
from	several	generations	along	simulated	mutational	trajectories	using	the	
GPU	model 	for	 defined	 (6,304	 sequences	 from	 637	 trajectories,	 591	 of	
which	had	every	sequence	along	the	trajectory	successfully	measured)	and	
complex	media	(10,322	sequences	from	877	trajectories,	805	of	which	had	
every	sequence	along	the	trajectory	successfully	measured	)	and	measured	
their	expression	in	the	corresponding	media	experimentally	using	our	re-
porter	assay.	
Measuring the URA3 expression-to-fitness relationship	
We	 studied	 two	 complementary	 environments	 with	 opposite	 selective	
pressures	on	the	expression	of	URA3	(encoding	an	enzyme	responsible	for	
uracil	synthesis):	defined	media,	where	organismal	fitness	increases	with	
gene	expression	(up	to	saturation)	and	complex	media	+	5-FOA,	where	fit-
ness	decreases	with	Ura3	expression.		

We	used	 the	GPU	models	 trained	 on	defined	 and	 complex	media	 to	
choose	a	set	of	11	sequences	that	span	a	broad	range	of	predicted	expres-
sion	levels	in	the	two	media	when	cloned	into	a	YFP	expression	vector(42).	

We	experimentally	estimated	the	relationship	between	expression	of	URA3	
and	organismal	fitness	in	yeast,	from	these	11	sequences,	by	cloning	pro-
moter	sequence	in	front	of	YFP	to	measure	expression	level	and	in	front	of	
URA3	 to	measure	 fitness.	 Unless	 otherwise	 noted,	 yeast	 were	 grown	 at	
30°C,	 in	an	orbital	shaker	 incubator	at	225	RPM.	Each	vector	was	trans-
formed	 into	 yeast	 (S288C::ura3),	 and	 three	 independent	 transformants	
were	selected	per	vector	to	serve	as	biological	replicates.	For	measuring	
expression,	yeast	were	grown	overnight	in	either	YPD+NAT	(yeast	extract,	
peptone,	dextrose,	with	75µg/ml	nourseothricin)	or	SD-Ura	(synthetic	de-
fined	media,	lacking	uracil;	Sunrise	Science	1703-500),	and	then	re-inocu-
lated	in	the	morning	and	allowed	to	grow	for	6	hours	prior	to	measuring	
expression	by	flow	cytometry	for	each	replicate	as	the	log	ratio	of	YFP	to	
the	constant	background	RFP,	including	only	cells	obtaining	the	top	50%	
of	RFP	expression.	Fitness	was	obtained	by	measuring	the	growth	rate	of	
each	 yeast	 strain	 in	 either	 SD-Ura	 or	 YPD+NAT+5-FOA	 (0.25	mg/ml	 5-
FOA).	Yeast	were	grown	continuously	in	triplicate	in	log	phase,	with	linear	
shaking	at	30°C	in	a	Synergy	H1	plate	reader	(Biotek),	by	diluting	each	well	
to	maintain	OD<0.7,	with	OD	measured	at	15	minute	intervals.	Growth	rate	
was	 defined	 for	 each	 replicate	 as	 the	 median	 of	 the	 instantaneous	
smoothed	 growth	 rates	 over	 5	measurements	 in	 log	 phase,	 considering	
only	 time	 points	 where	 0.05<OD<0.5.	 Each	 promoter’s	 expression	 and	
growth	rate	were	summarized	as	the	mean	of	the	three	replicates.	
Characterizing trajectories under conflicting expression objectives in 
different environments	
To	simulate	sequence	evolution	in	two	complementary	environments	with	
opposite	 selective	 pressures	 (defined	 media	 and	 complex	 media),	 we	
started	with	the	set	of	all	native	yeast	sequences	as	the	starting	generation	
0,	and	defined	the	objective	function	as	the	difference	in	predicted	expres-
sion	between	defined	and	complex	media	using	the	models	trained	in	the	
respective	media.	 In	one	experiment,	we	maximized	 this	difference	 (de-
fined	minus	complex),	and	the	other	we	minimized	it	(maximizing	complex	
minus	defined).	For	each	sequence	in	generation	0,	we	picked	the	sequence	
from	 its	 3L	 mutational	 neighborhood	 that	 had	 the	 maximum	 (or	 sepa-
rately,	minimum)	value	for	the	objective	function	as	generation	1	using	the	
model.	Each	subsequent	generation	n	was	produced	by	picking	for	each	se-
quence	 in	generation	n-1	the	sequence	from	its	3L	mutational	neighbor-
hood	with	the	maximum	(or	separately,	minimum)	value	for	the	objective	
function,	to	a	total	of	10	generations.		

