
   
 

   
 

Figure 4: Timing and location of the emergence of Australian lagovirus 397 

recombinants based on time-structured phylogeographic reconstruction and RT-398 
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qPCR detections. Panels A and B are scaled to the same x-axis (shown between the 399 

two panels), given as time in years. (A) Time-structured phylogeographic analysis of 400 

Australian GI.4 lagovirus NS genes (uncorrelated log-normally distributed clock model, 401 

constant tree prior). The inset indicates the section of the phylogeny shown. Node and 402 

tip points are coloured according to location (Australian state) and node points are sized 403 

according to posterior support for that clade. Taxon names are coloured by capsid 404 

variant. The mean time to most recent common ancestor for the GI.4eP-GI.2 and each 405 

GI.4cP-GI.2 recombinant lineage is indicated at the respective internal node, and 406 

horizontal bars at these nodes represent the 95% highest posterior density (HPD). The 407 

recombinant (rec) clades are labelled, including the GI.4cP-GI.2 lineages (i – v). (B) 408 

Lagovirus positive samples collected in NSW/ACT, SA, VIC, TAS, and WA from 2016 to 409 

2020 (n = 739) were genotyped to the variant level by sequencing either side of the 410 

typical calicivirus recombination breakpoint. The number of detections of each variant 411 

by month are shown for each geographical region as an area plot, with the plotted area 412 

coloured by variant.   413 

 414 

All recombination events occurred within a two-year timeframe in eastern Australia 415 

To determine the temporal dynamics, the location of emergence, and the rate of viable 416 

recombination events in Australian lagoviruses, we conducted time-structured 417 

phylogenetic analyses for the NS and capsid genes of recombinant viruses and related 418 

sequences (i.e., Australian GI.2 VP60 and GI.4 NS sequences). Based on regression 419 

analysis, data from the GI.4 NS dataset was considered more accurate and is therefore 420 

presented in Figure 4. Based on these analyses, the 4e-recombinant was the first 421 

variant to emerge, with the most recent common ancestor of this lineage dated to early 422 

to mid-2015 (95% highest posterior density [HPD] NS dataset, 2014.8 – 2015.43) 423 

(Figure 4A). For the 4c-recombinants, the 95% HPD intervals of the time to most recent 424 

common ancestor (TMRCA) overlapped between lineages, making it difficult to 425 

confidently define the exact timings and order of emergence of each lineage (Figure 426 

4A). However, the data clearly show that these five recombination events all occurred 427 

within the space of two years. This two-year timeframe was consistently observed 428 
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regardless of whether the analysis was conducted on the NS genes GI.4 data set or the 429 

VP60 gene GI.2 data set. Our phylogeographic analysis (Figure 4A) suggests that all 430 

the 4c-recombinant lineages emerged in VIC (probability >0.99 for all lineages), with 431 

subsequent spread to other states. Notably, this was observed even for lineage v, which 432 

was first detected in Tasmania. In contrast, the 4e-recombinant clearly emerged in 433 

NSW/ACT (probability >0.99, Figure 4A); this is further supported by our 434 

epidemiological data, where we found only limited detections of this variant in other 435 

states (QLD, VIC, SA). 436 

Continued cocirculation of 4c-recombinant lineages 437 

The 4c-recombinant viruses were initially assigned to lineages based on the GI.2 VP60 438 

phylogeny (Figure 3A). For GI.4c-recombinant viruses where a full genome sequence 439 

was not available, we first inferred a phylogeny from a 504 nt region spanning the 440 

RdRp-VP60 junction (Figure 5); this phylogeny was annotated using taxa for which the 441 

lineage was definitively known from the VP60 phylogeny. While sequences from each 442 

