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Abstract 11 
Large, openly available datasets and current analytic tools promise the emergence of population 12 
neuroscience. The considerable diversity in personality traits and behaviour between individuals 13 
is reflected in the statistical variability of neural data collected in such repositories. This 14 
variability challenges the sensitivity and specificity of analysis methods. Yet, recent studies with 15 
functional magnetic resonance imaging (fMRI) have concluded that patterns of resting-state 16 
functional connectivity can both successfully identify individuals within a cohort and predict their 17 
individual traits, yielding the notion of a neural fingerprint. Here, we aimed to clarify the 18 
neurophysiological foundations of individual differentiation from features of the rich and 19 
complex dynamics of magnetoencephalography (MEG) resting-state brain activity in 158 20 
participants. The resulting neurophysiological functional connectomes enabled the identification 21 
of individuals with similar identifiability rates to fMRI. We also show that individual identification 22 
was equally successful from simpler measures of the spatial distribution of neurophysiological 23 
spectral signal power. Our data indicate that identifiability can be achieved from brain recordings 24 
as short as 30 seconds, and that it is robust over time: individuals remain identifiable from 25 
recordings performed weeks after their baseline reference data was collected. We can anticipate 26 
a vast range of diverse applications in personalized, clinical and basic neuroscience of individual 27 
differentiation from large-scale neural electrophysiology, in future longitudinal and cross-section 28 
studies.   29 
  30 
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Introduction 31 
Understanding the biological nature of individual traits and behaviour is an overarching objective 32 
of neuroscience research (1–4). The increasing availability of large, openly available datasets and 33 
advanced computational tools propels the field toward this aim (5–7). Yet, with bigger and 34 
deeper data volumes, neuroscientists approach a paradox: while big-data neuroscience 35 
approaches the realm of population neuroscience, we remain challenged by understanding how 36 
interindividual data variability echoes the singularity of the self (1, 3, 8, 9).   37 

This epistemological question has become particularly vivid with recent research showing that individuals 38 
can be identified from a cohort via their respective neural fingerprints, derived from structural magnetic 39 
resonance imaging (MRI) (10, 11), functional MRI (fMRI) (12–16), electroencephalography (EEG) (17, 18), 40 
or functional near-infrared spectroscopy (fNIRS) (19). Strikingly, neural fingerprints are associated with 41 
individual traits such as global intelligence, working memory, and attention abilities (20–23). Most 42 
published work so far is methodologically based on inter-individual similarity measures of functional 43 
connectivity—understood as statistical dependencies between ongoing signals across brain regions in task-44 
free awake conditions (24, 25)—as defining features of neural fingerprints. Yet, the indirect coupling 45 
between hemodynamic and neural brain signaling interrogate the neurophysiological nature of brain 46 
fingerprints. Previous EEG fingerprinting work was restricted to scalp data, and therefore, provided limited 47 
neuroanatomical insight.   48 

In electrophysiology indeed, ongoing brain dynamics at rest are rich and complex (Baillet, 2017) and have 49 
long been considered a nuisance, a by-product of neural noise (27–29). Recent experimental evidence, 50 
spurred by systems neuroscience models, indicates that spontaneous brain activity captured using 51 
electrophysiological techniques expresses similar resting-state connectomes as fMRI and influences 52 
conscious, sensory processes (30–32). Ongoing neurophysiological activity varies considerably between 53 
individuals and across the lifespan. One instance is the inter-individual variability of prominent features of 54 
human brain neurophysiological activity, such as the alpha rhythm (8-12 Hz) peak frequency (33, 34). 55 
Overall, the unique signature components of fast, neurophysiological brain dynamics across individuals 56 
remain unchartered.  57 

Here we used resting state recordings of magnetoencephalography (MEG; Baillet, 2017) from a large cohort 58 
of participants to identify neurophysiological features of individual differentiation. We derived both 59 
measures of functional organization (i.e., functional connectivity) inspired by fMRI neural fingerprinting 60 
approaches, and spectral signal markers that are proper to the wider frequency spectrum of brain signaling 61 
accessible to neurophysiological data.  62 

Results 63 
We used MEG data from 158 participants available from the Open MEG Archives (OMEGA; Niso 64 
et al., 2016). Data collected on multiple days were available for a subset of these participants 65 
(N=47; mean duration between consecutive sessions: 201.8 days; Figure 1). The participants 66 
were both healthy and patient volunteers (ADHD and chronic pain) spanning in age from 18 – 73 67 
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years-old (see Supplemental Material). T1-weigthed structural MRI volumes were available from 68 
OMEGA for all participants and were used to produce source maps of resting-state brain activity 69 
(Baillet et al., 2001). We derived several neurophysiological signal features from MEG brain 70 
source time series summarized within the Desikan-Killiany atlas—68 regions of interest (ROIs) 71 
parcellating the entire cortical surface (36). The MEG features comprised power-spectral-72 
density, spectral estimates (PSD) within each ROI across 68 regions of interest (ROIs; Desikan et 73 
al., 2006), and 68x68 functional connectomes (FC) between ROIs. The approach is summarized 74 
graphically Figure 1 and the FC and PSD methodological details are provided in Materials and 75 
Methods. 76 
Participant identification was performed across pairs of MEG data segments taken from either 77 
the same (within-session identification) or a repeated session (between-session identification) 78 
using two distinct datasets (Figure 1a), using either FC or PSD features (referred as connectome 79 
and spectral fingerprinting, respectively). For each pair of participants, the Pearson’s correlation 80 
coefficient between their respective features (i.e., FC or PSD) was the corresponding entry in the 81 
group correlation matrix. The identification procedure for each individual proceeded via a lookup 82 
operation through the corresponding row of the correlation matrix; the index of the column 83 
featuring the largest correlation coefficient determined the predicted identity of the individual in 84 
the cohort. Thus, if a given individual’s data features from the first dataset were most correlated 85 
to the data features from their second dataset, the individual would be correctly identified. Note 86 
that taking the maximum along the rows or columns simply switches which dataset is used for 87 
deriving the identification features (e.g., identifying individuals using dataset 1 from features 88 
derived from dataset 2; results for all possible combinations of datasets are in Supplemental 89 
Material). The overall accuracy of the identification procedure was computed as the proportion 90 
of participants correctly identified. We ran three types of identification challenges: within-91 
session identification consisted of the personal differentiation between 158 participants (i.e., the 92 
datasets were from same-day recordings split in half); within-session identification using 93 
considerably shortened data segments (30 seconds from 175 seconds); and a between-session 94 
identification challenge for a subset of 47 participants for whom the datasets were from two 95 
separate days (Figure 1a). We conducted the identification challenges using either broadband 96 
MEG data or band-limited versions within the typical frequency bands used in neurophysiology. 97 
We also derived a self-identifiability score for every participant, which indicates the saliency of 98 
the identification of any given individual in the tested cohort (see Material and Methods).  99 
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 100 
Figure 1: Identification analysis pipeline and definition of self-identifiability  101 
(a) Schematic of exemplar MEG data divided into datasets for each of the specified analyses. In 102 
the i) within-session analysis we split each session volume in half, in the ii) within-session 103 
shortened analysis we similarly split the session volume into three 30-second segments, and 104 
lastly in the iii) between-sessions analysis used data recorded on two separate days.  (b) 105 
Schematic of the data analysis pipeline: source modeling was first performed before extracting 106 
features from each region of the Desikan-Killiany atlas (36). These features were vectorized and 107 
subsequently used to fingerprint individuals, yielding a participant correlation matrix. (c) 108 
Features for the between-session challenge from an exemplar subject. Left panel depicts AEC 109 
functional connectivity matrices across two datasets; both matrices feature the Pearson 110 
correlation coefficients between all regions of the Desikan-Killiany atlas (36).  Right panel plots 111 
the power spectrum density estimates from two regions of the atlas, across two datasets. (d) 112 
Self-identifiability was derived for each participant as the z-score of their correlation to 113 
themselves, relative to the correlation between themselves and the rest of the cohort. A 114 
participant with a high correlation to themselves and low correlations to others was qualified as 115 
highly identifiable. An individual highly correlated to both themselves and many others in the 116 
cohort was qualified as less identifiable. 117 