We	de	novo	 identified	motifs	that	were	enriched	in	the	sequences	of	
generation	10	compared	to	the	starting	sequences	using	DREME(96),	and	
searched	each	of	the	top	5	consensus	motifs	in	the	YeTFaSCo	database(97),	
reporting	the	closest	match,	or	one	of	multiple	similar	matches.		
Characterizing Finding orthologous promoters in the 1,011 S. cere-
visiae genomes dataset	
To	identify	orthologs	of	S288C	promoters	in	the	whole	genome	sequences	
of	 the	 1,011	 yeast	 strains(60),	we	 used	 BLAT(98)	 to	 identify	 regions	 of	
≥80%	identity	with	each	-160	to	-80	region	(relative	to	the	TSS)	annotated	
in	 the	 reference	 S288C	 genome	 sequence	 (R64)(99).	We	 excluded	 on	 a	
gene-by-gene	basis	any	strains	with	more	than	one	such	match,	where	the	
match	contained	insertions	or	deletions,	or	had	incomplete	matches.	Genes	
with	more	than	1.2	matches	with	≥80%	identity	per	genome,	on	average,	
were	excluded	altogether.			
Computing the expression conservation coefficient (ECC)	
To	calculate	the	ECC,	for	each	yeast	gene	promoter,	we	used	the	model	to	
predict	an	expression	value	 for	each	orthologous	promoter	 in	 the	1,011	
yeast	genomes	(above),	defining	an	expression	distribution	with	a	stand-
ard	deviation	σB.	We	also	generated,	from	each	gene’s	consensus	promoter	
sequence	(defined	as	the	most	abundant	base	at	each	position	across	the	
strains),	a	set	of	sequences	with	random	mutations,	such	that	the	number	
of	sequences	at	each	Hamming	distance	from	the	consensus	promoter	se-
quence	was	the	same	for	the	natural	and	simulated	sets.	We	used	the	same	
model	to	predict	the	expression	of	the	simulated	sequences,	and	calculate	
its	standard	deviation	σC.	The	nominal	ECC	is	log(σC/σB).	Because	the	vari-
ance	on	simulated	sequences	is	better	estimated	than	in	natural	orthologs	
(whose	sequences	may	be	more	constrained),	we	subtract	a	constant	cor-
rection	factor	calculated	by	creating	a	second	simulated	set	of	randomly	
mutated	sequences	whose	diversity	is	limited	to	the	same	extent	as	in	the	
natural	 set,	 by	 creating	only	 one	 random	mutation	 for	 every	unique	 se-
quence	in	the	set	of	native	orthologs.	We	then	predict	expression	for	this	
second	set,	and	use	this	standard	deviation	(σC’)	to	calculate	a	null	ECC	for	
each	gene	(log(σC/σC’));	he	median	of	these	null	ECCs	over	all	the	genes	is	
used	as	the	constant	correction	factor	C = median∀"#$#%,' 5log((
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The	computed	ECC	values	for	all	yeast	genes,	available	in	Supplementary	
Table	1,	were	used	to	identify	cases	or	presumed	stabilizing	selection	(se-
lection	favoring	a	fixed	non-extreme	value	of	a	trait),	diversifying	(disrup-
tive)	selection	(selection	favoring	more	than	one	extreme	values	of	a	trait;	
as	opposed	to	a	single	fixed	intermediate	value),	and	directional	(positive)	
selection	(selection	favoring	a	single	extreme	value	of	a	trait	over	all	other	
possible	values	of	the	trait).	We	re-computed	the	ECC	values	for	all	yeast	
genes	using	the	S288C	reference	sequences	 instead	of	 the	consensus	se-
quence	for	the	promoters	of	each	gene	and	got	very	similar	results.	
