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Abstract 42 

Genes of unknown function are among the biggest challenges in molecular biology, especially in 43 

microbial systems, where 40%-60% of the predicted genes are unknown. Despite previous 44 

attempts, systematic approaches to include the unknown fraction into analytical workflows are 45 

still lacking. Here, we propose a conceptual framework and a computational workflow that 46 

bridge the known-unknown gap in genomes and metagenomes. We showcase our approach by 47 

exploring 415,971,742 genes predicted from 1,749 metagenomes and 28,941 bacterial and 48 

archaeal genomes. We quantify the extent of the unknown fraction, its diversity, and its 49 

relevance across multiple biomes. Furthermore, we provide a collection of 283,874 lineage-50 

specific genes of unknown function for Cand. Patescibacteria, being a significant resource to 51 

expand our understanding of their unusual biology. Finally, by identifying a target gene of 52 

unknown function for antibiotic resistance, we demonstrate how we can enable the generation 53 

of hypotheses that can be used to augment experimental data.  54 
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Introduction 55 

Thousands of isolate, single-cell, and metagenome-assembled genomes are guiding us towards 56 

a better understanding of life on Earth (Almeida et al., 2019; Cross et al., 2019; Delmont et al., 57 

2020; Hug et al., 2016; Kopf et al., 2015; Pachiadaki et al., 2019; Pasolli et al., 2019; Sunagawa 58 

et al., 2015). At the same time, the ever-increasing number of genomes and metagenomes,  59 

unlocking uncharted regions of life’s diversity, (Brown et al., 2015; Eloe-Fadrosh et al., 2016; 60 

Hug et al., 2016) are providing new perspectives on the evolution of life (Parks et al., 2018; 61 

Spang et al., 2015). However, our rapidly growing inventories of new genes have a glaring 62 

issue: between 40% and 60% cannot be assigned to a known function (Almeida et al., 2020; 63 

Bernard, Pathmanathan, Lannes, Lopez, & Bapteste, 2018; Carradec et al., 2018; Price et al., 64 

2018). Current analytical approaches for genomic and metagenomic data (Chen et al., 2019; 65 

Franzosa et al., 2018; Huerta-Cepas et al., 2017; Mitchell et al., 2020; Quince, Walker, 66 

Simpson, Loman, & Segata, 2017) generally do not include this uncharacterized fraction in 67 

downstream analyses, constraining their results to conserved pathways and housekeeping 68 

functions (Quince et al., 2017). This inability to handle the unknown is an immense impediment 69 

to realizing the potential for discovery of microbiology and molecular biology at large (Bernard et 70 

al., 2018; Hanson, Pribat, Waller, & Crécy-Lagard, 2010). Predicting function from traditional 71 

single sequence similarity appears to have yielded all it can (Arnold, 1998, 2018; Brandenberg, 72 

Fasan, & Arnold, 2017), thus several groups have attempted to resolve gene function by other 73 

means. Such efforts include combining biochemistry and crystallography (Jaroszewski et al., 74 

2009); using environmental co-occurrence (Buttigieg et al., 2013); by grouping those genes into 75 

evolutionarily related families (Bateman, Coggill, & Finn, 2010; Brum et al., 2016; Wyman, Avila-76 

Herrera, Nayfach, & Pollard, 2018; Yooseph et al., 2007); using remote homologies (Bitard-77 

Feildel & Callebaut, 2017; Lobb, Kurtz, Moreno-Hagelsieb, & Doxey, 2015); or more recently 78 

using deep learning approaches (Bileschi et al., 2019; Liu, 2017). In 2018, Price et al. (Price et 79 
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al., 2018) developed a high-throughput experimental pipeline that provides mutant phenotypes 80 

for thousands of bacterial genes of unknown function being one of the most promising methods 81 

to tackle the unknown. Despite their promise, experimental methods are labor-intensive and 82 

require novel computational methods that could bridge the existing gap between the known and 83 

unknown coding sequence space (CDS-space). 84 

Here we present a conceptual framework and a computational workflow that closes the gap 85 

between the known and unknown CDS-space by connecting genomic and metagenomic gene 86 

clusters. Our approach adds context to vast amounts of unknown biology, providing an 87 

invaluable resource to understand the unknown functional fraction better and boost the current 88 

methods for its experimental characterization. The application of our approach to 415,971,742 89 

genes predicted from 1,749 metagenomes and 28,941 bacterial and archaeal genomes 90 

revealed that the unknown fraction (1) is smaller than expected, (2) is exceptionally diverse, and 91 

(3) is phylogenetically more conserved and predominantly lineage-specific at the Species level. 92 

Finally, we show how we can connect all the outputs produced by our approach to augment the 93 

results from experimental data and add context to genes of unknown function through 94 

hypothesis-driven molecular investigations.  95 
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Results 96 

A conceptual framework and a computational workflow to unify 97 

the known and the unknown coding sequence space 98 

We created the conceptual and technical foundations to unify the known and unknown CDS-99 

space facilitating the integration of the genes of unknown function into ecological, evolutionary 100 

and biotechnological investigations. First, we conceptually partitioned the known and unknown 101 

fractions into (1) Known with Pfam annotations (K), (2) Known without Pfam annotations (KWP), 102 

(3) Genomic unknown (GU), and (4) Environmental unknown (EU) (Fig. 1A). The framework 103 

introduces a subtle change of paradigm compared to traditional approaches where our objective 104 

is to provide the best representation of the unknown space. We gear all our efforts towards 105 

finding sequences without any evidence of known homologies by pushing the search space 106 

beyond the twilight zone of sequence similarity (Rost, 1999). With this objective in mind, we use 107 

gene clusters (GCs) instead of genes as the fundamental unit to compartmentalize the CDS-108 

space owing to their unique characteristics (Fig. 1B). (1) GCs produce a structured CDS-space 109 

reducing its complexity (Fig. 1B), (2) are independent of the known and unknown fraction, (3) 110 

are conserved across environments and organisms, and (4) can be used to aggregate 111 

information from different sources (Fig. 1A). Moreover, the GCs provide a good compromise in 112 

terms of resolution for analytical purposes, and owing to their unique properties, one can 113 

perform analyses at different scales. For fine-grained analyses, we can exploit the gene 114 

associations within each GC; and for coarse-grained analyses, we can create groups of GCs 115 

based on their shared homologies (Fig. 1B). 116 

 117 
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Figure 1: Conceptual framework to unify the known and unknown CDS-space and integration of the 119 
framework in the current analytical workflows (A) Link between the conceptual framework and the 120 
computational workflow to partition the CDS-space in the four conceptual categories. AGNOSTOS infers, 121 
validates and refines the GCs and combines them in gene cluster communities (GCCs). Then, it classifies 122 
them in one of the four conceptual categories based on their level of ‘darkness’. Finally, we add context to 123 
each GC based on several sources of information, providing a robust framework for generating 124 
hypotheses that can be used to augment experimental data. (B) The computational workflow provides two 125 
mechanisms to structure the CDS-space using GCs, de novo creation of the GCs (DB creation), or 126 
integrating the dataset in an existing GC database (DB update). The structured CDS-space can then be 127 
plugged into traditional analytical workflows to annotate the genes within each GC of the known fraction. 128 
With AGNOSTOS, we provide the opportunity to integrate the unknown fraction into the current 129 
microbiome analyses easily. C) The versatility of the GCs enables analyses at different scales depending 130 
on the scope of our experiments. We can group GCs in gene cluster communities based on their shared 131 
homologies to perform coarse-grained analyses. On the other hand, we can design fine-grained analyses 132 
using the relationships between the genes in a GC, i.e., detecting network modules in the GC inner 133 
sequence similarity network. Additionally, given that GCs are conserved across environments, organisms 134 
and experimental conditions give us access to an unprecedented amount of information to design and 135 
interpret experimental data. 136 
 137 

Driven by the concepts defined in the conceptual framework, we developed AGNOSTOS, a 138 

computational workflow that infers, validates, refines, and classifies GCs in the four proposed 139 

categories (Fig. 1A; Fig. 1B; Supp. Fig 1). AGNOSTOS provides two operational modules (DB 140 

creation and DB update) to produce GCs with a highly conserved intra-homogeneous structure 141 