Within-session, connectome and spectral data, differentiate individuals 118 
Within-session MEG connectome and spectral fingerprinting achieved 94.9% and 96.2% 119 
participant identification accuracy, respectively (Figure 2). This outcome was robust to switching 120 
datasets (Supplemental Material). While previous work (12) reported that data reduction 121 
strategies improved identification performances, this was not the case with our data. Data 122 
reduction strategies only marginally improved individual differentiation, as explained in 123 
Supplemental Material.  124 
We also ran the identification procedure across the typical frequency bands of electrophysiology 125 
to understand whether the expression of certain ranges of brain rhythms would be more specific 126 
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of individual differentiation. We bandpass filtered MEG signals in the delta (1-4Hz), theta (4-127 
8Hz), alpha (8-13Hz), beta (13-30Hz), gamma (30-50Hz) and high gamma (50-150Hz) frequency 128 
bands before running the same within-session fingerprinting procedure with resulting 129 
narrowband signals. Narrowband connectome fingerprinting yielded identification accuracy 130 
scores of 98.7% for delta, 100% for theta, 99.4% for alpha, 100% for beta, 98.7% for gamma, and 131 
94.9% for high gamma. Narrowband spectral fingerprinting produced identification accuracies of 132 
94.9% for delta, 95.6% for theta, 95.6% for alpha, 96.2% for beta, 96.2% for gamma, and 97.5% 133 
for high gamma. These results are summarized Figure 2a.  134 
We further challenged MEG individual differentiation using shorter, 30-second data segments. 135 
We extracted three 30-second segments from the within-session data (Figure 1a) and ran the 136 
same fingerprinting procedures as above. Identification accuracy with connectome fingerprinting 137 
was not affected substantially (94.9%, 93.7%, and 96.8% across all tested 30-second segments; 138 
Figure 2) using broadband MEG signals. However, spectral fingerprinting was strongly degraded 139 
by using shorter data segments (identification accuracy: 62.7%, 71.5%, and 90.5%; Figure 2). We 140 
observed similar discrepancies in performance robustness between connectome and spectral 141 
fingerprinting using narrowband signals (Figure 2), especially in the delta, theta, and alpha 142 
bands. We also observed that using data segments collected closer in time yielded higher 143 
identification accuracies i.e., using features from the first dataset to identify individuals from 144 
data in the second dataset outperformed fingerprinting when the first dataset was used to 145 
identify participants from data in the third, more distal in time, dataset. We report identification 146 
accuracies for all possible combinations of dataset pairs in Supplemental Material. 147 

MEG fingerprinting is robust against physiological, artefactual, and demographics confounds  148 
We investigated the robustness of these results against variables of no interest and possible 149 
confounds. We performed Pearson correlation analyses between identification scores and 150 
recording parameters, typical MEG artifacts and demographic variables. There was no 151 
association between the duration of scans and self-identifiability for connectome (r=-0.02, 152 
p=0.75) and spectral (r=0.02, p=0.8) fingerprinting (Supplementary Material). Further, none of 153 
the tested MEG artifacts due to eye movements, heartbeats and head motion were related to 154 
individual identifiability across both connectome and spectral fingerprinting. Indeed, self-155 
identifiability was not correlated to motion (connectome: r=0.06, p=0.5; spectral: r= -0.01, p= 156 
0.9), cardiac (connectome: r=0.05, p=0.6; spectral: r= 0.07, p= 0.4), or ocular (connectome: r= -157 
0.09, p = 0.3; spectral: r=-0.05, p=0.5) artifacts (Figure 2b). We further hypothesized that 158 
fingerprinting performances may have been skewed by sample heterogeneity in terms of data 159 
from healthy vs. patient participants. Yet, there was less than 1% differences in identification 160 
accuracy after restricting fingerprinting to healthy participant data (Supplemental Material). We 161 
also verified that participant demographics such as age, sex, and handedness did not contribute 162 
to identifiability either (Supplemental Material).  163 
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 164 

165 
Figure 2: Within-session identification accuracy, unrelated to artifacts 166 
(a) identification accuracy of connectome and spectral fingerprinting across the broad- and 167 
narrow-band scouted time series for the within-session identification challenge. Connectome 168 
and spectral fingerprinting have similar performances on broadband data. Connectome 169 
fingerprinting performed better with theta, alpha, and beta narrowband data. In contrast, 170 
spectral fingerprinting performance was qualitatively similar across frequency bands. (b) Self-171 
identifiability was not related to head motion, eye-movements or heartbeat artifacts (top row 172 
connectome, bottom row spectral fingerprinting). (c) identification accuracy for the within-173 
session shortened analysis. Connectome outperformed spectral fingerprinting, especially when 174 
datasets were father apart in time (i.e., datasets 1 and 3).  175 

MEG fingerprinting is robust over time 176 
We tested whether participants who underwent MEG sessions on separate days were 177 
identifiable from datasets collected weeks to months apart (with a range of 1 – 1029 days apart 178 
and an average of 201.7 days, SD=210.1). We applied the above fingerprinting procedures 179 
towards this between-session challenge on the subset of participants concerned (N=47). 180 
Connectome fingerprinting decreased in performance compared to the identification accuracy 181 
scores obtained from the within-session challenge (89.4%). Performance of connectome 182 
fingerprinting from narrowband signals also decreased, with the greatest robustness obtained 183 
from using signals in the beta and theta bands (Figure 3 and Supplemental Material). In contrast, 184 
spectral fingerprinting was robust longitudinally, with identification accuracy scores of 97.9% 185 
(broadband) and >90% (narrowband) that were similar to those obtained in the within-session 186 
challenge (Figure 3 and Supplemental Material). Self-identifiability scores were not correlated 187 
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with the number of days between MEG sessions (connectome: r= 0.09, p = 0.5; spectral: r= 0.08, 188 
p=0.65).  189 
 190 