Inferring expression conservation across Saccharomyces species us-
ing RNA-seq data and comparing with ECC values	
Published	RPKM	values	 for	orthologs	of	S.	cerevisiae	genes	 in	closely	re-
lated	Saccharomyces	species(64)	were	obtained	from	the	Gene	Expression	
Omnibus	 (GEO)	 (accession	GSE83120).	Only	genes	 for	which	expression	
was	quantified	in	all	species	were	used	in	subsequent	analysis.	RPKM	val-
ues	were	𝑙𝑜𝑔(	scaled	after	adding	a	pseudo	count	of	2,	and	the	variance	in	
expression	 of	 each	 gene	 across	 the	 species	 was	 calculated.	 We	 ranked	
genes	by	their	gene	expression	variance,	and	took	the	2%	of	genes	with	the	
lowest	 variance	as	 those	 considered	 to	have	 conserved	gene	expression	
levels	 (‘expression	 conserved’),	while	 the	 2%	with	 the	 highest	 variance	
were	considered	‘expression	not-conserved’.	To	compare	to	ECC	values,	we	
estimated	 the	 p-value	 of	 a	 two-sided	 Wilcoxon	 rank-sum	 test	 (imple-
mented	using	the	scipy.stats.ranksums	SciPy(100)	function)	comparing	the	
ECC	values	 for	 genes	 in	 the	 ‘expression	 conserved’	 and	 ‘expression	not-
conserved’	categories.	To	control	for	the	dependence	between	expression	
mean	and	variance,	we	also	repeated	the	analysis	using	the	coefficient	of	
variation	(P	=	1.05*10-4)	and	the	coefficient	of	dispersion	(P	=	2.42*10-4)	
instead	of	variance	and	obtained	similar	results.	
Experimental protocol for RNA-seq measurements from 11 Ascomy-
cota species	

We	performed	RNA-seq	on	the	following	11	Ascomycota	yeast	species:	Sac-
charomyces	cerevisiae,	Saccharomyces	bayanus,	Naumovozyma	(Saccharo-
myces)	 castellii,	 Candida	 glabrata,	 Kluyveromyces	 lactis,	 Kluyveromyces	
waltii,	Candida	albicans,	Yarrowia	 lipolytica,	Schizosaccharomyces	 japoni-
cus,	 Schizosaccharomyces	 octosporus,	 and	 Schizosaccharomyces	 pombe.	
Each	of	 the	11	species	was	grown	in	BMW	medium,	chosen	to	minimize	
cross-species	growth	differences,	as	previously	described(101).	N.	castellii	
was	grown	at	25℃	while	the	rest	of	the	species	were	grown	at	30℃.	RNe-
asy	Midi	or	Mini	Kits	(Qiagen,	Valencia,	CA)	were	used	to	isolate	total	RNA	
from	log-phase	cells	by	mechanical	lysis	using	the	manufacturer	instruc-
tions	as	previously	described(101).	dUTP	strand-specific	RNA-seq	libraries	
were	constructed	as	previously	described(102)	with	the	following	modifi-
cations.	(1)	The	polyA+-selected	RNA	was	fragmented	in	a	40	µl	reaction	
containing	1x	Fragmentation	Buffer	(Affymetrix)	by	heating	at	80℃	for	4	
minutes	followed	by	cleanup	via	ethanol	precipitation	for	all	libraries	(ex-
cept	Y.	lipolytica,	S.	pombe,	S.	japonicus,	and	S.	octosporus;	for	these	species,	
the	conditions	described	previously	were	used(102)),	followed	by	cleanup	
via	1.8x	RNAClean	XP	beads	(Beckman	Coulter	Genomics).	(2)	For	C.	gla-
brata,	K.	lactis,	S.	bayanus,	S.	pombe,	S.	japonicus,	and	S.	octosporus	libraries,	
the	adapter	ligation	was	performed	overnight	at	16℃.	For	the	rest,	this	was	
done	at	16℃	for	2	hours	as	described	previously(102).	(3)	Normalization	
was	carried	out	based	on	the	cDNA	input	and	pooling	of	selected	Illumina	
barcoded-adaptor-ligated	cDNA	products	followed	by	gel	size	selection	oc-
curred	as	follows:	range	of	275	to	575	bp	for	pooled	C.	albicans,	K.	waltii,	
and	N.	castellii	libraries,	and	375	to	575	bp	for	C.	glabrata,	K.	lactis,	and	S.	
bayanus	libraries.	For	the	other	libraries,	no	pooling	was	performed	before	
gel	size-selection	–	range	of	310	to	510	bp	for	Y.	lipolytica	and	350	to	550	
bp	for	S.	pombe,	S.	japonicus,	and	S.	octosporus.	(4)	The	final	PCR	product	
was	purified	by	1.8x	AMPure	XP	beads	(Beckman	Coulter	Genomics)	fol-
lowed	by	a	second	gel	size-selection	for	the	range	of	300	to	575	bp	for	C.	
albicans,	K.	waltii,	and	S.	castellii	libraries,	but	no	second	gel	size-selection	
was	 performed	 for	 the	 other	 libraries.	 The	 pooled	 final	 library	was	 se-
quenced	on	one	to	four	lanes	of	HiSeq2000	(Illumina)	with	68	base	(Y.	lip-
olytica	had	76	base)	paired-end	reads	and	8	base	index	reads.	