(Fig. 1B), both in terms of sequence similarity and domain architecture homogeneity; it exhausts 142 

any existing homology to known genes and provides a proper delimitation of the unknown CDS-143 

space before classifying each GC in one of the four categories (Methods). In the last step, we 144 

decorate each GC with a rich collection of contextual data compiled from different sources or 145 

generated by analyzing the GC contents in different contexts (Fig. 1A). For each GC, we also 146 

offer several products that can be used for analytical purposes like improved representative 147 

sequences, consensus sequences, sequence profiles for MMseqs2 (Steinegger & Soding, 148 

2017) and HHblits (Steinegger, Meier, et al., 2019), or the GC members as a sequence 149 

similarity network (Methods). To complement the collection, we also provide a subset of what 150 

we define as high-quality GCs. The defining criteria are (1) the representative is a complete 151 

gene and (2) more than one-third of genes within a GC are complete genes. 152 
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Partitioning and contextualizing the coding sequence space of 153 

genomes and metagenomes 154 

We used our approach to explore the unknown CDS-space of 1,749 microbial metagenomes 155 

derived from human and marine environments, and 28,941 genomes from the GTDB_r86 (Supp 156 

Fig 2A). The initial gene prediction of AGNOSTOS (Supp Fig 1) produced 322,248,552 genes 157 

from the environmental dataset and assigned Pfam annotations to 44% of them. Next, it 158 

clustered the predicted genes in 32,465,074 GCs. For the downstream processing, we kept 159 

3,003,897 GCs (83% of the original genes) after filtering out any GC that contained less than 160 

ten genes (Skewes-Cox, Sharpton, Pollard, & DeRisi, 2014) removing 9,549,853 clusters and 161 

19,911,324 singletons (Supp Fig 2A; Supp. Note 1). The validation process selected 2,940,257 162 

good-quality clusters (Fig. 1B; Supp. Table 1; Supp. Note 2), which resulted in 43% of them 163 

being members of the unknown CDS-space after the classification and remote homology 164 

refinement steps (Supp Fig 2A, Supp. Note 3). We build the link between the environmental and 165 

genomic CDS-space by expanding the final collection of GCs with the genes predicted from 166 

GTDB_r86 (Supp Fig 2A). Our environmental GCs already included 72% of the genes from 167 

GTDB_r86; 22% of them created 2,400,037 new GCs, and the rest 6% resulted in singleton 168 

GCs (Supp Fig 2A; Supp. Note 4; Supp. Note 5). The final dataset includes 5,287,759 GCs 169 

(Supp Fig 2A), with both datasets sharing only 922,599 GCs (Supp Fig 2B). The addition of the 170 

GTDB_r86 genes increased the proportion of GCs in the unknown CDS-space to 54%. As the 171 

final step, the workflow generated a subset of 203,217 high-quality GCs (Supp. Table 2; Supp. 172 

Fig 3). In these high-quality clusters, we identified 12,313 clusters potentially encoding for small 173 

proteins (<= 50 amino acids). Most of these GCs are unknown (66%), which agrees with recent 174 

findings on novel small proteins from metagenomes (Sberro et al., 2019). The KWP category 175 

contains the largest proportion of incomplete genes (Supp. Table 3), disrupting the detection 176 

and assignment of Pfam domains. But it also incorporates sequences with an unusual amino 177 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2020.06.30.180448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.180448
http://creativecommons.org/licenses/by/4.0/


 
 

10 

acid composition that has homology to proteins with high levels of disorder in the DPD database 178 

(Perdigão, Rosa, & O’Donoghue, 2017) and has characteristic functions of intrinsically 179 

disordered proteins (Habchi, Tompa, Longhi, & Uversky, 2014) (IDP) like cellular processes and 180 

signaling as predicted by eggNOG annotations (Supp. Table 4). 181 

As part of the workflow, each GC is complemented with a rich set of information, as shown in 182 

Fig 1A (Supp. Table 5; Supp. Note 6). 183 

Beyond the twilight zone, communities of gene clusters 184 

The method we developed to group GCs in gene cluster communities (GCCs) (Fig. 2A) reduced 185 

the final collection of GCs by 87%, producing 673,601 GCCs (Methods; Fig. 2B; Supp. Note 7). 186 

We validated our approach to capture remote homologies between related GCs using two well-187 

known gene families present in our environmental datasets, proteorhodopsins (Olson, 188 

Yoshizawa, Boeuf, Iwasaki, & DeLong, 2018) and bacterial ribosomal proteins (Méheust, 189 

Burstein, Castelle, & Banfield, 2019). Our dataset contained 64 GCs (12,184 genes) and 3 190 

GCCs (Supp Note 8) classified as proteorhodopsin (PR). One Known GCC contained 99% of 191 

the PR annotated genes (Fig. 2C), except 85 genes taxonomically annotated as viral and 192 

assigned to the PR Supercluster I (Boeuf, Audic, Brillet-Guéguen, Caron, & Jeanthon, 2015) 193 

within two GU communities (five GU gene clusters; Supp. Note 8). For the ribosomal proteins, 194 

the results were not so satisfactory. We identified 1,843 GCs (781,579 genes) and 98 GCCs. 195 

The number of GCCs is larger than the expected number of ribosomal protein families (16) used 196 

for validation. When we use high-quality GCs (Supp. Note 8), we get closer to the expected 197 

number of GCCs (Fig. 2D). With this subset, we identified 26 GCCs and 145 GCs (1,687 198 

genes). The cross-validation of our method against the approach used in Méheust et al. 199 

(Méheust et al., 2019) (Supp. Note 9) confirms the intrinsic complexity of analyzing 200 

metagenomic data. Both approaches showed a high agreement in the GCCs identified (Supp. 201 

Table 9-1). Still, our method inferred fewer GCCs for each of the ribosomal protein families 202 
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(Supplementary Figure 9-3), coping better with the nuisances of a metagenomic setup, such as 203 

incomplete genes (Supp. Table 6). 204 

 205 

 206 

Figure 2: Overview and validation of the workflow to aggregate GCs in communities. (A) We inferred a 207 
gene cluster homology network using the results of an all-vs-all HMM gene cluster comparison with 208 
HHBLITS. The edges of the network are based on the HHblits-score/Aligned-columns. Communities are 209 
identified by an iterative screening of different MCL inflation parameters and evaluated using five different 210 
metrics that consider the inter- and intra-community properties. (B) Comparison of the number of GCs 211 
and GCCs for each of the functional categories. (C) Validation of the GCCs inference based on the 212 
environmental genes annotated as proteorhodopsins. Ribbons in the alluvial plot are genes, and each 213 
stacked bar corresponds (from left to right) to the (1) gene taxonomic classification at the domain level, 214 
(2) GC membership, (3) GCC membership and (4) MicRhoDE operational classification. (D) Validation of 215 
the GCCs inference based on ribosomal proteins based on standard and high-quality GCs. 216 
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A smaller but highly diverse unknown coding sequence space 217 

Combining clustering and remote homology searches reduces the extent of the unknown CDS-218 

space compared to what is reported by the traditional genomic and metagenomic analysis 219 

approaches (Fig. 3A). Our workflow recruited as much as 71% of genes in human-related 220 

metagenomic samples and 65% of the genes in marine metagenomes into the known CDS-221 

space. In both human and marine microbiomes, the genomic unknown fraction showed a similar 222 

proportion of genes (21%, Fig. 3A). The number of genes corresponding to EU gene clusters is 223 

higher in marine metagenomes; 12% of the genes are part of this GC category. We obtained a 224 

comparable result when we evaluated the genes from the GTDB_r86, 75% of bacterial and 64% 225 

of archaeal genes were part of the known CDS-space. Archaeal genomes contained more 226 

unknowns than those from Bacteria, where 30% of the genes are classified as genomic 227 

unknowns in Archaea, and only 20% in Bacteria (Fig. 3A; Supp. Table 7). Our approach allows 228 

us to go beyond genes, and for the first time, we can provide a detailed characterization of the 229 

