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Abstract 
Assessment of the functional consequences of disease-associated sequence variation at non-coding regulatory 

elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear 

environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority 

of sequence variation affects transcription factor (TF) occupancy, yet the low sequence diversity in human 

populations means that no experimental assessment is available for the majority of disease-associated variants. 

Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells 

from 5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in these hy-

brids enables precise quantification of the effect size and cell-type specificity of hundreds of thousands of 

variants throughout the mouse genome. We show that chromatin-altering variants delineate characteristic 

sensitivity profiles for hundreds of TF motifs. We develop a compendium of TF-specific sensitivity profiles 

accounting for genomic context effects. Finally, we link these maps of allelic accessibility to allelic transcript 

levels in the same samples. This work provides a foundation for quantitative prediction of cell-type specific 

effects of non-coding variation on TF activity, which will dramatically facilitate both fine-mapping and sys-

tems-level analyses of common disease-associated variation in human genomes. 

Introduction 
Systematic census of cis-regulatory elements using genome-wide profiling of DNA accessibility to the endo-

nuclease deoxyribonuclease I (DNase I) has critically informed understanding of tissue-specific gene regula-

tion1 and the genetics of common human diseases and traits2. But these maps provide only indirect evidence 

for the function of regulatory DNA and cannot address the effects of sequence variation therein. Regulatory 

element function depends on both genomic and cellular context, which cannot be easily recapitulated in re-

porter assays3. Profiling of DNA accessibility or protein occupancy at polymorphic sites represents a genome-

scale approach to assessing local effects of regulatory variation in context4-8. However, this approach is lim-

ited by low sequence diversity in an individual human genome and the difficulty of accessing many disease-

relevant cell types. Recognition of functional human sequence variants has thus been impeded by the lack of 

large-scale datasets assaying function at their endogenous context in vivo. 

The laboratory mouse Mus musculus and related species have long been a key model for human disease and 

genome function9,10. Given the near-complete conservation of transcriptional regulatory machinery with hu-

mans, mouse transgenic experiments have been foundational in the understanding of human genetics and 

gene regulation11,12. The availability of mice from divergent strains/species offers a rich trove of genetic diver-

sity dramatically exceeding that in human populations9, and with potential access to a variety of tissues and 

cell types including developmental timepoints13. Genomic approaches have linked many of these DNA se-

quence changes to altered transcription factor (TF) binding14,15, chromatin features16,17, gene expression18-20, 
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and protein levels21, and further dissection of molecular traits is highly complementary to high-throughput 

knockout phenotyping studies22,23. 

DNase I-hypersensitive site (DHS) maps in mouse tissues show substantial divergence in regulatory DNA 

compared to human DHSs2,24, suggesting that studies of human cis-regulatory variation cannot directly incor-

porate analyses of orthologous mouse loci. Past work has shown that genetic effects on chromatin features 

can be modeled using TF-centric analysis4,5. The high conservation of trans-regulatory circuitry suggests that 

such a TF-centric approach might be able to leverage the power of mouse genetics for interpretation of hu-

man cis-regulatory variation. 

Here we describe high-resolution maps of allelic DNA accessibility in 4 cell and tissue types across a series of 

F1 hybrid mice derived from inbred lab- and wild-derived strains and species. These maps reveal genetic ef-

fects on DNA accessibility which are moderated by cell and tissue context. We use these maps to derive sen-

sitivity profiles for hundreds of TFs, facilitating prediction of functional noncoding polymorphism across 

mammalian genomes. Finally, we use matching RNA-seq data to assess the correlation between accessibility 

and expression levels. 

Results 

Allelic analysis of DNA accessibility. 
We analyzed hybrid, fully heterozygous F1 mice resulting from a cross of the reference C57BL/6J with five 

diverged strains or species: 129S1/SvImJ, C3H/HeJ, CAST/EiJ, PWK/PhJ, and SPRET/EiJ. We mapped 

DHSs in four diverse cell and tissue types, including whole kidney, liver, lung, and B cells purified from femo-

ral bone marrow (Fig. 1a-b). We selected the highest-quality samples for deep paired-end Illumina sequenc-

ing based on fragment length distribution (Fig. 1c, Supplementary Fig. 1) and  high signal-to-noise demon-

strated by a mean Signal Portion of Tags (SPOT) score of 60% (Supplementary Table 1). A total of 67 

samples were sequenced to an average of 203M reads each, including at least 2 replicates per condition (medi-

an = 3 replicates) (Supplementary Table 1). We developed a stringent mapping procedure requiring high 

mappability to both the reference and a customized strain-specific genome incorporating known single nucle-

otide variants (SNVs) and indels22 (Methods). Replicate samples exhibited a median correlation in DNaseI 

cleavage density at DHSs of 0.93 (Supplementary Fig. 2). 