4c lineage (as defined from the complete genome sequences) did not form clades with 443 

individual common ancestors in the RdRp-VP60 junction phylogeny, they did form 444 

distinct groups with visible genetic distance between them (Figure 5). These groups 445 

were distinct enough to assign a 4c lineage type to those samples with partial sequence 446 

only. After assigning lineages to all GI.4c-recombinants, we explored the interactions 447 

between the different lineages by mapping their sampling locations over time. We found 448 

that four of the five lineages were already circulating in 2017 (Figure 5). Lineage ii was 449 

not detected after 2017 while the other four lineages continued to be detected 450 

throughout 2018, 2019, and 2020. In VIC, where all lineages are circulating, there was 451 

no clear indication of geographical clustering of the different lineages. In TAS, lineages 452 

ii, iii, and iv were detected sporadically while lineage v has remained dominant over 453 

time, suggestive of a founder effect in this region. Similarly, in NSW/ACT lineage iv has 454 

remained dominant, also suggesting a regional founder effect, while lineages i, ii, and iii 455 

were only detected intermittently. 456 

 457 
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Figure 5: Geographical distribution of 4c-recombinant lagoviruses in Australia, 459 

2017 to 2020. (A) Sampling locations for the 4c lineages were mapped for each year 460 

following the emergence of this variant in 2017. (B) 4c-recombinant viruses were 461 

allocated to a 4c lineage based on ML phylogenetic grouping of the partial RdRp-VP60 462 

sequence (504 nt) with reference sequences. Reference sequences were annotated 463 

based on full genome sequencing and are indicated in the tree by the coloured tip 464 

points. The phylogeny was midpoint rooted and the scale bar represents nucleotide 465 

substitutions per site. 466 

 467 

The emergence of 4c-recombinant variants was not associated with antigenic changes 468 

in the VP60 capsid protein 469 

To determine whether the observed epidemiological replacement of 1) the parental 470 

RHDV2 virus by the novel 4c-recombinant in VIC and TAS, and 2) the 4e-recombinant 471 

in NSW/ACT were associated with nonsynonymous, potentially antigenic, changes in 472 

the VP60 capsid protein we performed ancestral state reconstruction using our prior 473 

Australian GI.2 VP60 phylogeny. Notably, four of the five 4c-recombinant lineages 474 

showed no amino acid changes in the capsid protein relative to the inferred ancestral 475 

RHDV2 node, suggesting that the emergence of these lineages was not associated with 476 

changes in antigenicity (Figure 3A). However, nonsynonymous mutations were 477 

identified in 4c-recombinant lineage i and in 4e-recombinant viruses (Figure 3A). When 478 

we mapped these mutations back to an atomic model of lagovirus GI VP60, both 479 

mutations were within the protruding domain, specifically the P2 subdomain, which is 480 

known to contain immunodominant epitopes (Figure 3B) [61]. The 4c-recombinant 481 

lineage i was associated with an S364G mutation, while an I434T mutation was present 482 

in all lineage 4e-recombinants (Figure 3A). Thus, it is possible that the epidemiological 483 

fitness of the 4e-recombinant variant in NSW/ACT may be attributable to antigenic 484 

changes in the capsid; however, this cannot explain the replacement of parental RHDV2 485 

by 4c-recombinant variants in VIC or TAS, or the continued co-circulation of 4c-486 

recombinant lineages without changes in VP60. Furthermore, in NSW/ACT the 4e-487 
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recombinant variant, despite the I434T change in VP60, appears to be currently 488 

undergoing replacement by the 4c-recombinant.  489 

 490 

Discussion 491 

In a global landscape where population immunity to GI.1 and GI.1a viruses was 492 

widespread in lagomorphs, it is unsurprising that GI.2 viruses were so successful and 493 

rapidly replaced GI.1 strains. We were interested to determine whether, after 494 

establishment, GI.2 viruses would continue to evolve via immune selection and 495 

antigenic drift or by other mechanisms. We were also interested to document whether 496 

variants without the GI.2 capsid would emerge as population immunity increased 497 

against this genotype. Instead, we found that the GI.2 capsid was retained and that the 498 

emerging recombinant variants acquired alternative NS genes. It is becoming 499 

increasingly clear that recombination is a major driver of calicivirus diversity, facilitating 500 

the emergence of new variants including those with pandemic and panzootic potential 501 