 191 
Figure 3: Between-session identification accuracy 192 
(a) Identification accuracy for connectome and spectral between-session fingerprinting. 193 
Performances were similar to those from the within-session challenge, especially for spectral 194 
fingerprinting, which remained accurate with broad- and narrow-band data. (b) Linear regression 195 
analyses did not reveal an association between self-identifiability and the duration between 196 
recordings, in days (connectome: r= 0.09, p = 0.5; spectral: r= 0.08, p=0.65).  197 

198 
Figure 4: Characteristic features for connectome and spectral fingerprinting 199 
Intra-Class Correlation (ICC) for connectome and spectral within-session fingerprinting. (a) ICC for 200 
connectome fingerprinting plotted across each frequency band, with network/region labelling 201 
according to Yeo et al. (2011): Default Mode Network (DMN), Dorsal Attention (DA), Frontal-202 
Parietal (FP), Limbic (L), Somato-Motor (SM), Ventral Attention (VA), and Visual (VIS). The most 203 
prominent connection features for connectome fingerprinting were the Visual, Dorsal Attention 204 
and Limbic networks. (b) ICC for spectral fingerprinting plotted for each tested frequency band, 205 
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using the Desikan-Killiany cortical parcellation (36). The most salient features included Gamma 206 
and High-Gamma band signals in midline structures. 207 

Salient neurophysiological features for identification 208 
We identified the features which were the most characteristic of individuals for MEG 209 
fingerprinting. We derived measures of intraclass correlation (ICC) (12) to quantify how much 210 
each feature, such as an edge of the FC connectome or a frequency band in an anatomical 211 
parcel, contributed to fingerprinting (see Methods). This metric used in previous brain 212 
fingerprinting studies captures the inter-rater reliability of each participant as their own rater, to 213 
identify the edges which neurophysiological signal features are the most consistent across 214 
individuals (12, 37). We performed analysis separately for the broadband connectome and 215 
spectral fingerprinting within-session challenges. The data show that the dorsal attention and 216 
visual networks were the most specific across individuals for connectome fingerprinting, across 217 
all frequency bands. These results also highlight that the theta, alpha and beta bands stand out 218 
in their ability to distinguish individuals, with an emphasis on limbic beta connectivity (Figure 4). 219 
Activity in medial regions across all bands stood out in the identification of individuals using 220 
spectral fingerprinting (Figure 4b). Particularly, signals in the gamma and high-gamma bands 221 
discriminated individuals along midline, parietal, and visual areas, which was consistent with the 222 
narrowband results above.  223 

Neurophysiological identifying features are associated with demographics 224 
Beyond identifying individuals in a cohort, we tested whether resting-state neurophysiological 225 
signals could predict meaningful participant traits using an exploratory partial-least-squares (PLS) 226 
analysis (see Methods). Briefly, PLS explains the covariance between two observation matrices – 227 
here a demographic matrix with a neurophysiological signal matrix (from ROI-specific PSD or FC 228 
measures) – based on latent components. Our data pointed at three significant latent 229 
components, which were distinct for connectome and spectral fingerprinting (Supplemental 230 
Material). The first latent component in connectome fingerprinting was related to clinical 231 
population (r= 0.2, 95% CI [0.160, 0.3]) and handedness (r= 0.2, 95% CI [0.1, 0.3]). This 232 
demographic profile was associated with reduced beta-band functional connectivity over the 233 
frontal parietal network (Figure 5). For PSD fingerprinting, the first salient latent component was 234 
related to a younger age (r= -0.3, 95% CI [-0.1, -0.5]), female (r= 0.4, 95% CI [0.2, 0.5]) and clinical 235 
population (r= 0.5 , 95% CI [0.2, 0.5]). This demographic profile was associated with stronger 236 
expressions of broadband neurophysiological signal power in superior parietal regions and the 237 
pericalcarine gyrus bilaterally and reduced neurophysiological signals in the isthmus cingulate 238 
(Figure 5).   239 
 240 
 241 
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242 
Figure 5: Partial Least-Squares analysis relates demographics to connectome and spectral 243 
features 244 
(a) and (b) from left to right, depicts the design saliency patterns for the first latent variables and 245 
their associated neural-data bootstrap ratios. Confidence Intervals (CI) are calculated through a 246 
bootstrapping procedure, and as such may not necessarily be symmetric. Bootstrap ratios 247 
computed for connectome (a) and spectral features (b) and plotted according to resting-state 248 
networks derived by (Yeo et al., 2011) and the Desikan-Killiany atlas (36) respectively. 249 

Discussion 250 
The recent leveraging of large, open fMRI datasets has brought empirical evidence that 251 
individuals may be identified within a cohort from their brain imaging functional connectome, 252 
inspiring the metaphor of a neural fingerprint. Unlike hand fingerprints, their cerebral 253 
counterpart predicts task performance and a variety of traits (14, 20–23). These intriguing 254 
findings require a better understanding of their neurophysiological foundations, which we 255 
sought to characterize from direct neural signals captured at a large scale with MEG. 256 
Our data show that individuals can be identified in a cohort of 158 unrelated participants from 257 
their respective resting-state connectomes and spectral profiles in a range of fast brain signals. 258 
MEG fingerprinting was successful using data lengths (30 seconds) much shorter than those 259 
reported for fMRI fingerprinting (14, 39). Brain electrophysiological signals are rich, complex, and 260 
convey expressions of large-scale neural dynamics channeled by individual structural anatomy 261 
and physiology (40). Indeed, we also showed that MEG fingerprinting is robust across time, 262 
making individuals potentially identifiable from data collected days, months or years apart. 263 
Lastly, we characterized whether individual differences in resting-state neural dynamics are 264 
meaningful through an exploratory PLS analysis. We showed that both resting-state functional 265 
connectomes and spectra predict latent demographic components. Recent findings corroborate 266 
our results, demonstrating meaningful individual differences between functional connectomes 267 
derived from resting-state electrophysiology (41). 268 