We identified an average of 196,276 DHS hotspots (FDR 5%) in each condition using the program 

hotspot21, and generated master lists of DHSs for each strain/cell type combination (Supplemen-

tary Table 2). Hierarchical clustering showed that samples clustered by cell or tissue type, rather than by 

strain (Fig. 1d), suggesting that additional strains provide access to novel genetic diversity while demonstrat-

ing consistent cell-type specific regulatory landscapes. 
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To identify sites of allelic imbalance indicative of genetic differences affecting DNA accessibility, we devel-

oped a custom pipeline to filter and count reads mapping to each allele at known point variants in DHSs 

(Methods). The majority of SNVs were testable in only a single strain or cell/tissue type, suggesting that addi-

tional profiling is likely to yield further insights (Fig. 1e-f). We used a beta binomial test to determine statisti-

cally significant imbalance. We applied multiple testing correction and set a significance threshold of 10% 

false discovery rate (FDR) and additionally required a strong magnitude of imbalance (>70% of reads map-

ping to one allele). Plotting the distribution of allelic ratios confirmed that our mapping strategy was not bi-

ased towards the reference allele (Supplementary Fig. 3). By pooling reads from multiple samples, we as-

sessed imbalance on aggregate, per-cell type, per-strain, and per-sample bases (Fig. 1g). We identified a total 

of 13,835 strongly imbalanced SNVs out of 357,303 SNVs tested when aggregating across all samples. The 

high density of variation meant that nearly all DHSs in a given cell or tissue type harbored at least one SNV, 

and we were able to test for imbalance at an SNV in an median of 27% DHSs per cell or tissue type (Fig. 1h). 

The more highly diverged strains contributed substantially more variants tested with only a modest reduction 

in mappability rate (Fig. 1h). Full coverage of DHSs was limited primarily by sequencing depth, suggesting 

that additional sequencing would yield additional power. Imbalance was less frequent at highly accessible 

DHSs (Supplementary Fig. 4-5), consistent with our previous observations of buffering of point variants at 

strong sites4,5. 

In the F1 offspring of an inbred cross, each variant on a given chromosome is in perfect linkage. Thus we 

considered the power of our approach to detect focal alteration of individual DHSs rather than coordinately 

altered chromatin accessibility. By examining the co-occurrence of imbalance of nearby variants, we found 

that allelic ratios of nearby sites were strongly correlated only at distances less than 250 bp, well below the 

median width of a DHS hotspot (Fig. 1i). This suggests that our approach offers high resolution to identify 

sequence variation leading to local effects on chromatin state. 

Cellular context sensitivity. 
We assessed the cell-type accessibility patterns in 39 diverse cell and tissue types by the ENCODE project, all 

mapped in reference C57BL/6 mice24, and excluding liver, lung, kidney, or B cells. We categorized SNVs 

based on whether accessibility was higher at the reference (C56BL/6J) or the non-reference allele (Fig. 2a). 

Both sets of imbalanced SNVs showed increased cell-type selectivity with respect to SNVs not affecting ac-

cessibility. But nearly half of the non-reference higher sites had evidence for a DHS in another cell or tissue 

type in C56BL/6J mice, a 3-fold enrichment compared to a background set of mappable SNVs in inaccessible 

DNA and thus not tested for imbalance (Methods). This suggests that point changes affecting accessibility at 

sites with preexisting activity act more frequently by broadening DNA accessibility to other cell and tissue 

types, rather than de novo evolution of novel regulatory DNA. Only a minority of non-reference higher sites 

overlapped a DHS in a cognate cell or tissue type, suggesting the majority were qualitative creation rather 
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than quantitatively increased accessibility (Fig. 2b). This cell-type specific expansion of accessibility drew 

broadly from other cell lineages with only moderate preference for related cell types (Fig. 2b). 