[24, 25, 62, 63]. However, the frequency at which viable recombination occurs and the 502 

genetic drivers of epidemiological fitness are still poorly understood. In this study, a 503 

continent-scale natural competition experiment of lagoviruses in Australia, we found that 504 

viable recombination occurs at an extremely high frequency given the right agent, host, 505 

and environmental circumstances.  506 

Six viable recombination events in Australian lagoviruses between 2014 and 2018 507 

Shortly after detecting two exotic lagovirus incursions in Australia, RHDVa-Aus (GI.4eP-508 

GI.1a) in 2014 and RHDV2 (GI.1bP-GI.2) in 2015 [32, 37], we reported the emergence 509 

of a recombinant variant of these two viruses (4e-recombinant; GI.4eP-GI.2), detected 510 

in July 2016 in NSW [31]. This finding prompted the development of improved molecular 511 

tests for the detection of recombination and the subsequent retrospective and 512 

prospective screening of lagovirus-positive samples for further recombination events. 513 

This screen identified an additional novel recombinant lagovirus, a GI.4cP-GI.2 variant 514 

(4c-recombinant), first detected in VIC in February 2017. Further analysis determined 515 

that the VP60 genes of this 4c-recombinant separated into five distinct clades (Figure 516 
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3A), suggesting that this variant emerged on five separate occasions following at least 517 

five independent recombination events. Recombination was already known to occur in 518 

lagoviruses. For example, in the last decade, the lagovirus GI.2 capsid has been 519 

detected in combination with five different sets of NS genes [24, 27, 31, 33]. Our study 520 

demonstrates that viable recombination during natural infection occurs even more 521 

frequently than previously appreciated but may often go undetected if different events 522 

result in closely related progeny. Since the first detection of RHDV2 in Australia in mid-523 

2015 [37] this capsid gene has recombined and produced epidemiologically viable 524 

variants at least six times in a two-year period.  525 

The previously reported 4e-recombinant arose from a recombination event between 526 

RHDVa-Aus (GI.1aP-GI.2) and RHDV2 (GI.1bP-GI.2), both recombinant viruses 527 

themselves that were exotic incursions detected in Australia in January 2014 and May 528 

2015, respectively, although the source of these viruses remains unknown [31, 32, 37]. 529 

Detections of the parental RHDVa-Aus were predominantly restricted to the Sydney 530 

basin region of NSW, with two cases detected in QLD and one further case in a wild 531 

rabbit in the ACT [32]. Therefore, it is not surprising that the 4e-recombinant emerged in 532 

NSW/ACT, according to our epidemiological data and phylogeographic analysis (Figure 533 

4). The 4c-recombinants arose from recombination events between RHDV2 (GI.1bP-534 

GI.1) and endemic RCV-A1 (GI.4c) viruses [14, 37]. Emergence of the 4c-recombinant 535 

variants in the south-eastern states of Australia is consistent with high rabbit population 536 

densities and a high seroprevalence to GI.4 viruses in these regions compared to more 537 

arid regions of Australia [64]. 538 

Despite the VP60 phylogeny suggesting multiple recombination events between GI.4c 539 

and GI.2 viruses, only a single unique recombination event was detected by the RDP4 540 

program. This is not surprising given that the breakpoint locations are indistinguishable 541 

and these recombinants (and their true parents) are very closely related. Indeed, it was 542 

only possible to infer the true number of recombination events because of the high 543 

sampling frequency of parental RHDV2 viruses, which has been maintained for this and 544 

previous studies. Had RHDV2 sequences from intervening clades not been sampled, 545 

the 4c-recombinants would have formed a monophyletic clade and a single 546 
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recombination event assumed. This is demonstrated by the NS genes phylogeny 547 

(Figure 4A), in which the 4c-recombinant sequences form a single clade within the 548 

greater GI.4c clade. Importantly, within this clade the sequences group into the same 549 

five lineages as seen in the VP60 tree. Compared to pathogenic GI.2 viruses, benign 550 