Transcript assembly, mapping and expression calculation for the 11 As-
comycota species RNA-seq	
For	each	of	the	11	Ascomycota	yeast	species	above,	reads	were	assembled	
using	 Trinity(103)(version	 ‘trinityrnaseq_r2012-05-18’)	 and	 the	 assem-
bled	 transcripts	were	mapped	onto	 the	assemblies	 to	 the	 respective	ge-
nomes	using	GMAP(104).	The	Jaccard	coefficient	was	used	to	join	adjacent	
assemblies	 given	 enough	 connecting	 reads	 (using	 the	 Trinity	 default	 of	
0.35	 for	 the	 Jaccard	 cutoff).	 Finally,	 upon	 mapping	 all	 assembled	

transcripts,	the	Jaccard	coefficient	was	used	to	clip	assemblies	which	did	
not	have	enough	support	over	a	certain	region.	For	each	of	the	species,	as-
sembled	 transcripts	 were	 mapped	 to	 the	 genome	 sequence(105)	 using	
BLAT(98).	Estimated	expression	values	were	calculated	for	each	transcript	
using	RSEM(106)	(defined	in	RSEM	as	the	estimate	of	the	number	of	frag-
ments	that	are	derived	from	a	given	isoform	or	gene,	or	the	expectation	of	
the	number	of	alignable	and	unfiltered	fragments	that	are	derived	from	an	
isoform	or	gene	given	 the	maximum	likelihood	abundances).	Only	reads	
mapping	to	the	sense	mRNA	strand	were	considered.	Orthology	between	
genes	in	different	species	was	used	as	previously	described(105).	
Inferring expression conservation across Ascomycota species using 
our RNA-seq data and comparing with ECC values	
Estimated	 expression	 values	 from	 the	 11	 Ascomycota	 species	 RNA-seq	
data	were	used	after	removing	all	genes	with	NA	values	in	expression	for	
more	than	three	species.	Estimated	expression	values	were	𝑙𝑜𝑔(	scaled	af-
ter	adding	a	pseudo	count	of	1,	and	the	variance	in	expression	for	each	gene	
across	the	species	was	calculated.	Genes	were	ordered	by	their	variance	in	
expression	across	the	reported	fungal	species.	Here,	the	10%	of	genes	with	
the	 lowest	 expression	variance	were	 considered	 to	have	 ‘conserved’	 ex-
pression,	and	the	10%	with	highest	expression	variance	were	considered	
to	 have	 expression	 ‘not	 conserved’.	 To	 compare	 to	 ECC	 values,	we	 esti-
mated	the	p-value	of	a	 two-sided	Wilcoxon	rank-sum	test	(implemented	
using	the	scipy.stats.ranksums	SciPy(100)	function)	comparing	the	ECC	val-
ues	 for	 genes	 in	 the	 ‘conserved’	 and	 ‘not	 conserved’	 categories.	We	 ob-
tained	similar	results	when	we	repeated	the	analysis	using	the	coefficient	
of	variation	(P	=	4.22*10-5)	and	the	coefficient	of	dispersion	(P	=	8.05*10-
5)	instead	of	variance.	
Inferring expression conservation across Mammalian species using 
RNA-seq data and comparing with ECC values	
Ensembl	 Biomart(107)	 was	 used	 to	 find	 one	 to	 one	 or	 one	 to	 many	
orthologs	of	S.	cerevisiae	genes	in	humans	(of	'Human	homology	type'	ei-
ther	 ‘ortholog_one2one’	 or	 'ortholog_one2many';	 all	 ‘many2many’	
orthologs	were	excluded).	A	percent	identity	>50%	(‘%id.	query	gene	iden-
tical	to	target	Human	gene’)	was	also	required	for	an	ortholog	pair	to	be	
used	in	the	subsequent	analysis.	For	the	retained	human	orthologs	of	yeast	
genes,	 we	 directly	 used	 the	 previously	 reported	 ‘evolutionary	 variance’	
values	across	mammalian	species	from	the	original	publication(65)	(based	
on	an	Ornstein	Uhlenbeck	(OU	model)(65)).	Here,	the	25%	of	genes	with	
the	lowest	‘evolutionary	variance’	were	considered	to	have	conserved	ex-
pression	and	the	top	25%	were	considered	to	be	not	conserved	(the	same	
thresholds	used	 in	 the	original	study(65)).	This	was	done	separately	 for	
each	profiled	tissue	(brain,	heart,	kidney,	liver,	lung	and	skeletal	muscle).	