Connectome and spectral neurophysiological fingerprints 269 
Our results highlight two sets of brain-wide electrophysiological features that contributed to 270 
successful individual identification: connectome and spectral measures across the 271 
neurophysiological frequency spectrum. Overall, connectome and spectral fingerprinting with 272 
MEG performed equivalently to fMRI approaches, achieving overall identification rates above 273 
90%, with robust individual identification over time and against noise (12, 14, 42).  274 
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We found that for connectome fingerprinting, the anatomical regions the most characteristic of 275 
individuals differed between MEG and fMRI. While fMRI highlighted the default-mode network 276 
and the fronto-parietal resting state networks, MEG connectome fingerprinting emphasized 277 
functional connectivity within limbic and visual networks as contributing to individual specific 278 
neurophysiological signatures. In contrast, both MEG and fMRI fingerprinting emphasize the 279 
importance of the dorsal attention network (14). These observations are not mutually exclusive, 280 
considering the different nature of brain signals captured by the respective modalities. One 281 
possible interpretation—requiring further investigation— is that the fast neurophysiological 282 
signals that contribute to identification with MEG have hemodynamic counterparts that are not 283 
as salient in fMRI as the identifying networks reported so far. Nevertheless, our data indicate 284 
that neurophysiological signals in the beta band contribute to the highest identification accuracy 285 
amongst all other typical bands. This finding is compatible with previous work reporting that 286 
correlated amplitude changes of MEG brain signals are related to the microstructure of white 287 
matter tracts and reveal, with the same amplitude envelope correlation method as used here, 288 
MEG resting-state brain networks that align with fMRI’s (43, 44). Beta signalling also emerges 289 
from recent literature as a signalling vehicle of re-afferent “top-down” communications in brain 290 
signals (45, 46). One can therefore speculate that beta-band signals would convey 291 
electrophysiological representations of internal cognitive models that are by essence intimately 292 
specific of each individual (Baillet, 2017). 293 
Such brain signal amplitude signatures are further emphasized by the ability of simple spectral 294 
brain maps to enable MEG fingerprinting. Within- and between-session spectral identification 295 
were achieved with remarkable accuracy (>90%) with broadband MEG brain signals or restricted 296 
to the typical bands of electrophysiology. Spectral identification based on signals from the faster 297 
bands (gamma and high-gamma) was overall the most robust longitudinally and against using 298 
shorter data segments. This observation is consistent with the width of (high) gamma frequency 299 
bands spanning broader ranges (here between 30-50 Hz and 50-150 Hz) than slower bands such 300 
as delta (1-4 Hz), theta (4-8 Hz) and alpha (8-12 Hz). The spectral estimates averaged across the 301 
broader (high) gamma bands were therefore the most robust against using shorter data 302 
segments. The reduced number of sliding time windows available over shorter data durations 303 
increased the variance of the spectral summary statistics extracted to derive the spectral 304 
fingerprints from the signals defined over narrower bands. The higher frequency bands were less 305 
affected because the larger number of frequency bins involved in the extraction of their 306 
summary power statistics tended to compensate the higher empirical variance across reduced 307 
signal durations. Connectome fingerprinting was more immune against using shorter data 308 
durations. The underlying approach indeed did not require spectral transformations but resorted 309 
to a bank of narrowband filters applied over the original duration of MEG recordings, before the 310 
resulting filtered signals were segmented in shorter epochs for the identification challenges. The 311 
consequence is that the number of data points used for all narrowband signals was identical 312 
across all frequency bands, yielding moderate variability in identification performances 313 
compared to those obtained with the spectral approach. Another factor of robustness of the 314 
connectome approach is that connectivity weights between network nodes may fluctuate very 315 
slowly over time in task free brain activity: Florin and Baillet (2015) reported fluctuation rates of 316 
0.01Hz in MEG, indicating typical time cycles of 100s — a duration substantially longer than the 317 
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30-s shortest time window used here. Over longer periods of time though, such as in the 318 
between-session challenge, spectral fingerprinting outperformed its connectome counterpart. 319 
We note a slight increase of spectral identification accuracy in the between-session challenge 320 
(e.g., +1.6% for broadband fingerprinting) compared to within-session, which was a statistical 321 
fluctuation due to using a smaller sample of participants. 322 
More broadly, gamma and faster activity has long been associated with concurrent and 323 
colocalized hemodynamic fluctuations (47, 48), which underlines why such signals contribute 324 
robustly to MEG brain fingerprinting, as dual manifestations of the BOLD signal changes used for 325 
fMRI fingerprinting. Gamma-band and faster brain signals are weaker and therefore more prone 326 
to contamination from artifacts and noise (49–51). The preprocessing applied to our data 327 
attenuated such nuisance to a point where individuals were not identifiable from typical sources 328 
of signal contamination such as individual head motion behavior. On average across all 329 
fingerprinting challenges, identification using brain signals was overall successful suing lower 330 
frequency bands (delta 68.8%, theta 79.0%, alpha 80.9%) but was markedly better from high-331 
frequency signal components (beta 91.1%; gamma 89.5%; high gamma 89.0%).  332 
Although a rhythm of prominent amplitude in humans during rest, alpha-band activity (8-12Hz) 333 
was not particularly specific to identify individuals in the cohort. In that respect, our data is 334 
aligned with previous MEG works on resting-state connectomes extracted from 335 
neurophysiological MEG signals, which did not report on a salient role of alpha activity in driving 336 
inter-regional connectivity (30, 43). We argue that the spatial topography of alpha resting 337 
activity may be relatively stereotypical across individuals, involving thalamo-cortical loops that 338 
project focally to the parieto-occipital junction, with restricted variability across individuals (6). In 339 
task, alpha activity has been related to attention orienting, alertness and anticipation, thereby 340 
reflecting transient mental states (39, 52–54) rather than individual traits.  341 
While our present data show robust longitudinal fingerprinting performances, future work 342 
involving more participants with multiple MEG visits is required to both replicate these 343 
observations and investigate whether individual deviations from baseline fingerprints could be 344 
early signals of asymptomatic neuropathophysiology (Baillet, 2017). Indeed, we have not 345 
addressed how different measures of functional connectivity and spectral power may boost or 346 
hinder the ability to identify individuals. Considering this, the remarkable ability to fingerprint 347 
individuals with the chosen electrophysiological features serves as a steppingstone for future 348 
investigation. Combined fMRI and MEG fingerprinting offers a new avenue for non-invasive 349 
endophenotyping. 350 

Neural fingerprints of individual traits  351 
Our data suggests that individual differences in resting-state neurophysiological functional 352 
connectivity and spectral power relate to latent demographic clusters. These observations are in 353 
line with previous fMRI work that showed that connectomes are predictive of individual 354 
differences in attention, working memory and intelligence. For instance, connectivity patterns 355 
between the default mode and the dorsal attention networks predict attentional behaviour 356 
during task and self-reported mind wandering (Monica D. Rosenberg et al., 2016, 2020, see 357 
Rosenberg et al., 2017 for review). Overall, the conceptual framework is that task free neural 358 
dynamics are the signatures of an individual scaffold of brain functions that is predictive of task 359 
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behaviour. This view is also that of the spontaneous trait reactivation hypothesis wherein the 360 
organization of the human cortex at rest (manifested e.g., by functional connectivity) is a window 361 
into the self’s unique traits and abilities (57). Early evidence indeed suggests that functional 362 
connectomes are associated with personality traits and even inter-personal closeness in social 363 
networks (58, 59). 364 
Yet, the mechanistic implementation of these intriguing observations remains elusive. Inter-365 
individual variability in the distribution of synaptic weights across the cerebrum, shaped through 366 
lifetime experiences according to Hebbian principles, may account — at least in part — for 367 
connectome fingerprinting (57). The heritability of the functional connectome has also been 368 
discussed, especially for fronto-parietal networks (i.e., DAN, VAN and DMN) (60–62). Heritability 369 
of brain spectral characteristics is also actively discussed (63–65). This emerging literature and 370 
the empirical evidence of brain fingerprinting certainly motivates more research on new, 371 
fascinating questions about the biological nature of the self. 372 