CDS-space at the amino acid level. From the 90,128,659,316 amino acids analyzed, the 230 

majority of the amino acids in metagenomes (74%) and GTDB_r86 (80%) are in the known 231 

CDS-space (Fig. 3B; Supp. Table 7). In both cases, approximately 40% of the amino acids in 232 

the known CDS-space were part of a Pfam domain (Fig. 3B; Supp. Table 7). The proportion of 233 

amino acids in the unknown CDS-space ranged from 22% in metagenomes and 15% in 234 

GTDB_r86. Pfam domains covered only 2% of the amino acids in the unknown CDS-space in 235 

both cases. To evaluate the differences between the two CDS-space fractions, we calculated 236 

the accumulation rates of GCs and GCCs. For the metagenomic dataset we used 1,264 237 

metagenomes (18,566,675 GCs and 282,580 GCCs) and for the genomic dataset 28,941 238 

genomes (9,586,109 GCs and 496,930 GCCs). The rate of accumulation of unknown GCs was 239 

three times higher than the known (2 times for the genomic), and both cases were far from 240 

reaching a plateau (Fig. 3C). This is not the case for the GCC accumulation curves (Supp Fig 241 
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4B), where they reached a plateau. The accumulation rate is largely determined by the number 242 

of singletons, especially singletons from EUs (Supp note 11 and Supp. Fig 5). While the 243 

accumulation rate of known GCs between marine and human metagenomes is almost identical, 244 

there are striking differences for the unknown GCs (Fig. 3D). These differences are maintained 245 

even when we remove the virus-enriched samples from the marine metagenomes (Supp Fig 246 

4A). Although the marine metagenomes include a large variety of environments, from coastal to 247 

the deep sea, the known space remains quite constrained. 248 

Despite only including marine and human metagenomes in our database, our coverage of other 249 

databases and environments is quite comprehensive, with an overall coverage of 76% (Supp. 250 

Note 12). The lowest covered biomes are freshwater, soil and human non-digestive as revealed 251 

by the screening of MGnify (Mitchell et al., 2020) (release 2018_09; 11 biomes; 843,535,6116 252 

proteins) where we assigned 74% of the MGnify proteins into one of our categories 253 

(Supplementary Fig. 6). Furthermore, as a result of this evaluation, we classified 20% of the 254 

FunkFams (Wyman et al., 2018) and 44% of the unknowns used by Price et al. (Price et al., 255 

2018) to the known fraction (Supp. Table 12-1). 256 
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 257 

Figure 3: The extent of the known and unknown coding sequence space (A) Proportion of genes in the 258 
known and unknown. (B) Amino acid distribution in the known and unknown CDS-space. (C) 259 
Accumulation curves for the known and unknown CDS-space at the GC- level for the metagenomic and 260 
genomic data. from TARA, MALASPINA, OSD2014 and HMP-I/II projects. (D) Collector curves comparing 261 
the human and marine biomes. Colored lines represented the mean of 1000 permutations and shaded in 262 
grey the standard deviation. Non-abundant singleton clusters were excluded from the accumulation 263 
curves calculation. 264 
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The unknown coding sequence space has a limited ecological 265 

distribution in human and marine environments 266 

Although the role of the unknown fraction in the environment is still a mystery, the large number 267 

of gene counts and abundance observed underlines its inherent ecological relevance (Fig. 4A). 268 

In some metagenomes, the genomic unknown fraction can account for more than 40% of the 269 

total gene abundance observed (Fig. 4A). The environmental unknown fraction is also relevant 270 

in several samples, where singleton GCs are the majority (Fig. 4A). We identified two 271 

metagenomes with an unusual composition in terms of environmental unknown singletons. The 272 

marine metagenome corresponds to a sample from Lake Faro (OSD42), a meromictic saline 273 

with a unique extreme environment where Archaea plays an important role (La Cono et al., 274 

2013). The HMP metagenome (SRS143565) corresponds to a human sample from the right 275 

cubital fossa from a healthy female subject. To understand this unusual composition, we should 276 

perform further analyses to discard potential technical artifacts like sample contamination. The 277 

ratio between the unknown and known GCs revealed that the metagenomes located at the 278 

upper left quadrant in Fig. 4B-C are enriched in GCs of unknown function. In human 279 

metagenomes, we can distinguish between body sites, with the gastrointestinal tract, where 280 

microbial communities are expected to be more diverse and complex, significantly enriched with 281 

genomic unknowns. The HMP metagenomes with the largest ratio of unknowns are those 282 

samples identified to contain crAssphages (Dubinkina, Ischenko, Ulyantsev, Tyakht, & Alexeev, 283 

2016; Edwards et al., 2019) and HPV viruses (Ma et al., 2014) (Supp. Table 8; Supp. Fig. 7). 284 

Consistently, in marine metagenomes (Fig. 4D) we can separate between size fractions, where 285 

the highest ratio in genomic and environmental unknowns corresponds to the ones enriched 286 

with viruses and giant viruses. 287 
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 288 

Figure 4: Distribution of the unknown coding sequence space in the human and marine metagenomes 289 
(A) Ratio between the proportion of the number of genes and their estimated abundances per cluster 290 
category and biome. Columns represented in the facet depicts three cluster categories based on the size 291 
of the clusters. (B) Relationship between the ratio of Genomic unknowns and Environmental unknowns in 292 
the HMP-I/II metagenomes. Gastrointestinal tract metagenomes are enriched in Genomic unknown 293 
coding sequences compared to the other body sites. (C) Relationship between the ratio of Genomic 294 
unknowns and Environmental unknowns in the TARA Oceans metagenomes. Girus and virus enriched 295 
metagenomes show a higher proportion of both unknown coding sequences (genomic and 296 
environmental) than the Archaea|Bacteria enriched fractions. (D) Environmental distribution of GCs and 297 
GCCs based on Levin’s niche breadth index. We obtained the significance values after generating 100 298 
null gene cluster abundance matrices using the quasiswap algorithm. 299 
 300 

To complement the previous findings, we performed a large-scale analysis to investigate the GC 301 

occurrence patterns in the environment. The narrow distribution of the unknown fraction (Fig. 302 

4D) suggests that these GCs might provide a selective advantage and be necessary to adapt to 303 

specific environmental conditions. But the pool of broadly distributed environmental unknowns is 304 

the most exciting result. We identified traces of potential ubiquitous organisms left 305 
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uncharacterized by traditional approaches, as more than 80% of these GCs cannot be 306 

associated with a metagenome-assembled genome (MAG) (Supp Table 9, Supp. Note 10). 307 

The genomic unknown coding sequence space is lineage-specific 308 

With the inclusion of the genomes from GTDB_r86, we have access to a phylogenomic 309 

framework that can be used to assess how exclusive is a GC within a lineage (lineage-specifity 310 

(Mendler et al., 2019)) and how conserved is a GC across clades (phylogenetic conservation 311 

(Martiny, Treseder, & Pusch, 2013)). We identified 781,814 lineage-specific GCs and 464,923 312 

phylogenetically conserved (P < 0.05) GCs in Bacteria (Supp. Table 10; Supp. Note 13 for 313 

Archaea). The number of lineage-specific GCs increases with the Relative Evolutionary 314 

Distance (Parks et al., 2018) (Fig. 5A) and differences between the known and the unknown 315 

fraction start to be evident at the Family level resulting in 4X more unknown lineage-specific 316 

GCs at the Species level. The unknown GCs are more phylogenetically conserved than the 317 

known (Fig. 5B, p < 0.0001), revealing the importance of the genome’s uncharacterized fraction. 318 