We	verified	that	were	no	genes	with	conflicting	expression	conservation	
classes	among	 tissues.	 Subsequently,	 a	human	ortholog	 for	 a	yeast	 gene	
was	considered	to	have	conserved	(or	non-conserved)	expression	if	it	was	
found	to	have	conserved	(or	non-conserved)	expression	in	at	least	one	of	
the	profiled	tissues.	To	compare	to	ECC	values,	we	estimated	the	p-value	of	
a	 two-sided	 Wilcoxon	 rank-sum	 test	 (implemented	 using	 the	
scipy.stats.ranksums	 SciPy(100)	 function)	 comparing	 the	 ECC	 values	 for	
genes	in	the	“conserved”	and	“not	conserved”	categories.		
Quantifying sequence dissimilarity using mean Hamming distance	
For	each	group	of	orthologous	yeast	gene	promoters	(with	ungapped	align-
ments),	we	calculated	the	mean	of	Hamming	distances	between	each	pair	
of	orthologous	promoters	across	the	1,011	isolates.	
Fitness responsivity	
Published	 expression-to-fitness	 curves	 in	 glucose	 media	 for	 each	 of	 80	
genes	were	obtained	from	the	Supplementary	Data	of	the	original	publica-
tion(21).	For	each	of	these	curves,	the	total	variation	(Supplementary	Fig.	
S5)	was	calculated	by	partitioning	the	expression	range	into	36	regular	in-
tervals	(as	reported	in	the	‘impulse	fit’	of	the	expression-to-fitness	curves	
in	the	original	publication(21))	and	summing	the	absolute	difference	in	fit-
ness	 at	 the	 endpoints	 of	 each	 partition	 as	 follows	 correction	 factor		
∑|𝐹-./.(𝑒'01) −	𝐹-./.(𝑒')|,	for	each	gene’s	expression-to-fitness	function,	
𝐹-./.(𝑒).	
Mutational robustness	
For	every	sequence,	mutational	robustness	was	defined	as	the	fraction	of	
sequences	in	its	3L	mutational	neighborhood	that	altered	the	expression	
by	an	amount	less	than	𝜖,	where	𝜖	is	set	at	two	times	the	standard	deviation	
of	expression	variance	across	all	genes	with	an	ECC	>0	(here,	𝜖 =	0.1616;	
ECC	calculated	using	the	1,011	S.	cerevisiae	genomes,	Supplementary	Fig.	
S4d).	Using	different	values	for	𝜖	yielded	very	similar	results.	
The evolvability vector	
To	compute	an	evolvability	vector	for	a	sequence	𝑠2,	for	each	sequence	𝑠'	
in	 the	 3L	 mutational	 neighborhood	 of	 𝑠2 ,	 we	 calculate	 the	 difference	
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between	the	predicted	expression	of	𝑠'	and	that	of	𝑠2	:	𝑑' = 𝑓(𝑠') − 	𝑓(𝑠2),	
where	𝑓(𝑠)	represents	 the	predicted	expression	of	 the	model.	We	define	
the	evolvability	vectors	as	the	vector	D	({𝑑1, 𝑑(, … , 𝑑34}),	sorted	such	that		
𝑑' ≥ 𝑑'51		, ∀𝑖	(i.e.	𝑑'	values	are	in	ascending	order).		
Archetypal analysis of the sequence space using evolvability vectors	
The	evolvability	vectors	for	a	new	random	sample	of	a	million	sequences	
were	used	as	 input	 to	an	autoencoder	with	an	archetypal	 regularization	
constraint(74)	on	the	embedding	layer.	The	autoencoder	was	trained	using	
the	AANet	implementation	made	available	with	the	publication(74)	with	
no	noise	added	to	the	archetypal	layer	during	training,	a	linear	activation	
on	 the	output	 layer,	an	equal	weight	of	1	on	each	of	 the	 loss	 terms	(the	
mean	squared	error	loss	term	along	with	the	non-negativity	and	convexity	
constraints),	a	 learning	rate	of	0.001,	and	a	minibatch	size	of	4,096.	The	
autoencoder	 accepts	 an	 evolvability	 vector	 (of	 length	 240	 for	 an	 80bp	
sequence)	as	input	to	the	first	encoder	layer,	where	each	node	in	the	input	
layer	is	connected	to	each	node	in	the	encoder	layer	(fully	connected	layer).	