Sampling population diversity for personalized interventions 373 
Robust individual signatures of brain activity have potential to open new possibilities in the 374 
domain of neurophysiological endophenotyping and population neuroscience. With the 375 
increasing availability of multi-omic data repositories, there is a research opportunity to span the 376 
diversity of statistical normative characteristics of brain fingerprints across the population, in 377 
relation to behavior and clinical phenotypes (1, 3, 26). Ideally, large databanks of individual 378 
variants sampled across multiple dimensions of socio-economic, age, and geographic factors 379 
enable normative modeling approaches to establish the risk traits of developing syndromes of 380 
e.g., early cognitive decline, neurodegeneration, or mental illness. Brain fingerprints derived 381 
from relatively short, task free scanning sessions may play a leading role to realize this vision. 382 
Likewise, brain fingerprinting may contribute to future endeavours in establishing how oscillatory 383 
dynamics at rest support cognitive functions across the lifespan. MEG brain fingerprinting 384 
presents several potential advantages in terms of safety, shorter scan time, and immediate 385 
proximity of a care person during data collection, for special populations. The prospect of 386 
transferring MEG fingerprinting methodology to EEG as a more accessible sister technology is 387 
also appealing.  388 
 389 
In sum, our study extends the concept of neural or brain fingerprint to fast and large-scale 390 
resting-state electrophysiological dynamics, which encapsulate meaningful individual differences 391 
in both functional connectivity and neuroanatomical maps of power spectrum characteristics. 392 
We are hopeful that the present contribution paves the way to replication and extension using 393 
larger open datasets. Many fascinating outstanding questions remain about the biological nature 394 
of inter-individual variability expressed via neural oscillations and brain network dynamics, and 395 
more specifically how these differences associate with behavior and diseases natural history. The 396 
research ahead is for future population neuroscience studies. 397 
  398 
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Material and Methods 399 

The Open MEG Archives (OMEGA) 400 
We used data from the Open MEG Archives (OMEGA;  Niso et al., 2016) consisting of resting-401 
state MEG recordings acquired using the same MEG system (275 channels whole-head CTF; Port 402 
Coquitlam, British Columbia, Canada). The sampling rate was 2400 Hz, with an antialiasing filter 403 
applied at 600 Hz cut-off, and built-in third-order spatial gradient noise cancellation (see Niso et 404 
al., 2016 for details on data acquisition).  405 
We analysed MEG resting-state data from 158 unrelated OMEG participants (77 Females, 31.9 ± 406 
14.7 years old). Recordings were approximately 5-min long. Supplementary Table 1 provides 407 
details on scanning procedures and Supplementary Table 2 on demographics. A subset of these 408 
individuals (N=47) had recordings over multiple visits (different days) and were used in the 409 
between-session fingerprinting challenge. The OMEGA data management protocol was approved 410 
by the research ethics board of the Montreal Neurological Institute.  411 

MEG data preprocessing and feature extraction 412 
MEG data were preprocessed using Brainstorm (Tadel et al., 2011 version Oct-12-2018) 413 
(following good-practice guidelines (67). Unless specified, all steps below were performed using 414 
the Brainstorm toolkit, with default parameters. Line noise artifact (60 Hz) along with its 10 415 
harmonics were removed using a notch filter bank. Slow-wave and DC-offset artifacts were 416 
removed using a high-pass FIR filter with a 0.3-Hz cutoff. We derived Signal-Space Projections 417 
(SSPs) to remove cardiac and ocular artifacts. We used electro-cardiogram and -oculogram 418 
recordings to define signal projectors around identified artifact occurrences. We also applied 419 
SSPs to attenuate low-frequency (1-7 Hz) and high-frequency noisy components (40-400Hz) due 420 
to saccades and muscle activity, respectively. Bandpass filtered duplicates of the cleaned data 421 
were produced for each frequency band of interest (delta: 1-4Hz, theta: 4-8Hz, alpha: 8-13Hz, 422 
beta: 13-30Hz, gamma: 30-50Hz, and high gamma: 50-150Hz). Distinct brain source models were 423 
then derived for all narrowband versions of the MEG sensor data.  424 
Each individual T1-weighted MRI data was automatically segmented and labelled with Freesurfer 425 
(68). Coregistration with MEG sensor locations was derived using dozens of digitized head points 426 
collected at each MEG session. We produced MEG forward head models for each participant 427 
using the overlapping spheres approach, and cortical source models with LCMV beamforming, all 428 
using Brainstorm with default parameters (source estimation 2016 version). Elementary MEG 429 
source orientations were constrained normal to the surface at 15,000 locations of the cortex. 430 
Noise statistics for source modeling were estimated from two-minute empty-room recordings 431 
collected as close as possible in time to each participant’s MEG session. Source timeseries were 432 
clustered into 68 cortical regions of interest (ROIs) defined from the Desikan-Killiany atlas (36) 433 
and dimension-reduced via the first principal component of all signals within each ROI.  434 
Connectome and spectral identification features were computed from ROI source timeseries. 435 
Individual functional connectomes were derived in all frequency bands from the amplitude 436 
envelope correlation (AEC) approach (69). ROI timeseries were Hilbert transformed and all 437 
possible pairs of resulting amplitude envelopes were used to derive the corresponding Pearson 438 
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correlation coefficients, yielding a 68x68 symmetric connectome array. We used Welch’s 439 
method to derive power spectrum density (PSD) estimates for each ROI (70), using time windows 440 
of 2 seconds with 50% overlap sled over all ROI timeseries and averaged across all PSDs within 441 
each ROI.  442 

Code Availability 443 
The connectome and spectral features were then exported to Python (3.7.6) for subsequent 444 
fingerprinting analyses. All codes for including preprocessing and data analysis can be found on 445 
the project’s GitHub (LINK). 446 

Data Availability 447 
The power spectra and connectomes derived from the preprocessed OMEGA samples and used 448 
to identify individuals in the present study are available upon request from corresponding 449 
authors.  450 