However, this is not the case for the lineage-specific and phylogenetically conserved GCs, 319 

where the unknown GCs are less phylogenetically conserved (Fig. 5B), agreeing with the large 320 

number of lineage-specific GCs at Genus and Species level. To discard the possibility that the 321 

lineage-specific GCs of unknown function have a viral origin, we screened all GTDB_r86 322 

genomes for prophages. We only found 37,163 lineage-specific GCs in prophage genomic 323 

regions, being 86% GCs of unknown function. After unveiling the potential relevance of the GCs 324 

of unknown function in bacterial genomes, we identified phyla in GTDB_r86 enriched with these 325 

types of clusters. A clear pattern emerged when we partitioned the phyla based on the ratio of 326 

known to unknown GCs and vice versa (Fig. 5D), the phyla with a larger number of MAGs are 327 

enriched in GCs of unknown function Figure 5D. Phyla with a high proportion of non-classified 328 

GCs (those discarded during the validation steps) contain a small number of genomes and are 329 

primarily composed of MAGs. These groups of phyla highly enriched in unknowns and 330 
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represented mainly by MAGs include newly described phyla such as Cand. Riflebacteria and 331 

Cand. Patescibacteria (Anantharaman et al., 2018; Brown et al., 2015; Rinke et al., 2013), both 332 

with the largest unknown to known ratio. 333 

 334 

 335 
 336 
Figure 5: Phylogenomic exploration of the unknown coding sequence space. (A) Distribution of the 337 
lineage-specific GCs by taxonomic level. Lineage-specific unknown GCs are more abundant in the lower 338 
taxonomic levels (Genus, Species). (B) Phylogenetic conservation of the known and unknown coding 339 
sequence space in 27,372 bacterial genomes from GTDB_r86. We observe differences in the 340 
conservation between the known and the unknown coding sequence space for lineage- and non-lineage 341 
specific GCs (paired Wilcoxon rank-sum test; all p-values < 0.0001). (C) The majority of the lineage-342 
specific clusters are part of the unknown coding sequence space, being a small proportion found in 343 
prophages present in the GTDB_r86 genomes. (D) Known and unknown coding sequence space of the 344 
27,732 GTDB_r86 bacterial genomes grouped by bacterial phyla. Phyla are partitioned based on the ratio 345 
of known to unknown GCs and vice versa. Phyla enriched in MAGs have higher proportions in GCs of 346 
unknown function. Phyla with a high proportion of non-classified clusters (NC; discarded during the 347 
validation steps) tend to contain a small number of genomes. (E) The alluvial plot's left side shows the 348 
uncharacterized (OM-RGC v2 GC) and characterized (OM-RGC v2) fraction of the gene catalog. The 349 
functional annotation is based on the eggNOG annotations provided by Salazar et al.(Salazar et al., 350 
2019). The right side of the alluvial plot shows the new organization of the OM-RGC v2 coding sequence 351 
space based on the approach described in this study. The treemap in the right links the metagenomic and 352 
genomic space adding context to the unknown fraction of the OM-RGC v2 353 

0.4

0.6

0.8

1.0

100 1,000 10,000 100,000
Lineage specific gene clusters

Re
la
tiv
e
ev
ol
ut
io
na
ry
di
ve
rg
en
ce 4X

Phylum

Class

Order

Family

Genus
Species

Known Unknown

B

C
Non lineage-specific

1,166,988

1,176,757

159,197

32,066

584,644

Prophage
5,907

Prophage: 3
Prophage: 1

Lineage-specific

UnknownKnown

0.1

0.2

0.3

0.4

1 2 3
[ Known ] / [ NC + Unknown ]

[U
nk
no
wn

]/
[N

C
+
Kn

ow
n
]

Patescibacteria (CPR)

0 25 50 75 100
Percentage of MAGs

1 10 100 1000
Number of genomes

Enriched in unknowns
Enriched in non-classified

Other

Category [S]: Function unknown

Environmental
Unknowns

Non-lineage specific

GTDB: 3,261,741 / Other: 8,161,234
OM-RGC v2
46,775,154 genes

Genomic
Unknowns

Knowns

Discarded

OM-RGC v2
With eggNOG hits

OM-RGC v2 GC
Without eggNOG hits

eggNOG
annotation

Family Genus Species Other

42,702

12,932

1,144

3,148,566 Lineage
specific

56,397

E

A

****
****

****

Unknown
Known

Phylogenetic conservation
Root Tips

3e-041e-033e-031e-02

Non-specific

Specific

All

Mean trait depth (τD)

D

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2020.06.30.180448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.180448
http://creativecommons.org/licenses/by/4.0/


 
 

19 

 354 

We demonstrate the possibility of bridging genomic and metagenomic data and simultaneously 355 

unifying the known and unknown CDS-space by integrating the new Ocean Microbial Reference 356 

Gene Catalog (Salazar et al., 2019) (OM-RGC v2) into our database. We assigned 26,170,875 357 

genes to known GCs, 11,422,975 to genomic unknowns, 8,661,221 to environmental unknown 358 

and 520,083 were discarded. From the 11,422,975 genes classified as genomic unknowns, we 359 

could associate 3,261,741 to a GTDB_r86 genome and we identified 113,175 as lineage-360 

specific. The alluvial plot in Fig. 5E depicts the new organization of the OM-RGC v2 after being 361 

integrated into our framework and how we can provide context to the two original types of 362 

unknowns in the OM-RGC (those annotated as category S in eggNOG (Huerta-Cepas et al., 363 

2019) and those without known homologs in the eggNOG database (Salazar et al., 2019)) that 364 

can lead to potential experimental targets at the organism level to complement the 365 

metatranscriptomic approach proposed by Salazar et al. (Salazar et al., 2019). 366 

A structured coding sequence space augments the interpretation 367 

of experimental data 368 

We selected one of the experimental conditions tested in Price et al. (Price et al., 2018) to 369 

demonstrate the potential of our approach to augment experimental data. We compared the 370 

fitness values in plain rich medium with added Spectinomycin dihydrochloride pentahydrate to 371 

the fitness in plain rich medium (LB) in Pseudomonas fluorescens FW300-N2C3 (Fig. 6A). This 372 

antibiotic inhibits protein synthesis and elongation by binding to the bacterial 30S ribosomal 373 

subunit and interferes with the peptidyl tRNA translocation. We identified the gene with locus id 374 

AO356_08590 that presents a strong phenotype (fitness = -3.1; t = -9.1) and has no known 375 

function. This gene belongs to the genomic unknown GC GU_19737823. We can track this GC 376 

into the environment and explore the occurrence in the different samples we have in our 377 
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database. As expected, the GC is mostly found in non-human metagenomes (Fig. 6B) as 378 

Pseudomonas are common inhabitants of soil and water environments(Heffernan, Murphy, & 379 

Casey, 2009). However, finding this GC also in human-related samples is very interesting due 380 

to the potential association of P. fluorescens and human disease where Crohn’s disease 381 

patients develop serum antibodies to this microbe (Scales, Dickson, LiPuma, & Huffnagle, 382 

2014). We can add another layer of information to the selected GC by looking at the associated 383 

remote homologs in the GCC GU_c_21103 (Fig. 6C). We identified all the genes in the 384 

GTDB_r86 genomes that belong to the GCC GU_c_21103 (Supp. Table 11) and explored their 385 

genomic neighborhoods. All members from GU_c_21103 are constrained to the class 386 

Gammaproteobacteria, and interestingly GU_19737823 is mostly exclusive to the order 387 

Pseudomonadales. The gene order in the different genomes analyzed is highly conserved, 388 

finding GU_19737823 after the rpsF::rpsR operon and before rpll. rpsF and rpsR encode for 389 