We then examined the cell-type selectivity of imbalance itself. We were able to test for imbalance per cell type 

(combining data from different strains) at an average of 196,276 SNVs per cell type (Table 1). We identified 

clear examples of strong imbalance across multiple strains specific to a particular cell type (Fig. 3a-b). In 

both examples, cell-type specific imbalance in one DHS was associated with a coordinate change in accessibil-

ity at a nearby DHS (Fig. 3a-b), though we note that it is not possible to infer the direction of causality. 

Overall, however, we identified a higher degree of sharing of imbalance between samples of the same cell 

type than from the same strain or unrelated samples (Fig. 3c). Pairwise comparison of different cell types 

showed an average of 63% sharing of imbalanced sites (1-π0), suggesting a high prevalence of genetic effects 

demonstrating cell-type context sensitivity (Fig. 3d). 

TF-centric analysis of variation. 
We then asked to what extent variation affecting DNA accessibility in cis was linked to direct perturbation of 

TF recognition sequences. We scanned the mouse reference and strain-specific genomes using motif models 

for 2,203 TFs4. We found that while only a small fraction of imbalanced variation overlapped a recognition 

sequence for any individual TF, 61% of variation overlapped stringent motif matches (FIMO P < 10-5) when 

considering all TFs with known motifs (Fig. 4a). Imbalanced SNVs were found more frequently at sites of 

DNase I footprints, contingent on the presence of a recognizable TF recognition sequence (Fig. 4b). We 

found that aggregate imbalance was concentrated over the core positions of the motif for many key TFs 

(Fig. 4c). Sensitivity profiles for human TFs generated using previously published allelic accessibility data4 

largely resembled those generated from mouse data, although some factors such as HNF1A showed signifi-

cant enrichment only in the mouse data (Fig. 4d).  

We next performed an analysis of cell-type specific imbalance calls at TF recognition sequences. We found 

higher rates of cell-type specific imbalance at sites of DNase I footprints in matching cell and tissue types, 

relative to unmatched cell and tissue types (Fig. 5a). We found that distinct TF families presented varying 

cell-type specific patterns of enrichment of imbalanced SNVs over their motifs (Fig. 5b). For example, JDP2 

(AP-1) only showed enrichment in lung (Fig. 5c), and ETS factors showed highest enrichment in B cells 

(Fig. 5d). In both cases, no enrichment is evident when data are aggregated across multiple cell and tissue 

types. Other factors showed patterns of enrichment across a subset of cell types: HNF factors showed peak 

enrichment in liver and kidney (Fig. 5e), while CEBP showed enrichment in lung and liver (Fig. 5f). These 

results suggest that cell-type specific identification of imbalanced variants can yield more accurate assessment 

of variants affecting TF occupancy than aggregate analyses across multiple cell types. 
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To facilitate recognition of sequence variation affecting DNA accessibility in the mouse and human genomes, 

we incorporated the mouse data into our Contextual Analysis of Transcription Factor Occupancy (CATO2) 

scoring approach4. CATO2 trains a logistic regression model for each TF motif on a variety of genomic an-

notations and TF-centric parameters. By standardizing genomic annotations between human and mouse, we 

directly incorporated both data sets (Fig. 6a). Combining the mouse and human data yielded a dramatic in-

crease in TF families with sufficient variation (Supplementary Table 3). In addition to the inherent cell-type 

selectivity of DHS tracks, we incorporated per-cell type imbalance data in two ways (Methods): (i) TF models 

were trained on the subset of mouse cell types demonstrating enrichment of imbalanced SNVs over the 

recognition sequence (Fig. 6b); and (ii) a sparse generalized linear model was trained to establish cell-type 

specific weights for the contribution of each TF model to the overall score (Fig. 6c). Assessing performance 

on a pair of DNase-seq datasets generated in B6xCAST mouse embryonic stem cells (mESCs) (Supplemen-

tary Table 5) showed that CATO2 retained performance even on a completely independent validation set 

(Supplementary Fig. 6). Furthermore, assessment of predictive performance for CTCF directly against 

matching ChIP-seq data showed that CATO2 scores were also predictive for allelic TF occupancy (Supple-

mentary Fig. 6). In addition, cell-type specific models showed increased predictive performance using preci-

sion-recall analysis (Fig. 6d, Supplementary Fig. 7). These results suggest that CATO2 provides a strong 

foundation for assessment of functional non-coding variation. 