Fingerprinting and self-identifiability 451 
We used a fingerprinting approach directly adapted from fMRI connectome fingerprinting 452 
methods (12, 14), which relies on correlational scoring of individuals between datasets. A given 453 
probe participant is identified from a cohort by computing all Pearson correlation coefficients 454 
between the spectral or connectome features of said probe at one timepoint (e.g., dataset 1) 455 
and the entire cohort at a different timepoint (e.g., dataset 2). The entry presenting the highest 456 
correlation to the probe determined the probe’s estimated identity i.e., identified entry in the 457 
cohort. This approach is applied between all pairs of participants in the cohort, yielding an 458 
asymmetric correlation matrix spanning the cohort. We report scores of identification accuracy 459 
as the ratio between the number individuals correctly identified with the described procedure 460 
and the total number of individuals in the cohort. Identification accuracy scores are obtained 461 
from identification challenges from dataset 1 to dataset 2 and vice-versa, within- and between-462 
sessions. Figure 1 details the definition of the dataset labels used, and Supplemental Material 463 
contains the results from across all combinations of datasets/sessions.  464 
Amico and Goñi (2018) proposed an identifiability score to quantify, for a given participant, the 465 
reliability of its identification from others in the cohort. Here, we extend this notion with the 466 
introduction of a self-identifiability measure, Iself. Let A be the correlation matrix spanning the 467 
cohort (square, asymmetric) between dataset 1 and dataset 2, and N be the number of 468 
participants to identify. We define  Iself as the z-score of participant Pi ‘s correlation to themselves 469 
between dataset 1 and dataset 2, with respect to Pi’s  correlation to all other individuals in the 470 
cohort, noted: Iself (i) = (Corrii – μij) / σij , where Corrii is the Pi’s correlation between dataset 1 and 471 
dataset 2, μij is the mean correlation between participant Pi in dataset 1 and all other individuals 472 
in dataset 2 (i.e. the mean along the ith row of matrix A), and σi is the empirical standard 473 
deviation of inter-individual features correlations. Thus, if a participant is easily identifiable, its 474 
self-identifiability increases; whereas small self-identifiability scores indicate a participant 475 
particularly difficult to identify from the rest of the cohort. 476 
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Recording artifacts and self-identifiability 477 
To investigate the effects of recording parameters and artifacts on fingerprinting, we related 478 
each individual’s self-identifiability to several possible confounds. The duration of each scan was 479 
compared to self-identifiability to verify that longer recordings available from a subset of 480 
individuals did not make them easier to identify. We also correlated the root mean square (RMS) 481 
of signals that measured ocular, cardiac and head movement artifacts over the duration of the 482 
entire recording to participants’ self-identifiability score. For cardiac artifacts for instance, we 483 
derived the RMS of ECG recordings; for ocular artifacts we used the HEOG and VEOG electrode 484 
recordings; and for motion artifact we extracted the RMS of all three head coil signals that 485 
measured 3-D head movements. These derivations were conducted for both the connectome 486 
and spectral broadband within-session fingerprinting challenge.  487 

Fingerprinting across frequency bands  488 
We replicated the above fingerprinting approach using data restricted to each frequency band of 489 
interest (delta 1-4Hz, theta 4-8Hz, alpha 8-13Hz, beta 13-30Hz, gamma 30-50Hz, and high 490 
gamma 50-150Hz). We report the identification accuracy obtained from each narrowband signal 491 
in both the spectral and connectome fingerprinting challenges in Figure 2 and Figure 3, for the 492 
within- and between-session fingerprinting challenges respectively. 493 

Shortened and between-session fingerprinting challenges 494 
We verified the robustness of MEG fingerprinting in relation to 1) the amount of data required to 495 
accurately identify individuals and 2) the stability of MEG identification across time. We 496 
subdivided participants into two additional challenges: the within-session—shortened and 497 
between-session challenge. First, we used the participant data described in the within-session 498 
analysis and extracted connectome and spectral fingerprinting features over three 30-second 499 
non-overlapping time segments. This duration was based on the length of the shortest recording 500 
in the data sample (Figure 1aii). We applied the same fingerprinting procedure as described in 501 
Fingerprinting and self-identifiability across all possible combinations of the three 30-second 502 
datasets. Second, we assessed the stability of the fingerprinting outcomes using a subset of 503 
participants with consecutive MEG sessions separated by several days (N=47; separated on 504 
average by 201.7 days, see Supplemental Materials for details). Again, we applied the same 505 
fingerprinting procedure as described in Fingerprinting and self-identifiability for this between-506 
session challenge. 507 

Most characteristic features for fingerprinting  508 
We quantified the contribution of each feature (i.e., edges in the connectivity matrix or a 509 
frequency band in an anatomical parcel) towards identifying individuals using Intra-Class 510 
Correlations (ICC). ICC is commonly used to measure the agreement between two observers 511 
(e.g., ratings vs. scores). The stronger the agreement, the higher the ICC (12, 37). ICC derives a 512 
random effects model whereby each item is rated by different raters from a pool of potential 513 
raters. We selected this measure to capture the inter-rater reliability of each participant as their 514 
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own rater to identify which edges (e.g., connections in FC) are the most consistent (i.e., which 515 
features of a participant Pi in dataset 1 are most like dataset 2). Here, the higher the ICC, the 516 
more consistent a given feature was within individuals.  Additionally, we computed two other 517 
measures of edgewise contribution proposed by Finn and colleagues (14): group consistency and 518 
differential power (Supplemental Material). We applied all measures (i.e., ICC, group consistency, 519 
and differential power) in the context of the broadband within-session fingerprinting challenge. 520 

Partial Least-Squares: MEG features of participant demographics 521 
We conducted a Partial Least-Squares (PLS) analysis with the Rotman-Baycrest PLS toolbox (71). 522 
PLS is a multivariate statistical method that relates two matrices of variables (e.g., neural activity 523 
and participant demographics) by estimating a weighted linear combination of variables from 524 
both data matrices to maximize their covariance. The associated weights can be interpreted 525 
neural patterns (e.g., functional connections) and their associated demographic profiles. PLS 526 
used singular value decompositions of the z-scored neural activity-demographics covariance 527 
matrix. This decomposition yielded orthogonal latent variables (LV) associated to a pattern of 528 
neural activity (i.e., functional connectivity or spectral power) and demographics. To assess the 529 
significance of these multivariate patterns, we computed permutation tests (10,000 530 
permutations). Each permutation shuffled the order of the observations (i.e., the rows) of the 531 
demographic data matrix before running PLS on the resulting surrogate data under the null 532 
hypothesis that there was no relationship between the demographic and neural data. A p-value 533 
for the LVs was computed as the proportion of times the permuted singular values exceeded 534 
that of the original data. We explored the first significant LV from the broadband connectome 535 
and spectral fingerprinting features. We also assessed the contribution of each variable in the 536 
demographics and neural activity matrices by bootstrapping observations with replacement 537 
(10,000 bootstraps). We computed 95-% confidence intervals for the demographic weights and 538 
bootstrap ratios for the neural weights. The bootstrap ratio was computed as the ratio between 539 
each variable’s weight and the bootstrap-estimated standard error.  540 
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 725 

 Supplemental material 726 
 727 
MEG fingerprinting is robust against sample demographics  728 

The OMEGA data repository contains 158 participants, with a subset (N=47) scanned at 729 
multiple occasions several days apart. OMEGA consists essentially of data from healthy controls 730 
with a 18-73-year age span (SD=14.7 years; Supplemental Table 1).  731 

One potential confound that could have inflated our ability to fingerprint individuals is the 732 
heterogeneity introduced by both healthy and clinical populations in the OMEGA cohort. To 733 
address this concern, we ran a secondary analysis where we performed the fingerprinting 734 
procedures described in the manuscript with only healthy controls (N=130). The results, reported 735 
in Supplemental Table 2, demonstrated that fingerprint performances were not biased by the 736 
patients/controls heterogeneity of the OMEGA sample. We observed a decrease of less than 1% 737 
in performance relative to fingerprinting from the entire cohort. Further, there was no clear 738 
relationship between self-identifiability and demographics (Figure S1)., using connectome (age: r= 739 
0.08, p = 0.2; gender: t= -0.27, p = 0.7; handedness: t= -0.51, p = 0.6; clinical status: t= -0.87, p = 0.3; 740 
two-tailed) and spectral fingerprinting (age: r= 0.10, p = 0.1; gender: t= 0.62, p = 0.5; handedness: t= 741 
0.13, p = 0.8; clinical status: t= 0.84, p = 0.3; two-tailed).  742 