RCV-A1 (GI.4c) viruses are greatly under-sampled in Australia, with the most recent 551 

RCV-A1 sequences (n = 6) derived from samples collected from the ACT in 2012 and 552 

2014 [35]. Aside from three sequences sampled in 2014, no other RCV-A1 sequences 553 

were available for the entirety of the study period. Consequently, a close relative of the 554 

RCV-A1 parental virus has not been sequenced, suggesting a hidden diversity of 555 

unsampled RCV-A1 viruses in Australian rabbits. This study provides a lower bound to 556 

the rate of recombination in these viruses; it is possible that additional recombination 557 

events have occurred with GI.4c viruses that are not observable against the current 558 

background of available GI.2 VP60 sequences.  559 

Lagoviruses show frequent recombination between the GI.2 capsid and GI.4 NS 560 

sequences 561 

Interestingly, all the recombination events detected during the study period involved the 562 

pairing of a GI.2 capsid and the NS genes of a GI.4 virus. Despite screening over 800 563 

lagovirus-positive samples, we found no evidence for recombinant variants with either 564 

capsid or NS sequences of GI.1 viruses.  565 

For recombination to occur several criteria must be met [23]. Firstly, there must be 566 

coinfection of an individual host. This is influenced by host tropism, the prevalence of 567 

each parental virus in the population, and the duration of infection. Secondly, there must 568 

be coinfection of a single cell, both viruses must replicate within this cell, and precise 569 

template switching must occur to generate viable gRNA. Finally, the resultant variant 570 

must be epidemiologically competitive. That is, it must be able to successfully transmit, 571 

to establish infection in new hosts, and to avoid being outcompeted by either the 572 

parental or other circulating variants. 573 

Following the epizootic incursion of an antigenically novel virus, RHDV2, into a naïve 574 

population, the prevalence of this variant was extremely high in Australian rabbits, 575 

reflected by the estimated population-wide mortality rate of 60% following the arrival of 576 
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RHDV2 [39]. The detection of four GI.1 and GI.2 co-infections in this study between 577 

2015 and 2017 demonstrates that both viruses were circulating at sufficiently high 578 

prevalence for mixed infections to occur. However, this doesn’t explain the predilection 579 

for GI.4 (RCV) NS sequences. The discovery of 4c-recombinants was surprising, since 580 

the parental RCV-A1 is a benign enterotropic lagovirus [14], while RHDV2 (and RHDV1) 581 

viruses are virulent and hepatotropic. This would seem to preclude coinfection of 582 

individual cells with both viruses. Yet, several recombinants of RHDV2 and benign 583 

enterotropic RCVs have also been reported from Europe [64]. This suggests that active 584 

replication of both RCVs and RHDV2 must be occurring in the same target cell. 585 

Extrapolating from our current understanding of human and murine norovirus tropism, 586 

macrophages or other immune cells may be likely candidates [65]. This is further 587 

supported by the detection of plus- and minus-strand viral RNAs in splenic and alveolar 588 

macrophages of rabbits experimentally infected with RHDV1 [66]. Additionally, RCVs 589 

typically infect young rabbits early in life [12, 14]. Although young rabbits can be 590 

infected with RHDV1 viruses, robust innate immunity limits the extent of viral replication 591 

in an age-dependent manner [34, 39]. Thus, mixed infections with RHDV1 and RCVs 592 

are probably infrequent. This age-dependent resistance is not observed with RHDV2 593 

infection [67]. Furthermore, the duration of infection is longer for benign RCVs 594 

compared to pathogenic variants, where infected individuals typically die within 48 – 72 595 

hours post-infection [2]. These factors may at least partly explain why RCV-RHDV2 596 

recombinants appear to emerge more frequently than RHDV1-RHDV2 recombinants.  597 