30S ribosomal proteins, the prime target of spectinomycin. The combination of the experimental 390 

evidence and the associated data inferred by our approach provides strong support to generate 391 

the hypothesis that the gene AO356_08590 might be involved in the resistance to 392 

spectinomycin. 393 

 394 
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 395 
 396 
Figure 6: Augmenting experimental data with GCs of unknown function. (A) We used the fitness values 397 
from the experiments from Price et al.(Price et al., 2018) to identify genes of unknown function that are 398 
important for fitness under certain experimental conditions. The selected gene belongs to the genomic 399 
unknown GC GU_19737823 and presents a strong phenotype (fitness = -3.1; t = -9.1) (B) Occurrence of 400 
GU_19737823 in the metagenomes used in this study. Darker bars depict the number of metagenomes 401 
where the GC is found. (C) GU_19737823 is a member of the GCC GU_c_21103. The network shows the 402 
relationships between the different GCs members of the gene cluster community GU_c_21103. The size 403 
of the node corresponds to the node degree of each GC. Edge thickness corresponds to the 404 
bitscore/column metric. Highlighted in red is GU_19737823. (D) We identified all the genes in the 405 
GTDB_r86 genomes that belong to the GCC GU_c_21103 and explored their genomic neighborhoods. 406 
GU_c_21103 members were constrained to the class Gammaproteobacteria, and GU_19737823 is 407 
mostly exclusive to the order Pseudomonadales. The gene order in the different genomes analyzed is 408 
highly conserved, finding GU_19737823 after the rpsF::rpsR operon and before rpll. rpsF and rpsR 409 
encode for the 30S ribosomal protein S6 and 30S ribosomal protein S18, respectively. The GTDB_r86 410 
subtree only shows RefSeq genomes. Branch colors correspond to the different GCs found in 411 
GU_c_21103. The bubble plot depicts the number of genomes with a gene that belongs to GU_c_21103. 412 
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Discussion 413 

We present a new conceptual framework and computational workflow to unify the known and 414 

unknown CDS-space. Using this framework, we performed an in-depth exploration of the 415 

microbial unknown CDS-space, demonstrating that we can link the unknown fraction of 416 

metagenomic studies to specific genomes and provide a powerful tool for hypothesis 417 

generation. During the last years, the microbiome community has established a standard 418 

operating procedure(Quince et al., 2017) for analyzing metagenomes that we can briefly 419 

summarize into (1) assembly, (2) gene prediction, (3) gene catalog inference, (4) binning, and 420 

(5) characterization. Thanks to recent computational developments (Steinegger & Soding, 2017; 421 

Steinegger & Söding, 2018), we envisioned an alternative to this workflow to maximize the 422 

information used when analyzing genomic and metagenomic data. In addition, we provide a 423 

mechanism to reconcile top-down and bottom-up approaches, thanks to the well-structured 424 

CDS-space proposed by our framework. AGNOSTOS can create environmental- and organism-425 

specific variations of a seed GC database. Then, it integrates the predicted genes from new 426 

genomes and metagenomes and dynamically creates and classifies new GCs with those genes 427 

not integrated during the initial step (Fig. 1B). Afterward, the potential functions of the known 428 

GCs can be carefully characterized by incorporating them into the traditional workflows. 429 

One of the most appealing characteristics of our approach is that the GCs provide unified 430 

groups of homologous genes across environments and organisms indifferently if they belong to 431 

the known or unknown CDS-space, and we can contextualize the unknown fraction using this 432 

genomic and environmental information. Our combination of partitioning and contextualization 433 

features a smaller unknown CDS-space than we expected. On average, for our genomic and 434 

metagenomic data, only 30% of the genes fall in the unknown fraction. One hypothesis to 435 

reconcile this surprising finding is that the methodologies to identify remotely homologous 436 

sequences in large datasets were computationally prohibitive until recently. New methods 437 
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(Steinegger, Meier, et al., 2019; Steinegger & Soding, 2017), like the ones used in AGNOSTOS, 438 

are enabling large scale distant homology searches. Still, one has to apply conservative 439 

measures to control the trade-off between specificity and sensitivity to avoid overclassification. 440 

We found that most of the coding sequence space at the gene and amino acid level is known, 441 

both in genomes and metagenomes. However, it presents a high diversity, as shown in the GC 442 

accumulation curves highlighting the vast remaining untapped microbial fraction and its potential 443 

importance for niche adaptation owing to its narrow ecological distribution. In a genomic context 444 

and after ruling out the effect of prophages, the unknown fraction is predominantly Species’ 445 

lineage-specific and phylogenetically more conserved than the known fraction, supporting the 446 

signal observed in the environmental data emphasizing that we should not ignore the unknown 447 

fraction. It is worth noting that the high diversity observed in the unknowns only represents the 448 

20% of the amino acids in the CDS-space we analyzed, and only 10% of this unknown amino 449 

acid space is part of a Pfam domain (DUF and others). This contrasts with the numbers 450 

observed in the known CDS-space, where Pfam domains include 50% of the amino acids. All 451 

this evidence combined strengthens the hypothesis that the genes of unknown function, 452 

especially the lineage-specific ones, might be associated with the mechanisms of microbial 453 

diversification and niche adaptation due to the constant diversification of gene families and the 454 

survival of new gene lineages (Francino, 2012; Muller, 2019). 455 

Metagenome-assembled genomes are not only unveiling new regions of the microbial universe 456 

(42% of the genomes in GTDB_r86), but they are also enriching genes of unknown function in 457 

the tree of life. We investigated the unknown CDS-space of Cand. Patescibacteria, more 458 

commonly known as Candidate Phyla Radiation (CPR), a phylum that has raised considerable 459 

interest due to its unusual biology (Brown et al., 2015). We provide a collection of 54,343 460 

lineage-specific GCs of unknown function at different taxonomic level resolutions (Supp. Table 461 

12; Supp. Note 14), which will be a valuable resource for the CPR advancement research 462 

efforts. 463 
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Our effort to tackle the unknown provides a pathway to unlock a large pool of likely relevant data 464 

that remains untapped to analysis and discovery. By identifying a potential target gene of 465 

unknown function for antibiotic resistance, we demonstrate the value of our approach and how it 466 

can boost insights from model organism experiments. But severe challenges remain, such as 467 

the dependence on the quality of the assemblies and their gene predictions, as shown by the 468 

analysis of the ribosomal protein GCCs where many of the recovered genes are incomplete. 469 

While sequence assembly has been an active area of research (Roumpeka, Wallace, 470 

Escalettes, Fotheringham, & Watson, 2017), this has not been the case for gene prediction 471 

methods (Roumpeka et al., 2017), which are becoming outdated(Ivanova et al., 2014) and 472 

cannot cope with the current amount of data. Alternatives like protein-level assembly 473 

(Steinegger, Mirdita, & Söding, 2019) combined with exploring the assembly graphs’ 474 

neighborhoods (Titus Brown et al., 2018) become very attractive for our purposes. In any case, 475 

we still face the challenge of discriminating between real and artifactual singletons (Höps, 476 

Jeffryes, & Bateman, 2018). There are currently no methods available to provide a plausible 477 

solution and, at the same time, being scalable. We devise a potential solution in the recent 478 

developments in unsupervised deep learning methods where they use large corpora of proteins 479 

to define a language model embedding for protein sequences (Heinzinger et al., 2019). These 480 

models could be applied to predict embeddings in singletons, which could be clustered or used 481 

to determine their coding potential. Another issue is that we might be creating more GCs than 482 

expected. We follow a conservative approach to avoid mixing multi-domain proteins in GCs 483 

owing to the fragmented nature of the metagenome assemblies that could result in the split of a 484 

GC. However, not only splitting can be a problem, but also lumping unrelated genes or GCs 485 

owing to the use of remote homologies. Although the inference of GCCs is using very sensitive 486 

methods to compare profile HMMs, low sequence diversity in GCs can limit its effectiveness. 487 

Moreover, our approach is affected by the presence and propagation of contamination in 488 

reference databases, a significant problem in ‘omics (Breitwieser, Pertea, Zimin, & Salzberg, 489 
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2019; Steinegger & Salzberg, 2020). In our case, we only use Pfam as a source for annotation 490 

owing to its high-quality and manual curation process. The categorization process of our GCs 491 

depends on the information from other databases, and to minimize the potential impact of 492 

contamination, we apply methods that weight the annotations of the identified homologs to 493 

discriminate if a GC belongs to the known or unknown CDS-space.  494 

The results presented here prove that the integration and the analysis of the unknown fraction 495 

are possible. We are unveiling a brighter future, not only for microbiome analyses but also for 496 

boosting eukaryotic-related studies, thanks to the increasing number of projects, including 497 

metatranscriptomic data (Delmont et al., 2020; Vorobev et al., 2020). Furthermore, our work 498 

lays the foundations for further developments of clear guidelines and protocols to define the 499 

different levels of unknown (Thomas & Segata, 2019) and should encourage the scientific 500 

community for a collaborative effort to tackle this challenge. 501 

Material and methods 502 

Genomic and metagenomic dataset 503 

We used a set of 583 marine metagenomes from four of the major metagenomic surveys of the 504 

ocean microbiome: Tara Oceans expedition (TARA) (Sunagawa et al., 2015), Malaspina 505 

expedition (Duarte, 2015), Ocean Sampling Day (OSD) (Kopf et al., 2015), and Global Ocean 506 