 743 

 744 
Figure S1: Self identifiability was not associated with demographics 745 
The plots depict demographic variables and corresponding self-identifiability scores across both 746 
(a) connectome and (b) spectral broadband within-session fingerprinting. Demographic variables 747 
included age, biological sex, dominant hand, and healthy vs. patient categories. There was no clear 748 
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relationship between demographics and self-identifiability — i.e., differences in demographics did 749 
not drive self-identifiability. 750 

 751 
 752 
Acquisition parameters did not affect either fingerprinting performances (Figure S2). 753 

Participants with longer recordings (i.e., more data) were not more identifiable (connectome: r= -754 
0.02, p = 0.7; spectral: r= 0.02, p = 0.8). This observation is consistent with the shortened within-755 
session fingerprinting results, which demonstrate individuals were identifiable from shorter 30-756 
second recordings (see below).  757 

Taken together, these supplemental results demonstrate that MEG fingerprinting is robust 758 
against data artifacts, heterogeneous sample demographics and acquisition parameters. 759 
 760 

 
  

Within-session data Between-session data 

Age 31.9 ± 14.7 26.7 ± 11.6 
Gender 77 Females 24 Females 

Dominant Hand 147 Right, 8 Left, 1 Other 44 Right, 3 Left 

Clinical Status 
130 Healthy Controls 

22 ADHD 
6 Chronic Pain 

25 Healthy Controls 
22 ADHD 

 
 761 
Supplemental table 1: OMEGA Participant Demographics 762 
Demographic variables summarized for both subsets of the OMEGA data repository.  763 
 764 

 765 
 766 

Figure S2: Recording duration did not affect self-identifiability  767 
Scatter plots of self-identifiability vs. duration of data collections, for the broadband within-session 768 
challenge. There was no clear relationship between self-identifiability and the duration of the MEG 769 
recordings across participants.  770 
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 771 
 772 

 All Participants Only Healthy Controls 

 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Connectome 94.9% 94.3% 93.8% 93.0% 

Spectral 96.2% 96.2% 95.3% 95.3% 
 773 
Supplemental table 2. Fingerprinting performances of healthy controls 774 
Identification performances of connectome and spectral broadband within-session fingerprinting 775 
obtained from for the entire repository (healthy controls and patients), and from healthy 776 
participants only. Each column reports fingerprinting performances from Dataset 1 to Dataset 2 777 
and vice-versa (see Figure 1 for details). Overall, identification accuracy decreased slightly by 778 
~0.9% when comprising healthy participants only. Consistent with our findings reported in Figure 779 
S2, clinical status did not play a major role in the identification of individuals. 780 
 781 

 782 
Figure S3: Identification accuracy from within-session datasets 783 
Results from MEG within-session fingerprinting. Identification accuracy for (a) connectome and (b) 784 
spectral fingerprinting (broadband and narrowband data). The accuracy scores are reported for 785 
identification from dataset 1 to dataset 2 and vice-versa, as explained in Methods. 786 
 787 
 788 
PCA reconstruction does little to improve MEG fingerprinting  789 

Amico and Goñi (1) previously reported improvements to participant differentiation when 790 
using data reduction techniques prior to identification, using e.g., principal component analysis 791 
(PCA). We reproduced their approach, using PCA to reduce the dimensionality of the connectome 792 
and spectral feature spaces prior to fingerprinting. Our results provided little support to PCA 793 
reconstruction improving identification accuracy, as shown Figure S4 and in Supplemental Table 794 
3. PCA increased self-identifiability by less than 1.5%. Data reduction had limited beneficial impact 795 
possibly because of high fingerprinting performances at baseline (without data reduction). We 796 
also emphasize that we conducted MEG source time series extraction via a PCA of all local time 797 
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series within each parcel. It is therefore likely that this dimension reduction procedure contributed 798 
to improve signal-to-noise ratio and limited the impact of subsequent PCA of features.  799 
 800 

 Original 
(un-reconstructed) 

PCA 
Reconstructed 

 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Dataset 1 to 

Dataset 2 
Dataset 2 to 

Dataset 1 
Connectome 94.9% 94.3% 96.2% 96.2% 

Spectral 96.2% 96.2% 96.2% 96.2% 
 801 
Supplemental Table 3: PCA reconstruction did not improve accuracy  802 
Performances in identification accuracy for connectome and spectral broadband within-session 803 
fingerprinting, for both original and PCA-reconstructed data (1). PCA data reduction improved 804 
connectome fingerprinting performances only slightly (about 2%). It had virtually no effect on 805 
spectral fingerprinting performances.  806 
 807 

 808 
Figure S4: Limited benefit of PCA reconstruction on identification accuracy 809 
PCA reconstruction as proposed by Amico and Goñi (2018) had limited effect on (a) connectome 810 
and (b) spectral within-session fingerprinting. The original results (Figure 2) are plotted against 811 
PCA-reconstructed results. From left to right, plots show i) PCA components plotted vs. their 812 
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respective fractions of signal variance explained, ii) identification accuracy across PCA 813 
components, iii) average self-identifiability across PCA components, and iv) violin plots of self-814 
identifiability before and after PCA reconstruction. Overall, PCA reconstruction did not 815 
substantially improve identification accuracy.  816 
 817 
Fingerprinting with 30 second data segments and across recording sessions 818 

We challenged MEG fingerprinting using short 30-second data segments (i.e., shortened 819 
within-session fingerprinting). We epoched participants’ MEG recordings into three datasets of 30 820 
second, where the first dataset was the first 30 seconds of the recording after having removed the 821 
initial five seconds, the second dataset was the 30 seconds immediately following the first dataset, 822 
and the last dataset was the last 30-second segment of the recording after having removed the 823 
last ten seconds (Figure 1). Cropping the initial and last few seconds from recordings excluded 824 
edge filtering and other session artifacts. The lengths of the short datasets and epochs were 825 
determined from the participant with the shortest available recording. This procedure yielded 826 
three data segments for fingerprinting purposes via 6 possible dataset pairs (i.e., dataset 1 and 2; 827 
dataset 2 and 3; and dataset 1 and 3 and vice-versa). Results for all possible combinations of 828 
datasets are reported in Figure S5.  829 

Remarkedly, connectome fingerprinting successfully identified individuals across all 830 
possible combinations of datasets regardless of their proximity in time (Figure S5). Spectral 831 
fingerprinting yielded lower identification accuracy than connectome fingerprinting, specifically 832 
when the datasets were further apart in time (i.e., dataset 1 and 3). This outcome is discussed in 833 
the main manuscript.  834 