Allelic effects on transcript levels. 
The activity of distal regulatory elements is compartmentalized and shows highly specific interactions with 

certain genes25. To examine the effect of altered accessibility on steady state transcript levels, we performed 

RNA-seq in a subset of matching samples (Supplementary Table 4). We analyzed allelic expression meas-

ured by RNA-seq using a similar pipeline to that used for the DNase-seq data (Methods). We then compared 

allelic accessibility at DHSs to allelic transcript levels linked to transcription start sites (TSS) within 500 kb 

(Fig. 7). We detected correlation significantly above that observed in permuted data extending distances as 

far as 100 kb surrounding the TSS. Maximal correlation (R between 0.1 and 0.2) occurred within 10 kb of the 

TSS, and was slightly higher downstream than upstream. Our work suggests that long-range regulatory inter-

actions between distal accessible sites and genes are common genome-wide and are amenable to analyses us-

ing the resources and approach we have described herein. 

 

Discussion 
Our work shows that most cis-linked differences in DNA accessibility among diverged mouse genomes can 

be attributed to direct perturbation of TF recognition sites. Past reports have differed on the degree of allelic 

occupancy that can be linked to point changes in TF recognition sequences, ranging from 9% for NF-kB14 to 
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85% for CTCF5. Yet, studies of a single TF are confounded by the possibility that changes in its recognition 

sequence may perturb binding of other factors, either at the same site or a nearby one. By analyzing a broad 

set of TFs with known sequence specificities, we identify that fully 61% of imbalanced sites can be linked to 

changes in TF recognition sequences (Fig. 4a). We expect that the range of enrichment of imbalanced SNVs 

in TF motifs observed in Fig. 4b reflects both the role of cooperative binding and the accuracy of binding 

site recognition for individual TFs. Given the challenge of obtaining TF-specific occupancy data for all fac-

tors expressed in a given cell type, we expect that improved recognition of in vivo occupied TF binding sites 

from DNase I footprinting data26,27 will be the most fruitful way to obtain further improvements in prediction 

performance. 

Given that only a select minority of SNVs affect TF binding in a given cell type, additional large-scale anal-

yses are needed to functionally assess noncoding variation in context. Our work shows that highly diverged 

mouse subspecies (including CAST/EiJ, PWK/PhJ, SPRET/EiJ) provide an efficient system for assessing 

regulatory variation that overcomes the low density of polymorphism in human populations. Compared to 

past work in human4, the present work required only 14% of the samples and half the sequencing depth, yet it 

yielded two orders of magnitude more SNVs tested for cell-type specific imbalance (avg. = 136,059 SNVs per 

cell type). This power enables cell-type specific analyses that uncover context-sensitive variation otherwise 

masked by aggregation of data across multiple cell or tissue types. The use of mice also enables ready access 

to a variety of cell and tissue types difficult to access in humans21,28. The high rate of imbalance in cell-type 

specific DHSs underscores the importance of robust sequencing depth across a full spectrum of cell types, 

and suggests that efficient generation of additional profiling data in novel cell and tissue types from these 

strains will efficiently increase the power of TF-centric models to recognize functional variation. 

Cross-species TF-centric analysis of genomic variation overcomes the low sequence conservation of the cis-

regulatory landscape24 by obviating the need for direct analysis of human regulatory variants at the mouse 

locus, and enables scalable prediction of previously unseen variation. While CATO2 presently requires cell-

type specific variation data to train TF weights, inference of TF weights from other more readily available 

information, such as measurements of TF expression and activity, may also be possible. Such an approach 

could enable classification of functional regulatory variants in cell and tissue states without directly measured 

genetic data. Supporting this possibility, nearly half of strain-specific imbalance represented expansion of ac-

cessibility at known DHSs to a new cell or tissue type. We speculate that functional regulatory variation might 

most easily arise from creation of TF recognition sequences that expand the selectivity of an existing DHS by 

acting cooperatively with existing TF recognition sequences. It would also be straightforward to incorporate 