Sampling Expedition (GOS) (Rusch et al., 2007). We complemented this set with 1,246 507 

metagenomes obtained from the Human Microbiome Project (HMP) phase I and II (Lloyd-Price 508 

et al., 2017). We used the assemblies provided by TARA, Malaspina, OSD and HMP projects 509 

and the long Sanger reads from GOS (Sanger, Nicklen, & Coulson, 1977). A total of 156M 510 

(156,422,969) contigs and 12.8M long-reads were collected (Supp. Table 6). 511 
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For the genomic dataset, we used the 28,941 prokaryotic genomes (27,372 bacterial and 1,569 512 

archaeal) from the Genome Taxonomy Database (Parks et al., 2018) (GTDB) Release 03-RS86 513 

(19th August 2018). 514 

Computational workflow development 515 

We implemented a computation workflow based on Snakemake (Köster, 2018) for the easy 516 

processing of large datasets in a reproducible manner. The workflow provides three different 517 

strategies to analyze the data. The module DB-creation creates the gene cluster database, 518 

validates and partitions the gene clusters (GCs) in the main functional categories. The module 519 

DB-update allows the integration of new sequences (either at the contig or predicted gene level) 520 

in the existing gene cluster database. In addition, the workflow has a profile-search function to 521 

quickly screen samples using the gene cluster PSSM profiles in the database. 522 

Metagenomic and genomic gene prediction 523 

We used Prodigal (v2.6.3) (Hyatt et al., 2010) in metagenomic mode to predict the genes from 524 

the metagenomic dataset. For the genomic dataset, we used the gene predictions provided by 525 

Annotree (Mendler et al., 2019), since they were obtained, consistently, with Prodigal v2.6.3. 526 

We identified potential spurious genes using the AntiFam database (Eberhardt et al., 2012). 527 

Furthermore, we screened for ‘shadow’ genes using the procedure described in Yooseph et al. 528 

(Yooseph, Li, & Sutton, 2008).  529 

PFAM annotation 530 

We annotated the predicted genes using the hmmsearch program from the HMMER package 531 

(version: 3.1b2) (R. D. Finn, Clements, & Eddy, 2011) in combination with the Pfam database 532 

v31 (Robert D. Finn et al., 2016). We kept the matches exceeding the internal gathering 533 
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threshold and presenting an independent e-value < 1e-5 and coverage > 0.4. In addition, we 534 

took into account multi-domain annotations, and we removed overlapping annotations when the 535 

overlap is larger than 50%, keeping the ones with the smaller e-value. 536 

Determination of the gene clusters 537 

We clustered the metagenomic predicted genes using the cascaded-clustering workflow of the 538 

MMseqs2 software (Steinegger & Söding, 2018) (“--cov-mode 0 -c 0.8 --min-seq-id 0.3”). We 539 

discarded from downstream analyses the singletons and clusters with a size below a threshold 540 

identified after applying a broken-stick model (Bennett, 1996). We integrated the genomic data 541 

into the metagenomic cluster database using the “DB-update” module of the workflow. This 542 

module uses the clusterupdate module of MMseqs2 (Steinegger & Soding, 2017), with the same 543 

parameters used for the metagenomic clustering. 544 

Quality-screening of gene clusters 545 

We examined the GCs to ensure their high intra-cluster homogeneity. We applied two 546 

methodologies to validate their cluster sequence composition and functional annotation 547 

homogeneity. We identified non-homologous sequences inside each cluster combining the 548 

identification of a new cluster representative sequence via a sequence similarity network (SSN) 549 

analysis, and the investigation of intra-cluster multiple sequence alignments (MSAs), given the 550 

new representative. Initially, we generated an SSN for each cluster, using the semi-global 551 

alignment methods implemented in PARASAIL (Daily, 2016) (version 2.1.5). We trimmed the 552 

SSN using a custom algorithm (Chafee et al., 2018; Žure, Fernandez-Guerra, Munn, & Harder, 553 

2017) that removes edges while maintaining the network structural integrity and obtaining the 554 

smallest connected graph formed by a single component. Finally, the new cluster representative 555 

was identified as the most central node of the trimmed SSN by the eigenvector centrality 556 

algorithm, as implemented in igraph (Csardi & Nepusz, 2006). After this step, we built a multiple 557 
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sequence alignment for each cluster using FAMSA (Deorowicz, Debudaj-Grabysz, & Gudyś, 558 

2016) (version 1.1). Then, we screened each cluster-MSA for non-homologous sequences to 559 

the new cluster representative. Owing to computational limitations, we used two different 560 

approaches to evaluate the cluster-MSAs. We used LEON-BIS (Vanhoutreve et al., 2016) for 561 

the clusters with a size ranging from 10 to 1,000 genes and OD-SEQ (Jehl, Sievers, & Higgins, 562 

2015) for the clusters with more than 1,000 genes. In the end, we applied a broken-stick model 563 

(Bennett, 1996) to determine the threshold to discard a cluster. 564 

The predicted genes can have multi-domain annotations in different orders, therefore to validate 565 

the consistency of intra-cluster Pfam annotations, we applied a combination of w-shingling 566 

(Broder, 1997) and Jaccard similarity. We used w-shingling (k-shingle = 2) to group consecutive 567 

domain annotations as a single object. We measured the homogeneity of the shingle sets (sets 568 

of domains) between genes using the Jaccard similarity and reported the median similarity 569 

value for each cluster. Moreover, we took into consideration the Clan membership of the Pfam 570 

domains and that a gene might contain N-, C- and M-terminal domains for the functional 571 

homogeneity validation. We discarded clusters with a median similarity < 1. 572 

After the validation, we refined the gene cluster database removing the clusters identified to be 573 

discarded and the clusters containing ≥ 30% shadow genes. Lastly, we removed the single 574 

shadow, spurious and non-homologous genes from the remaining clusters (Supplementary Note 575 

2). 576 

Remote homology classification of gene clusters 577 

To partition the validated GCs into the four main categories, we processed the set of GCs 578 

containing Pfam annotated genes and the set of not annotated GCs separately. For the 579 

annotated GCs, we inferred a consensus protein domain architecture (DA) (an ordered 580 

combination of protein domains) for each annotated gene cluster. To identify each gene cluster 581 

consensus DA, we created directed acyclic graphs connecting the Pfam domains based on their 582 
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topological order on the genes using igraph (Csardi & Nepusz, 2006). We collapsed the 583 

repetitions of the same domain. Then we used the gene completeness as a positive-weighting 584 

value for the selection of the cluster consensus DA. Within this step, we divided the GCs into 585 

“Knowns” (Known) if annotated to at least one Pfam domains of known function (DKFs) and 586 

“Genomic unknowns” (GU) if annotated entirely to Pfam domains of unknown function (DUFs). 587 

We aligned the sequences of the non-annotated GCs with FAMSA (Deorowicz et al., 2016) and 588 

obtained cluster consensus sequences with the hhconsensus program from HH-SUITE 589 

(Steinegger, Meier, et al., 2019). We used the cluster consensus sequences to perform a 590 

nested search against the UniRef90 database (release 2017_11) (The UniProt Consortium, 591 

2017) and NCBI nr database (release 2017_12) (NCBI Resource Coordinators, 2018) to retrieve 592 

non-Pfam annotations with MMSeqs2 (Steinegger & Soding, 2017) (“-e 1e-05 --cov-mode 2 -c 593 