Epidemiological drivers of lagovirus emergence and spread 598 

Both the 4e-recombinant and 4c-recombinant rapidly replaced the dominant circulating 599 

parental RHDV2 in NSW/ACT and VIC/TAS, respectively. This replacement, at least for 600 

several 4c-recombinant lineages, occurred without any associated antigenic changes in 601 

the capsid protein, demonstrating that the replacement was not driven by antigenic 602 

escape. This shows that NS sequence variation is an important driver of epidemiological 603 

fitness in lagoviruses, complementing similar findings in human and murine noroviruses 604 

[68, 69]. For example, the pandemic GII.P16/GII.4 Sydney 2012 norovirus, which does 605 

not contain unique substitutions in the capsid, has substitutions within the RdRp that are 606 
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proposed to increase transmissibility [69]. Infection with this variant also resulted in 607 

increased viral shedding compared to other norovirus genotypes, as measured by 608 

higher faecal viral loads [70]. Previous studies have shown that RdRp fidelity and intra-609 

host viral diversity affect transmissibility of murine norovirus in vivo, with high-fidelity 610 

variants being less efficiently transmitted than the wild-type variant [71]. Taken together, 611 

these studies demonstrate that NS proteins, particularly the RdRp, are important drivers 612 

of calicivirus fitness. Interestingly, the in vitro polymerase replication activity of the 613 

cloned GI.4c RdRp was previously shown to be at least two times that of the RHDV1 614 

(GI.1c) RdRp [72], although comparison to the GI.1b RdRp, the specific ‘competing’ 615 

variant in the current study, was not reported. Analogous to the findings in murine 616 

norovirus, we propose that a higher replication rate of GI.4 RdRps may lead to 617 

increased intra-host viral diversity and transmissibility of GI.4 recombinants. However, 618 

we cannot rule out that other NS proteins may also contribute to the observed high 619 

fitness of the recombinant variants.  620 

Within the 4c-recombinants, there was no evidence of dominance of any one lineage 621 

over time. The apparent dominance of lineage iv in NSW/ACT and lineage v in TAS is 622 

consistent with founder effects in both of those states. This demonstrates that different 623 

lagoviruses can cocirculate at relative equilibrium over extended periods of time. This 624 

further supports that the observed rapid replacement of parental RHDV2 (GI.1bP-GI.2) 625 

by GI.4P recombinant variants in this study is due to a fitness advantage of these 626 

variants, conferred by the NS proteins and possibly associated with the RdRp.  627 

The lagovirus capsid governs host and tissue tropism and is correlated with virulence 628 

Both the newly identified 4c-recombinant and the previously emerged 4e-recombinant 629 

are virulent, hepatotropic viruses that were recovered from the livers of both rabbits and 630 

hares and from rabbits of all ages in this study. This tropism mimics that seen with other 631 

GI.2 viruses [73-80]. In stark contrast, the parental RCV-A1 is a benign, enterotropic 632 

virus that has only been recovered from rabbits [14], while the RHDVa-Aus variant, 633 

although virulent and hepatotropic, has only been found in adult rabbits. Our findings 634 

suggest that it is the lagovirus capsid that confers both host and tissue tropism and that 635 

tissue tropism is correlated with virulence.  636 
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With the broader host tropism conferred by the GI.2 capsid, there is increased potential 637 

for the emergence of novel epizootic lagovirus variants through both intragenotypic and 638 

intergenotypic recombination. Hares are known to carry their own, presumed benign, 639 

caliciviruses [16-18, 31, 33, 73-79]. Indeed, the first intergenotypic lagovirus 640 

recombinants were recently reported from Germany [33]. Since the incursion of RHDV2 641 

into North America in 2020 this variant has also been reported to infect several 642 

Sylvilagus species (cottontail rabbits) [81]. Although endemic Sylvilagus calciviruses 643 

have never been reported, very limited sampling has been conducted in this species. It 644 

remains to be seen whether North American leporids may be a new reservoir for the 645 

emergence of novel lagoviruses with panzootic potential. This highlights the need for 646 

ongoing surveillance and full genetic characterization of lagoviruses and other 647 

caliciviruses to facilitate detection of future emerging variants of significance to both 648 

animal and human health. 649 
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