Every	 layer	 in	 the	 autoencoder	 was	 fully	 connected.	 The	 encoder	
architecture	 used	 was	 [1024, 512, 256, 128, 64] 	where	 each	 entry	
corresponds	to	the	number	of	nodes	in	the	corresponding	hidden	layer	and	
the	decoder	architecture	was	the	encoder’s	mirror	image.	The	output	layer	
was	the	same	shape	as	input	layer	and	each	node	in	the	last	decoder	layer	
was	 connected	 to	 each	 node	 in	 the	 output	 layer.	 To	 select	 the	 optimal	
number	 of	 archetypes,	 the	 autoencoder	 was	 first	 trained	 for	 a	 1,000	
minibatches	separately	for	1	to	9	archetypes.	Following	the	recommended	
approach(74)	 for	picking	the	optimal	number	of	archetypes,	we	used	an	
elbow	plot	of	mean	squared	error	on	the	evolvability	vectors	(here,	using	
native	 sequences)	 vs.	 the	 number	 of	 archetypes	 in	 the	 autoencoder	
(Supplementary	Fig.	S6a).		

We	 then	 trained	 the	 autoencoder	 from	 scratch	 with	 3	 archetypes,	
using	the	full	training	data	and	parameters	for	250,000	batches.	Since	this	
autoencoder	aims	to	reconstruct	the	original	evolvability	vector	for	each	
sequence	by	learning	feature	representations	after	passing	them	through	
an	information	bottleneck,	we	first	verified	its	reconstruction	accuracy	on	
the	 set	 of	 native	 yeast	 promoter	 sequences	 (Supplementary	 Fig.	 S6b,	
Pearson’s	r	=	0.992).	To	visualize	the	evolvability	vectors	corresponding	to	
sequences	in	2	dimensions	(2D),	the	evolvability	vectors	corresponding	to	
the	three	archetypes	were	first	generated	by	decoding	their	archetypal	la-
tent	space	coordinates	((1,0,0),	(0,1,0)	and	(0,0,1))	through	the	decoder,	
and	MDS	was	performed	on	the	decoded	evolvability	vectors	of	the	arche-
types.	Then,	as	previously	described(74),	the	encoded	evolvability	vector	
of	 each	 new	 sequence	 was	 projected	 into	 the	 2D	 MDS	 space	 by	

representing	it	as	a	mixture	of	the	archetypes	and	interpolating	them	be-
tween	the	MDS	coordinates	of	each	archetype.	For	every	sequence,	we	can	
now	compute	the	following	equivalent	representations	:	(i)	its	evolvability	
vector,	(ii)	an	archetypal	 triplet	quantifying	the	similarity	of	 its	encoded	
(latent	space)	evolvability	vector	to	the	three	archetypes	and	(iii)	a	two-
dimensional	multidimensional	scaling	(MDS)	coordinate(74)	for	visualiz-
ing	the	evolvability	vectors.	The	representation	of	the	evolvability	vector	
for	each	sequence	in	this	archetypal	space	is	now	bounded	by	a	simplex	
(whose	vertices	correspond	to	the	3	evolvability	archetypes).	For	each	na-
tive	and	natural	yeast	promoter	sequence	from	the	sequence	space,	we	in-
ferred	 the	 archetypal	 triplet	 and	MDS	 coordinates	using	 its	 evolvability	
vector	with	this	trained	autoencoder.	The	MDS	coordinates	for	the	arche-
types	and	the	native	yeast	promoter	sequences	were	used	to	generate	the	
visualizations	of	the	sequence	space	shown.	
Visualizing promoter fitness landscapes	
1000	 random	 sequences	 were	 sampled	 and	 projected	 onto	 the	 MDS	
coordinate	system	for	visualizing	the	sequence	space	described	above.	The	
expression	 level	 of	 each	 sequence	was	 calculated	 using	 our	model,	 and	
expression	values	were	scaled	so	that	the	minimum	was	0	and	maximum	
was	 1.	 Previously	 quantified	 expression-to-fitness	 relationships(21)	 to	
compute	 fitness	(fraction	of	wildtype	growth	rate)	by	using	cubic	spline	
interpolation	 (implemented	 using	 the	 scipy.interpolate.CubicSpline	
SciPy(100)	 function)	 on	 the	 expression	 level	 after	 scaling	 the	measured	
expression-to-fitness	curves	to	have	an	expression	range	of	0	to	1.	These	
fitness	values	were	then	used	to	generate	the	contour	plots	(implemented	
using	 the	matplotlib.pyplot.tricontourf	 function;	Fig.	4d,	Supplementary	
Fig.	 S7)	 that	 visualize	 the	 fitness	 landscape	 in	 that	 gene’s	 promoter	
sequence	space.	