0.6”). We kept the hits within 60% of the Log(best-e-value) and searched the annotations for 594 

any of the terms commonly used to define proteins of unknown function (Supp. Table 12). We 595 

used a quorum majority voting approach to decide if a gene cluster would be classified as 596 

Genomic Unknown or Known without Pfams based on the annotations retrieved. We searched 597 

the consensus sequences without any homologs in the UniRef90 database against NCBI nr. We 598 

applied the same approach and criteria described for the first search. Ultimately, we classified 599 

as Environmental Unknown those GCs whose consensus sequences did not align with any of 600 

the NCBI nr entries.  601 

In addition, we developed some conservative measures to control the trade-off between 602 

specificity and sensitivity for the remote homology searches such as (1) a modification of the 603 

algorithm described in Hingamp et al. (Hingamp et al., 2013) to get a confident group of 604 

homologs to determine if a query protein is known or unknown by a quorum majority voting 605 

approach (Supp Note 3); (2) strict parameters in terms of iterations, bidirectional coverage and 606 

probability thresholds for the HHblits alignments to minimize the inclusion of non-homologous 607 
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sequences; and (3) avoid providing annotations for our gene clusters, as we believe that 608 

annotation should be a careful process done on a smaller scale and with experimental context. 609 

Gene cluster remote homology refinement 610 

We refined the Environmental Unknown GCs to ensure the lack of any characterization by 611 

searching for remote homologies in the Uniclust database (release 30_2017_10) using the 612 

HMM/HMM alignment method HHblits (Remmert, Biegert, Hauser, & Söding, 2012). We created 613 

the HMM profiles with the hhmake program from the HH-SUITE (Steinegger, Meier, et al., 614 

2019). We only accepted those hits with an HHblits-probability ≥ 90% and we re-classified them 615 

following the same majority vote approach as previously described. The clusters with no hits 616 

remained as the refined set of EUs. We applied a similar refinement approach to the KWP 617 

clusters to identify GCs with remote homologies to Pfam protein domains. The KWP HMM 618 

profiles were searched against the Pfam HH-SUITE database (version 31), using HHblits. We 619 

accepted hits with a probability ≥ 90% and a target coverage > 60% and removed overlapping 620 

domains as described earlier. We moved the KWP with remote homologies to known Pfams to 621 

the Known set, and those showing remote homologies to Pfam DUFs to the GUs. The clusters 622 

with no hits remained as the refined set of KWP. 623 

Gene cluster characterization 624 

To retrieve the taxonomic composition of our clusters we applied the MMseqs2 taxonomy 625 

program (version: b43de8b7559a3b45c8e5e9e02cb3023dd339231a), which allows computing 626 

the lowest common ancestor through the implementation of the 2bLCA protocol (Hingamp et al., 627 

2013). We searched all cluster genes against UniProtKB (release of January 2018) (UniProt 628 

Consortium, 2018) using the following parameters “-e 1e-05 --cov-mode 0 -c 0.6”. We parsed 629 

the results to keep only the hits within 60% of the log10(best-e-value). To retrieve the taxonomic 630 

lineages, we used the R package CHNOSZ (Dick, 2008). We measured the intra-cluster 631 
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taxonomic admixture by applying the entropy.empirical() function from the entropy R package 632 

(Hausser & Strimmer, 2008). This function estimates the Shannon entropy based on the 633 

different taxonomic annotation frequencies. For each cluster, we also retrieved the cluster 634 

consensus taxonomic annotation, which we defined as the taxonomic annotation of the majority 635 

of the genes in the cluster. 636 

In addition to the taxonomy, we evaluated the clusters’ level of darkness and disorder using the 637 

Dark Proteome Database (DPD) (Perdigão et al., 2017) as reference. We searched the cluster 638 

genes against the DPD, applying the MMseqs2 search program (Steinegger & Soding, 2017) 639 

with “-e 1e-20 --cov-mode 0 -c 0.6”. For each cluster, we then retrieved the mean and the 640 

median level of darkness, based on the gene DPD annotations.  641 

High-quality clusters 642 

We defined a subset of high-quality clusters based on the completeness of the cluster genes 643 

and their representatives. We identified the minimum required percentage of complete genes 644 

per cluster by a broken-stick model (Bennett, 1996) applied to the percentage distribution. Then, 645 

we selected the GCs found above the threshold and with a complete representative. 646 

A set of non-redundant domain architectures 647 

We estimated the number of potential domain architectures present in the Known GCs taking 648 

into account the large proportion of fragmented genes in the metagenomic dataset and that 649 

could inflate the number of potential domain architectures. To identify fragments of larger 650 

domain architecture, we took into account their topological order in the genes. To reduce the 651 

number of comparisons, we calculated the pairwise string cosine distance (q-gram = 3) between 652 

domain architectures and discarded the pairs that were too divergent (cosine distance ≥ 0.9). 653 

We collapsed a fragmented domain architecture to the larger one when it contained less than 654 

75% of complete genes. 655 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2020.06.30.180448doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.30.180448
http://creativecommons.org/licenses/by/4.0/


 
 

32 

Inference of gene cluster communities 656 

We aggregated distant homologous GCs into GCCs. The community inference approach 657 

combined an all-vs-all HMM gene cluster comparison with Markov Cluster Algorithm (MCL) (van 658 

Dongen & Abreu-Goodger, 2012) community identification. We started performing the inference 659 

on the Known GCs to use the Pfam DAs as constraints. We aligned the gene cluster HMMs 660 

using HHblits (Remmert et al., 2012) (-n 2 -Z 10000000 -B 10000000 -e 1) and we built a 661 

homology graph using the cluster pairs with probability ≥ 50% and bidirectional coverage > 60%. 662 

We used the ratio between HHblits-bitscore and aligned-columns as the edge weights (Supp. 663 

Note 9). We used MCL (van Dongen & Abreu-Goodger, 2012) (v. 12-068) to identify the 664 

communities present in the graph. We developed an iterative method to determine the optimal 665 

MCL inflation parameter that tries to maximize the relationship of five intra-/inter-community 666 

properties: (1) the proportion of MCL communities with one single DA, based on the consensus 667 

DAs of the cluster members; (2) the ratio of MCL communities with more than one cluster; (3) 668 

the proportion of MCL communities with a PFAM clan entropy equal to 0; (4) the intra-669 

community HHblits-score/Aligned-columns score (normalized by the maximum value); and (5) 670 

the number of MCL communities, which should, in the end, reflect the number of non-redundant 671 

DAs. We iterated through values ranging from 1.2 to 3.0, with incremental steps of 0.1. During 672 

the inference process, some of the GCs became orphans in the graph. We applied a three-step 673 

approach to assigning a community membership to these GCs. First, we used less stringent 674 

conditions (probability ≥ 50% and coverage >= 40%) to find homologs in the already existing 675 

GCCs. Then, we ran a second iteration to find secondary relationships between the newly 676 

assigned GCs and the missing ones. Lastly, we created new communities with the remaining 677 

GCs. We repeated the whole process with the other categories (KWP, GU and EU), applying 678 

the optimal inflation value found for the Known (2.2 for metagenomic and 2.5 for genomic data). 679 
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Gene cluster communities validation 680 

We tested the biological significance of the GCCs using the phylogeny of proteorhodopsin 681 

(Boeuf et al., 2015) (PR). We used the proteorhodopsin HMM profiles (Olson et al., 2018) to 682 

screen the marine metagenomic datasets using hmmsearch (version 3.1b2) (R. D. Finn et al., 683 

2011). We kept the hits with a coverage > 0.4 and e-value <= 1e-5. We removed identical 684 

duplicates from the sequences assigned to PR with CD-HIT (W. Li & Godzik, 2006) (v4.6) and 685 

cleaned from sequences with less than 100 amino acids. To place the identified PR sequences 686 

into the MicRhode (Boeuf et al., 2015) PR tree first, we optimized the initial tree parameters and 687 

branch lengths with RAxML (v8.2.12) (Stamatakis, 2014). We used PaPaRA (v2.5) (Berger & 688 

