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Figure S1 related to Figure 1: CG9005
PBG

 mutant macrophages migrate 

normally within the head and along the vnc. Fig S1A-B. Quantification of 

macrophages on the yolk in fixed early Stage 12 embryos shows a significant increase 

in (A) the P{GT1}CG9005
BG02278 

P element mutant (CG9005
PBG

) and in (B) lines 

expressing each of the CG9005 RNAis in macrophages compared to the control. (A): 

control n=43, mutant n=50, mutant/Df1 n=28, mutant/Df2 n=9, rescue=20; p<0.0001 

for control vs mutant, p=0.99 for control vs rescue, p=0.001 for mutant vs rescue. (B): 

control 1 n=21, CG9005 RNAi 1 n=20, p=0.0002; control 2 n=25, CG9005 RNAi 2 

n=19, p<0.0001; control 3 n=16, CG9005 RNAi 3 n=15, p=0.001). Fig S1C-F. 

Macrophage quantification in ventral nerve cord (vnc) segments reveals no significant 

difference in macrophage migration along the vnc between CG9005
PBG

 mutant (n=15) 

and control embryos (n=7, p>0.05) or srpHemo>CG9005 RNAi embryos compared to 

the controls (control 1 n=8, CG9005 RNAi 1 n=13, p=0.25; control 2 n=8, CG9005 

RNAi 2 n=16, p=0.5; control 3 n=8, CG9005 RNAi 3 n=16, p>0.99). Fig S1G-H. 

Quantification of the total macrophage number reveals no significant difference 

between the control (n=43) and CG9005
PBG

 mutant embryos (n=50, p=0.69), or the 

control and srpHemo>CG9005 RNAi embryos (control 1 n=12, CG9005 RNAi 1 

n=17, p=0.9; control 2 n=27, CG9005 RNAi 2 n=19, p=0.84; control 3 n=23, CG9005 

RNAi 3 n=27, p=0.16). Fig S1I. Stills from two-photon movies of control and 

CG9005
PBG

 mutant embryos, showing macrophages migrating starting at Stage 10 

from the head towards the germband. Elapsed time indicated in minutes. The 

germband edge (white dotted line) was detected by yolk autofluorescence. Fig S1J-L. 

Quantification of migration parameters from two-photon live imaging of 

macrophages. Fig S1J. Macrophages on the yolk sac in the CG9005
PBG

 mutant reach 

the germband with a similar speed to control macrophages. Speed: control and 

mutant=2.2 µm/min; movie #: control=8, mutant=3; track #: control=373, 

mutant=124, p=0.78. Fig S1K-L. Macrophage directionality (K) in the head or (L) on 

the yolk sac shows no change in the CG9005
PBG

 mutant compared to the control. 

Head directionality: control=0.39, mutant=0.37, p=0.74; yolk sac directionality: 

control=0.40, mutant=0.39, p=0.86. Macrophages analyzed in A-L were labeled with 

srpHemo-H2A::3xmCherry to visualize nuclei. In schematics, macrophages are 

shown in red and analyzed macrophages in light blue, the ectoderm in green, the 

mesoderm in purple, and the yolk in beige. Throughout this work embryos were 

staged for imaging and quantification based on germband retraction away from the 

anterior of less than 29% for stage 10, 29%–31% for stage 11, and 35%–40% for 

stage 12. In all figures histograms show mean±SEM, ns=p>0.05, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. One-way ANOVA with Tukey for (A) and unpaired t 

test for (B-H) and (J-L). 
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Figure S2 related to Figure 2. Atos’s TAD domains are essential in macrophages 

for their tissue infiltration. Fig. S2A. S2R+ cells were transfected with wild type 