 
Supplementary Tables 
Supplementary Table 1	
The	Expression	Conservation	Coefficient	(ECC),	mutation	tolerance,	evolv-
ability	 vector	 archetypal	 coordinates	 and	 predicted	 expression	 corre-
sponding	to	all	native	promoter	sequences.	
Supplementary Table 2	
The	GO	terms	enriched	by	the	ECC	ranking.	
Supplementary Table 3	
The	list	of	single	stranded	oligonucleotides	used.
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Supplementary Fig. S1 | The deep transformer neural network architecture for the sequence-to-expression model. a, Model architecture with 
three blocks (horizontal lines) and multiple layers (boxes). b-d. Expanded architecture (Methods) for the convolutional (b), transformer encoder (c) 
and multi-layer perceptron (d) blocks. 
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Supplementary Fig. S2 | The sequence-to-expression model generalizes accurately and helps characterize sequence trajectories under 
different evolutionary regimes. a,b, Accurate prediction of expression from sequence in defined media. Predicted (x axis) and experimentally 
measured (y axis) expression in defined media (SD-Uracil) for (a) random test sequences (sampled separately from and not overlapping with the 
training data) and (b) native yeast promoter sequences. Top left: Pearson’s r and associated P-value. c, Experimental validation of trajectories from 
simulations of random genetic drift. Distribution of measured (light grey) and predicted (dark gray) changes in expression in the defined media (SD-
Uracil) (y axis) for the synthesized sequences at each mutational step (x axis) from predicted mutational trajectories under random mutational drift. 
Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range. d, e, Simulation and validation of expression trajectories under SSWM 
in defined media (SD-Uracil). d, Distribution of predicted expression levels (y axis) in defined media at each evolutionary time step (x axis) for 
sequences under SSWM favoring high (red) or low (blue) expression, starting with 5,720 native promoter sequences. Midline: median; boxes: 
interquartile range; whiskers: 1.5x interquartile range. e, Experimentally measured expression distribution in defined media (y axis) for the synthesized 
sequences at each mutational step (x axis) from predicted mutational trajectories under SSWM, favoring high (red) or low (blue) expression. Midline: 
median; boxes: interquartile range; whiskers: 1.5x interquartile range. f-m, Experimental validation of predicted expression for sequences from the 
random genetic drift and SSWM simulations. Experimentally measured (y axis) and predicted (x axis) expression level (j-m) or expression change 
from the starting sequence (f-i) in complex (f,j,h,l) or defined (g,i,k,m) media using sequences from the random drift (Fig. 2c and (c); f,g,j,k here) 
and SSWM (Fig. 2g and (d,e); h,i,l,m here) simulations. Top left: Pearson’s r and associated P-values. 
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Supplementary Fig. S3 | Characterization of sequence trajectories under strong competing selection pressures. a,b, Expression is highly 
correlated between defined and complex media. Measured (a) and predicted (b) expression in defined (x axis) and complex (y axis) media for random 
test sequences. c, Opposing relationships between organismal fitness and URA3 expression in two environments. Measured expression (x axis, 
using a YFP reporter) and fitness (y axis; when used as the promoter sequence for the URA3 gene) for yeast with each of 11 promoters predicted to 
span a wide range of expression levels in complex media with 5-FOA (red), where higher expression of URA3 is toxic due to URA3-mediated 
conversion of 5-FOA to 5-fluorouracil, and in defined media lacking uracil (blue), where URA3 is required for uracil synthesis. Error bars: Standard 
error of the mean. d-f, Competing expression objectives are slow to reach saturation. d,e, Difference in predicted expression (y axis) at each 
evolutionary time step (x axis) under selection to maximize (red) or minimize (blue) the difference between expression in defined and complex media, 
starting with either native sequences (d, as Fig. 2f) or random sequences (e). f, Distribution of predicted expression (y axis) in complex (blue) and 
defined (red) media at each evolutionary time step (x axis) for a starting set of 5,720 random sequences. Midline: median; boxes: interquartile range; 
whiskers: 1.5x interquartile range. g, Motifs enriched within sequences evolved for competing objectives in different environments. Top five most 
enriched motifs, found using DREME(96) (Methods) within sequences computationally evolved from a starting set of random sequences to either 
maximize (left) or minimize (right) the difference in expression between defined and complex media, along with DREME E-values, the corresponding 
rank of the same motif when using native sequences as a starting point, the likely cognate TF and that TF’s known motif. 