Stamatakis, 2012) to incrementally align the query PR sequences against the MicRhode PR 689 

reference alignment and pplacer (Matsen, Kodner, & Armbrust, 2010) (v1.1.alpha19-0-g807f6f3) 690 

to place the sequences into the tree. Finally, we assigned the query PR sequences to the 691 

MicRhode PR Superclusters based on the phylogenetic placement. We further investigated the 692 

GCs annotated as viral (196 genes, 14 GC) comparing them to the six newly discovered viral 693 

PRs (Needham et al., 2019) using Parasail (Daily, 2016) (-a sg_stats_scan_sse2_128_16 -t 8 -c 694 

1 -x). As an additional evaluation, we investigated the distributions of standard GCCs and HQ 695 

GCCs within ribosomal protein families. We obtained the ribosomal proteins used for the 696 

analysis combining the set of 16 ribosomal proteins from Méheust et al. (Méheust et al., 2019) 697 

and those contained in the collection of bacterial single-copy genes of Anvi’o (Murat Eren et al., 698 

2015). Also, for the ribosomal proteins, we compared the outcome of our method to the one 699 

proposed by Méheust et al. (Méheust et al., 2019) (Supp. Note 9). 700 
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Metagenomic sample selection for downstream analyses 701 

For the subsequent ecological analyses, we selected those metagenomes with a number of 702 

genes larger or equal to the first quartile of the distribution of all the metagenomic gene counts. 703 

(Supp. Table 13). 704 

Gene cluster abundance profiles in genomes and metagenomes 705 

We estimated abundance profiles for the metagenomic cluster categories using the read 706 

coverage to each predicted gene as a proxy for abundance. We calculated the coverage by 707 

mapping the reads against the assembly contigs using the bwa-mem algorithm from BWA 708 

mapper (H. Li & Durbin, 2010). Then, we used BEDTOOLS (Quinlan & Hall, 2010), to find the 709 

intersection of the gene coordinates to the assemblies, and normalize the per-base coverage by 710 

the length of the gene. We calculated the cluster abundance in a sample as the sum of the 711 

cluster gene abundances in that sample, and the cluster category abundance in a sample as the 712 

sum of the cluster abundances. We obtained the proportions of the different gene cluster 713 

categories applying a total-sum-scaling normalization. For the genomic abundance profiles, we 714 

used the number of genes in the genomes and normalized by the total gene counts per 715 

genome. 716 

Rate of genomic and metagenomic gene clusters accumulation 717 

We calculated the cumulative number of known and unknown GCs as a function of the number 718 

of metagenomes and genomes. For each metagenome count, we generated 1000 random sets, 719 

and we calculated the number of GCs and GCCs recovered. For this analysis, we used 1,246 720 

HMP metagenomes and 358 marine metagenomes (242 from TARA and 116 from Malaspina). 721 

We repeated the same procedure for the genomic dataset. We removed the singletons from the 722 

metagenomic dataset with an abundance smaller than the mode abundance of the singletons 723 
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that got reclassified as good-quality clusters after integrating the GTDB data to minimize the 724 

impact of potential spurious singletons. To complement those analyses, we evaluated the 725 

coverage of our dataset by searching seven different state-of-the-art databases against our set 726 

of metagenomic GC HMM profiles (Supp. Note 12). 727 

 728 

Occurrence of gene clusters in the environment 729 

We used 1,264 metagenomes from the TARA Oceans, MALASPINA Expedition, OSD2014 and 730 

HMP-I/II to explore the properties of the unknown CDS-space in the environment. We applied 731 

the Levins Niche Breadth (NB) index (Levins, 1966) to investigate the GCs and GCCs 732 

environmental distributions. We removed the GCs and cluster communities with a mean relative 733 

abundance < 1e-5. We followed a divide-and-conquer strategy to avoid the computational 734 

burden of generating the null-models to test the significance of the distributions owing to the 735 

large number of metagenomes and GCs. First, we grouped similar samples based on the gene 736 

cluster content using the Bray-Curtis dissimilarity(Bray, Roger Bray, & Curtis, 1957) in 737 

combination with the Dynamic Tree Cut (Langfelder, Zhang, & Horvath, 2008) R package. We 738 

created 100 random datasets picking up one random sample from each group. For each of the 739 

100 random datasets, we created 100 random abundance matrices using the nullmodel function 740 

of the quasiswap count method (Miklós & Podani, 2004). Then we calculated the observed NB 741 

and obtained the 2.5% and 97.5% quantiles based on the randomized sets. We compared the 742 

observed and quantile values for each gene cluster and defined it to have a Narrow distribution 743 

when the observed was smaller than the 2.5% quantile and to have a Broad distribution when it 744 

was larger than the 97.5% quantile. Otherwise, we classified the cluster as Non-significant 745 

(Salazar et al., 2015). We used a majority voting approach to get a consensus distribution 746 

classification based on the ten random datasets. 747 
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Identification of prophages in genomic sequences 748 

We used PhageBoost (https://github.com/ku-cbd/PhageBoost/) to find gene regions in the 749 

microbial genomes that result in high viral signals against the overall genome signal. We set the 750 

following thresholds to consider a region prophage: minimum of 10 genes, maximum 5 gaps, 751 

single-gene probability threshold 0.9. We further smoothed the predictions using Parzen rolling 752 

windows of 20 periods and looked at the smoothed probability distribution across the genome. 753 

We disregarded regions that had a summed smoothed probability less than 0.5, and those 754 

regions that did differ from the overall population of the genes in a genome by using Kruskal–755 

Wallis rank test (p-value 0.001). 756 

Lineage-specific gene clusters 757 

We used the F1-score developed for AnnoTree (Mendler et al., 2019) to identify the lineage-758 

specific GCs and to which rank they are specific. Following similar criteria to the ones used in 759 

Mendler et al. (Mendler et al., 2019), we considered a gene cluster to be lineage-specific if it is 760 

present in less than half of all genomes and at least 2 with F1-score > 0.95. 761 

Phylogenetic conservation of gene clusters 762 

We calculated the phylogenetic conservation (τD) of each gene cluster using the consenTRAIT 763 

(Martiny et al., 2013) function implemented in the R package castor (Martiny et al., 2013). We 764 

used a paired Wilcoxon rank-sum test to compare the average τD values for lineage-specific 765 

and non-specific GCs. 766 

Evaluation of the OM-RGC v2 uncharacterized fraction 767 

We integrated the 46,775,154 genes from the second version of the TARA Ocean Microbial 768 

Reference Gene Catalog (OM-RGC v2) (Salazar et al., 2019) into our cluster database using 769 
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the same procedure as for the genomic data. We evaluated the uncharacterized fraction and the 770 

genes classified into the eggNOG (Huerta-Cepas et al., 2019) category S within the context of 771 

our database.  772 

Augmenting RB-TnSeq experimental data 773 

We searched the 37,684 genes of unknown function associated with mutant phenotypes from 774 

Price et al. (Price et al., 2018) against our gene cluster profiles. We kept the hits with e-value ≤ 775 

1e-20 and a query coverage > 60%. Then we filtered the results to keep the hits within 90% of 776 

the Log(best-e-value), and we used a majority vote function to retrieve the consensus category 777 

for each hit. Lastly, we selected the best-hits based on the smallest e-value and the largest 778 

query and target coverage values. We used the fitness values from the RB-TnSeq experiments 779 

from Price et al. to identify genes of unknown function that are important for fitness under 780 

certain experimental conditions. 781 

Availability of data and materials 782 

The code used for the analyses in the manuscript is available at https://github.com/functional-783 

dark-side/functional-dark-side.github.io/tree/master/scripts. The code to recreate the figures is 784 

available at https://github.com/functional-dark-side/vanni_et_al-figures. Detailed descriptions of 785 

the different methods and results of this manuscript are available at 786 

https://dark.metagenomics.eu. The workflow AGNOSTOS is available at 787 

https://github.com/functional-dark-side/agnostos-wf, and its database can be downloaded from 788 

https://doi.org/10.6084/m9.figshare.12459056. 789 

 790 

 791 
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