Atos or forms lacking the indicated domains. HA tagged Atos (green), the nuclear 

membrane marker Lamin (red) and the nucleolar marker Fibrillarin (red) were 

visualized with antibodies, and nuclear DNA with DAPI (blue). All forms of Atos are 

expressed under direct control of the srpHemo promoter. Fig S2B. Representative 

confocal images of Stage 12 embryos from atos
PBG

 mutants expressing Atos lacking 

either TAD1
 
or 2 in macrophages from the srpHemo promoter. Macrophages (red) 

were visualized with srpHemo-H2A::3xmCherry expression and the embryo outlines 

with phalloidin staining to detect actin (green). Fig S2C. Quantification shows that 

deletion of TAD1 or 2 blocks Atos’s ability to rescue the germband migration defect 

of Stage 12 atos
PBG

 mutant embryos upon expression in macrophages. Control n=32, 

mutant n=56, WT rescue n=18, TAD1
-
 n=32, TAD2

- 
n=39. For control vs WT rescue 

p>0.99, for control vs TAD1
-
 rescue p<0.0001, and for control TAD2

-
 rescue 

p=0.003. Fig S2D. Quantification in fixed early Stage 12 embryos shows a significant 

increase in the number of macrophages on the yolk in the atos
PBG

 mutant and atos
PBG

 

expressing forms of atos lacking either DUF4210, ChrSeg,
 
both DUF4210 and 

ChrSeg, or TAD1 and TAD2 compared to control embryos and atos
PBG

 embryos 

expressing WT Atos. Control n=43, atos mutant n=50, WT atos rescue n=20, 

DUF4210
- 

rescue n=17, ChrSeg
- 

rescue n=22, DUF4210
-
/ChrSeg

-
 rescue n=27, 

TAD1
- 
rescue n=18, TAD2

- 
rescue n=24, TAD1

-
/TAD2

- 
rescue n=18. For control vs 

atos mutant p<0.0001, for control vs WT rescue p>0.99, for control vs. other rescues 

expressing atos lacking conserved motifs p>0.1. Fig S2E. Quantification shows a 

similar number of macrophages on the yolk in fixed early Stage 12 atos
PBG 

mutant 

embryos which express mFAM214A or mFAM214B in macrophages compared to the 

control. Control n=43, mutant n=50, WT rescue n=20, mFAM214A rescue n=18, 

mFAM214B rescue n=26. For control vs atos
PBG

 p=0.93, for control vs mFAM214A 

rescue p=0.65, for control vs mFAM214B rescue p=0.56, for atos
PBG 

mutant vs 

atos
PBG

, mFAM214A and mFAM214B rescues p<0.0001. One-way ANOVA with 

Tukey for (C-E). Scale bars: 3 µm in (A), 50 µm in (B). 
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Figure S3 related to Figure 3. Macrophage transcriptome analysis reveals that 

Atos targets participate in signaling, cell communication and ion transport. 

Fig S3A. FACS plot of Side Scatter (SSC) vs. mCherry fluorescence signal in 

macrophages obtained from embryos expressing srpHemo-3xmCherry. The two 

populations are sorted as mCherry marker + (red) and – (blue) cells. Fig S3B. Genes 

expressed differentially in analysis of RNA sequencing data from macrophages from 

the atos
PBG 

mutant compared to the control are shown in a volcano plot graphing the 

log10 of the P value against the log fold change (FC) of the mean normalized 

expression levels. Each point represents the average value of one gene’s expression 

from four replicate experiments. Dotted vertical lines indicate a log10 fold change ≥1 

and the dotted horizontal line a P value of ≤0.05. Statistically significant up- and 

down-regulated genes are reported as red and green dots, respectively. Fig S3C. Gene 

ontology (GO) analysis of downregulated genes from atos
PBG

 mutant macrophages 

compared to the control shows that theses genes are involved in oxidation-reduction 

processes, stress responses as well as the nervous system. Fig S3D-E. Quantification 

in fixed early Stage 12 embryos reveals that knockdown by two different RNAis of 

(D) Glycerophosphate oxidase 2 (Gpo2, CG2137 or (E) Golgi matrix protein 130 kD 

(GM130, CG11061) did not change the macrophage number within the germband 

compared to their controls. For (D) control 1 n=24, Gpo2 RNAi 1 (VDRC 41234) 

n=11, p=0.26; control 2 n=15, Gpo2 RNAi 2 (VDRC 68145) n=27, p=0.38. For (E) 