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Supplementary Fig. S4 | Signatures of stabilizing selection on gene expression detected from regulatory DNA across natural populations. 
a, Expression-altering alleles in the CDC36 promoter are attributed primarily to altered UPC2 binding. TF interaction strength(42) (expression at-
tributable to each TF) difference between the high and low alleles (each point is a TF) for each of two low expression alleles (allele 1: x axis; allele 2: 
y axis). Each low-expressing allele is compared to the high-expression allele with the most similar sequence (across all promoter sequences analyzed 
from the 1,011 strains; 𝑒67,8%"$% − 𝑒67,8&'( ). b, c, Fitness responsivity is associated with ECC, but not with simple sequence diversity. Fitness 
responsivity (y axes) and ECC (b, x axis) or mean Hamming distance (c, x axis) for each of 80 genes (points). Top right: Spearman’s 𝜌 and associated 
P-values. d, Determination of expression change threshold for defining a "tolerated mutation" to compute mutational robustness. We used all genes 
with an ECC consistent with stabilizing selection (ECC>0; left), calculated the variance in predicted expression across the 1011 yeast strains for each 
gene, and chose the tolerable mutation threshold, 𝜖, as two standard deviations of the distribution of the variance (right). ~73% of genes with ECC>0 
had an expression variation lower than 𝜖.  
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Supplementary Fig. S5 | Fitness responsivity of a gene as the total variation of its expression-to-fitness relationship 𝑭𝑮𝑬𝑵𝑬 curves. Expres-
sion (x axis) and fitness (y axis) levels for different promoter variants for each select gene fit from experimental measurements by Keren et al(21). 
Fitness responsivity calculated as the total variation in each curve is noted above each panel. 
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Supplementary Fig. S6 | Analysis of cis-regulatory evolvability reveals sequence-encoded signatures of expression conservation from 
solitary sequences. a, Selection of optimal number of archetypes. Mean-square-reconstruction error (y axis) for reconstructing the evolvability 
vectors from the embeddings learned by the autoencoder for an increasing number of archetypes (x axis). Red circle: optimal number of archetypes 
selected as prescribed(74) by the “elbow method”. b, The archetypal embeddings learned by the autoencoder accurately capture evolvability vectors. 
Original (y axis) and reconstructed (x axis) expression changes (the values in the evolvability vectors) for each native sequence (none seen by the 
autoencoder in training). c,d, Sequence-encoded signatures of expression conservation. The proximity to the plastic archetype (x axes) and 
mutational robustness (y axis, c) or ECC (y axis, d) for all yeast genes. Top right: Spearman’s 𝜌 and associated P-values. “L”-shape of relationship 
in c results from the robust cleft, AMaxima, and AMinima all being distal to APlastic (left side of plot). e, All native (S288C reference) promoter sequences 
(points) projected onto the evolvability archetype space learned from random sequences; colored by their ECC. Large colored circles: evolvability 
archetypes. f, The proximity to the plastic archetype (x axis) and fitness responsivity (y axis) for the 80 genes with measured fitness responsivity. 
Top right: Spearman’s 𝜌  and associated P-values. g, All native (S288C reference) promoter sequences (points) projected on the evolvability 
archetype space learned from random sequences; colored by their mean pairwise distance in the evolvability archetype space between all promoter 
alleles across the 1,011 yeast isolates for that gene (ortholog evolvability dispersion). Large colored circles: evolvability archetypes.  
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Supplementary Fig. S7 | Visualizing promoter fitness landscapes in sequence space. Visualizing the fitness landscapes for the promoters of 
HXT3 (a), ADH1 (b), GCN4 (c), RPL3 (d), FBA1 (e), TUB3 (f). 1000 promoter sequences represented by their evolvability vectors projected onto the 
2D archetypal space and colored by their associated fitness as reflected by their predicted growth rate relative to wildtype (color, Methods), estimated 
by first mapping sequences to expression with our model and then expression to fitness as measured and estimated previously(21). 
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