835 
Figure S5: Identification accuracy from shortened within-session datasets 836 
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Identification results from shortened within-session datasets (30 seconds) for (a) connectome and 837 
(b) spectral broadband and narrowband fingerprinting. The accuracy scored are reported for 838 
identification from all possible combinations of datasets, (i.e., dataset 1 to predict dataset 2, 839 
dataset 3 to predict dataset 2, etc.; see Methods for details). Identification accuracy increased as 840 
datasets were proximal in time (i.e., fingerprinting accuracy for dataset 1 to dataset 2 was greater 841 
than for dataset 1 to dataset 3). 842 
 843 

In a similar fashion, we also report the fingerprinting accuracy performances for all possible 844 
pairs of datasets for the between-session fingerprinting challenge in Figure S6. Overall, spectral 845 
fingerprinting outperformed connectome fingerprinting, as discussed in the main text.  846 
 847 

 848 
Figure S6: Between-session identification accuracy 849 
Results from MEG between-session fingerprinting. Identification accuracy for both (a) connectome 850 
and (b) spectral broadband and narrowband fingerprinting. The accuracy scores are reported for 851 
identification from dataset 1 to dataset 2 and vice-versa (see Methods). 852 
 853 
Salient neurophysiological features for fingerprinting  854 

We reported in the main manuscript intraclass correlations (ICC) to determine which 855 
features contributed to individual identification the most. We also performed two additional 856 
analyses, deriving group consistency and differential power. These two metrics were proposed by 857 
Finn and colleagues (2) to identify the features which were the most consistent across their cohort, 858 
vs. The features which were the most consistent within individuals but different across participant, 859 
respectively (2). Differential power measures the empirical probability that a given feature is more 860 
likely to have a higher edgewise product vector across individuals than within the same individual. 861 
Taking the sum of the natural log of this probability across subjects yields differential power (2). 862 
The higher the differential power, the better a feature discriminates between individuals. Results 863 
for differential power are plotted in Figures S7 and S9. We found that the most discriminant 864 
connectome features were the visual and limbic networks across frequency bands, while the most 865 
discriminant spectral features remained along midline structures for fast oscillatory signal 866 
components. Overall, these results confirmed the ICC analysis results, with the addition of the 867 
contributions of spectral power in the beta and gamma band along the supplementary motor, 868 
motor, and somatosensory cortices.  869 
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870 
Figure S7: Differential Power Connectome Fingerprinting 871 
Differential Power (DP) analysis for broadband connectome fingerprinting of the within-session 872 
dataset (see Figure 1). Mean DP plotted within frequency bands and per resting-state network as 873 
defined by (3): Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic 874 
(L), Somato-Motor (SM), Ventral Attention (VA), and Visual (VIS). The higher the DP, the more the 875 
corresponding functional connection was essential for fingerprinting. The outstanding 876 
connections determined by DP for fingerprinting were the Visual network across all frequency 877 
bands, and the Limbic network in the beta and gamma bands.  878 
 879 

Group consistency reflects edges that are consistent across individuals. Group consistency 880 
was computed from the mean edgewise product vector across all subjects (2). Large values of 881 
group consistency highlight features that are consistent both within participants and across the 882 
cohort. Our analyses are shown Figures S8 and S10. The resulting most consistent connectome 883 
features remained along the diagonal of the FC matrix (i.e., connections within the same networks) 884 
specifically in the Dorsal Attention and Fronto-Parietal networks. The most consistent features for 885 
spectral fingerprinting were in the lower frequency bands, specifically in the lateral frontal 886 
cortices. This outcome was consistent with our ICC results (see Manuscript).  887 
 888 

 889 
Figure S8: Group Consistency Connectome Fingerprinting  890 
Group Consistency (GC) analysis for broadband connectome fingerprinting of the within-session 891 
dataset (see Figure 1). Mean GC plotted within frequency bands according to the labels from (3): 892 
Default Mode Network (DMN), Dorsal Attention (DA), Frontal-Parietal (FP), Limbic (L), Somato-893 
Motor (SM), Ventral Attention (VA), and Visual (VIS). The higher the GC, the more consistent was 894 
a functional connection within an individual and across the cohort. The most consistent 895 
connections were those along the diagonal, specifically for the Dorsal Attention and Frontal-896 
Parietal networks across all frequency bands.  897 
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 898 
Figure S9: Differential Power Spectral Fingerprinting 899 
Differential Power (DP) analysis for broadband spectral fingerprinting of the within-session dataset 900 
(see Figure 1). Mean DP plotted within frequency bands according to the Desikan-Killiany atlas (4). 901 
The higher the DP, the more a given frequency band and ROI distinguished between individuals. 902 
The most characteristic regions and frequencies were medial structures for the beta band, and 903 
temporal and central regions for gamma band signals.  904 

 905 
Figure S10: Group Consistency Spectral Fingerprinting 906 
Group Consistency (GC) analyses for broadband spectral fingerprinting of the within recording 907 
session dataset (see Figure 1). Mean GC plotted within frequency bands according to the Desikan-908 
Killiany atlas (4). The higher the GC, the more a given frequency band and ROI remained consistent 909 
within individuals and across the cohort. The most stable frequencies were the lower bands (delta 910 
and theta) and the most consistent regions across individuals were lateral frontal areas.  911 
 912 
Partial Least Squares (PLS) analysis  913 

We tested whether differences in resting-state neurophysiological signals related to 914 
meaningful demographic features using an exploratory Partial Least Squares (PLS) analysis. PLS is 915 
a multivariate statistical method that relates two data matrices based on latent variables (LV) that 916 
explain the highest covariance between the two datasets. Here, our two datasets consist of a 917 
demographic matrix (i.e., age, gender, handedness, and clinical status) and a neurophysiological 918 
data matrix (i.e., spectral power or functional connectome). Latent variables (which explain the 919 
most covariance between both matrices), and their corresponding variance explained are plotted 920 
in Figure S11. Significance of each latent variable was assessed via permutation tests. Permuting 921 
the rows of the data allowed us to compute an associate p-value for each latent variable (see 922 
Manuscript). We chose to explore the first significant latent variable which explained the most 923 
variance for each neurophysiological signal feature (i.e., the first component for connectomes and 924 
spectral data). The resulting weights associated to the latent neural and demographic components 925 
are depicted Figure 5 along with their bootstrapped ratios. These results corroborate how 926 
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neurophysiological signals at rest, in addition to identifying individuals, carry meaningful 927 
information about participant demographics.  928 
 929 

 930 
Figure S11: PLS latent variables  931 
Results for the PLS analysis conducted for both (a) connectome and (b) spectral fingerprinting 932 
features. Each plot depicts the latent components obtained for each of the PLS analyses, their 933 
corresponding variance explained, and permuted p-value (right axis). One significant latent 934 
variable explained 43.1% of the variance for connectome fingerprinting and two latent variables 935 
explained 44.7% and 28.3% of the variance for spectral fingerprinting, respectively. We explored 936 
in the main Manuscript only the first significant component for each method (i.e., the circled 937 
component).  938 
 939 
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