control 1 n=15, GM130 RNAi 1 (VDRC 330284) n=25, p=0.14; control 2 n=27, 

GM130 RNAi 2 (VDRC 64920) n=20, p=0.34. Fig S3F-H. Quantification reveals that 

expression of RNAis against porthos, GR/HPR, and LKR/SDH in macrophages leads 

to a significant increase in macrophage numbers on the yolk in fixed early Stage 12 

embryos compared to their controls. For (F) control n=30, porthos RNAi n=28, 

p<0.0001. For (G) control 1 n=27, dGR/HPR RNAi 1 (VDRC 44653) n=18, 

p=0.0003; control 2 n=22, dGR/HPR RNAi 2 (VDRC 107680) n=24, p=0.04; control 

3 n=14, dGR/HPR RNAi 3 (VDRC 64652) n=21, p=0.7. For (H) control 1 n=27, 

dLKR/SDH RNAi 1 (VDRC 51346) n=17, p=0.0002; control 2 n=22, dLKR/SDH 

RNAi 2 (VDRC 109650) n=19, p=0.0004. Unpaired t test for (D-H). 
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Figure S4 related to Figure 4. Downregulation of porthos recapitulates the atos 

mutant phenotype. 

Fig S4A. Deduced protein structure of Porthos (CG9253). Porthos contains two 

conserved motifs, a DEAD motif (Asp-Glu-Ala-Asp) and a Helicase C domain, as 

well as a predicted transactivation domain (TAD). Drosophila Porthos shows 71% 

identity and 84% similarity to its human ortholog, DDX47. Fig S4B. Porthos (green) 

in S2R+ cells transfected with UAS-porthos::HA and srpHemo-Gal4, and stained for 

the nuclear membrane marker Lamin (red), colocalizes with the staining for the 

nucleolar marker Fibrillarin (red), and DAPI (blue). Fig S4C-D. Quantification of 

macrophage numbers in fixed Stage 12 embryos. (C) Expression of porthos RNAi in 

macrophages has no effect in their numbers on (C) the vnc or (D) in the whole 

embryo compared to the control. For (C) control n=15, porthos RNAi n=15, p>0.35. 

For (D) control n=28, porthos RNAi n=20, p=0.85. Fig S4E. Stills from two-photon 

movies of the migration of macrophages labeled with srpHemo-H2A::3xmCherry in 

control embryos and in those expressing porthos RNAi in macrophages. Macrophages 

from both genotypes have a similar (F) directionality in the head, and (G) speed and 

(H) directionality on the yolk sac, to control macrophages. Speed on yolk sac: 

control=2.10 µm/min, porthos RNAi=2.15 µm/min; p=0.35; movie #: control n=4, 

porthos RNAi n=6; track #: control n=104, porthos RNAi n=168. Directionality in 

head: control n=0.35, porthos RNAi n=0.37; p=0.27; movie #: control n=4, porthos 

RNAi n=6. Directionality on yolk: control=0.42, porthos RNAi=0.39; p=0.58; movie 

#: control n=3, porthos RNAi n=6. Unpaired t test for (C), (D), and (F-H). Scale bar is 

5 µm in (B) and 30 µm in (E).  
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Figure S5 related to Figure 5. Porthos increases the translation of a subset of 

mRNAs.  

Fig 5SA-B. Other target mRNAs downregulated in porthos KD cells are involved in 

gene regulation and RNA processing, mRNA translation, cellular transport, cell 

signaling, cell-cell interactions, immune responses, and protein degradation. NF: Not 

Found. 
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Figure S6 related to Figure 6. Depletion of atos or porthos causes impairment in 

mitochondrial metabolic activity, reduced ATP production, and a deficiency in 

macrophage tissue invasion. 

Fig S6A. Schematic indicating the specific inhibitors (in red at right) used to block 

the function of mitochondrial OxPhos components. The glycolysis, TCA cycle, and 

mitochondrial respiratory chain in eukaryotic cells are shown. Fig S6B. Graph shows 

relative porthos and atos mRNA levels (± SEM) in porthos KD S2R+ cells measured 

by qPCR from at least three independent experiments. The data are normalized to 

results for the internal control gene RpS20. Porthos KD S2R+ cells contain 56% of 

normal porthos mRNA levels and display a slight statistically insignificant decrease 

in atos mRNA levels. t-test was used followed by Sidak's correction. Control n=6, 

porthos n=6, p= 0.0002, atos n=3, p=0.09. Fig S6C. The contribution of basal 

OxPhos ATP production rate and glycolytic ATP production rate were calculated. 

The plot shows that both wild-type and porthos KD S2R+ cells utilize OxPhos 

respiration as the predominant bioenergetic pathway to produce ATP in these cells. 

Porthos depletion produced no increase in the relative utilization of glycolysis. Fig 

S6D. The relative basal values of the Oxygen Consumption rate (OCR), as a marker 

of OxPhos, and Extracellular Acidification Rate (ECAR), as an indication of 

glycolysis, in control and porthos KD S2R+ cells are plotted. Basal respiration rate is 

calculated before the addition of antimycin A. Fig S6E. Quantification in fixed early 

Stage 12 embryos shows a significant increase of macrophages on the yolk upon the 

expression in macrophages of any of three different RNAis against mitochondrial 

OxPhos Complex III (UQCR) or an RNAi against Complex V (F1F0, CG3612). 

Control n=34, Complex III (Cyt-c1, CG4769): RNAi 1 (VDRC 109809) n=19, 

p=0.0049; Complex III (UQCR-cp1, CG3731): RNAi 2 (VDRC 101350) n=18, 

p=0.024; Complex III (UQCR-cp2, CG4169): RNAi 3 (VDRC 100818) n=16, 

p=0.009; Complex V (F1F0, CG3612): RNAi (VDRC 34664) n=21, p=0.0068. Fig 

S6F-G. Quantification of the number of macrophages in vnc segments does not show 

a significant change in general migration along the vnc in embryos whose 

macrophages express (F) CV-DN or (G) RNAis against mitochondrial OxPhos 

complex components compared to the control. (F): Control n=20, CV-DN n=23, 

p>0.05. (G): Control n=14, Complex III (Cyt-c1, CG4769): RNAi 1 (VDRC 109809) 

n=10, p>0.8; Complex III (UQCR-cp1, CG3731): RNAi 2 (VDRC 101350) n=14, 

p>0.05; Complex III (UQCR-cp2, CG4169): RNAi 3 (VDRC 100818) n=11, p>0.9; 

Complex V (F1F0, CG3612): RNAi (VDRC 34664) n=18, p>0.2. Unpaired t test for 

(B) and (D-G). 
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Figure S7 related to Figure 7. Atos and Porthos enhance ATP production by 

programming mitochondrial oxidative phosphorylation metabolism. Fig S7A. 

Schematic illustrates the metabolic profiling procedure in wild-type and atos mutant 

embryos at Stage 12. Fig S7B-C. Heatmap of non-targeted metabolites in atos mutant 

embryos reveals an increase in substrates of the dGR/HPR enzyme, including 4-

hydroxy α-ketoglutarate and hydroxyproline (HLP) and a smaller decrease in its 

products, glycolate and glycerate. Fig S7D-F. Global metabolite screening reveals 

less than 1 fold increases for most (D) glycolytic intermediates and up to 3 fold 

increases for metabolites from (E) the Pentose Pathway (PPP), and (F) the TCA cycle 

in the atos mutant compared to the control. Fig S7G-H. Analysis reveals strong 

increases in thymidine, which can be catabolized to products that feed into the TCA 

cycle, as well as uridine along with increases in some cellular nucleotide precursors 

and purine and pyrimidine metabolites. Fig S7I. Heatmap of non-targeted metabolites 

in atos mutant embryos reveals a small increase in most amino acids in the atos 

mutant a significant increase in some dipeptides including those containing 

hydroxyproline. Fig S7J. Schematic shows a link between Folate metabolism and 

glycine/serine metabolism, in which the glycine-related metabolite sarcosine (N-

methylglycine) was significantly reduced in the atos mutant. Metabolites with 

statistical significant change are shown as: *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. Unpaired t test for (C-I). 

 