trans-regulatory differences between strains or species into future models to enable analysis of trans-

regulatory effects on gene expression29-31. 
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The global correlation observed between allelic accessibility and allelic transcript levels was statistically signifi-

cant but modest. Much as the majority of point variants are buffered in terms of their effect on local chroma-

tin features5, enhancer networks controlling gene expression likely demonstrate a high degree of redundancy 

and selectivity25,32,33. The correlation we observe could serve as a benchmark for development of genome-

wide methods to predict likely target genes of distal regulatory elements, and complements systematic locus-

scale investigation of regulatory architecture using genome engineering33,34. Thus it is likely that further ex-

ploitation of mouse genetics will provide the substrate for more granular models of enhancer-promoter inter-

action. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2021. ; https://doi.org/10.1101/2020.06.27.175422doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.27.175422
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Halow et al. 9 

Methods 

Mouse husbandry. 
The mice used in this study were F1 hybrids of C57Bl/6J reference females with wild-derived strains 

129/SvImJ (B6x129), C3H/HeJ (B6xC3H), CAST/EiJ, (B6xCAST), PWK/PhJ (B6xPWK), and SPRET/EiJ 

(B6xSPRET). 129/SvImJ and C3H/HeJ hybrid females were acquired from the Jackson Laboratory (8 week 

old, housed 4/cage). CAST/EiJ, PWK/PhJ, SPRET/EiJ inbred males were acquired from the Jackson La-

boratory and were bred to C57Bl/6J female mice at FHCRC. Mice were maintained on a 12-h light, 12-h dark 

schedule with lights turned on at 7 a.m. The housing room was maintained at 20–24 °C with 30–70% relative 

humidity. Mice were housed in individually ventilated cages (Allentown) with 75 square inches of floor space 

and 60 air changes/hour. Biofresh cage bedding was (Absortion Corp) at 1/8 inch depth and autoclaved on 

site. Water and Purina 5053 (irradiated) were available ad libitum. Nestlet material (Envigo’s diamond twist 

7979C, also irradiated) were present in each cage for enrichment. Autoclavable certified igloos (Bio-serv) were 

provided in some cages. Mice were housed in a barrier facility that is AAALAC accredited. Mice were sacri-

ficed at 8 wks of age by CO2 asphyxiation. All work was approved by the Institutional Animal Care and Use 

Committee (IACUC) of the Fred Hutchinson Cancer Research Center (FHCRC). 

Nuclei isolation from mouse tissues. 
Solid mouse tissues were typically obtained from 4 mice sacrificed together with their tissues pooled. Whole 

liver (all lobes), both kidneys and all lobes of the lungs were rapidly dissected. Tissues were minced in 2 mm 

square pieces and resuspended in 5 mL of homogenization buffer (20 mM tricine, 25 mM D-sucrose, 15 mM 

NaCl, 60 mM KCl, 2 mM MgCl2, 0.5 mM spermidine, pH 7.8) per tissue. Nuclei were released using 5-10 

strokes in a Dounce homogenizer with a loose-fitting type-A pestle and the resulting homogenate was filtered 

through a 120μm filter. Samples were returned to the Dounce for 5-10 strokes with a tight-fitting type-B pes-

tle, and filtered using a 40 µm mesh filter. 5 mL of homogenate was mixed with 3 mL of 50% Optiprep solu-

tion and layered onto a 4 mL 25% - 1 mL 35% two-step Optiprep gradient and centrifuged for 20 min at 

6100 x g in a swinging bucket rotor. The nuclei pellet was washed once in 10 mL of buffer A (15 mM Tris-
HCl, 15 mM NaCl, 60 mM KCl, 1 mM EDTA, 0.5 mM EGTA, 0.5 mM spermidine) and resuspended at 

concentration of 2 x 106 per mL. 

Marrow was obtained from femurs of 8 week old female mice. B cells were isolated using an AutoMACS 

(Miltenyi Biotech) to deplete CD43 and Mac-1/CD11b markers. Cells were washed once with Dulbecco’s 

PBS (without MgCl2 or CaCl2). Nuclei were extracted by resuspending cells in buffer A supplemented with 

0.015% detergent (IGEPAL-CA630) (Sigma) and incubating for 5-10 minutes on ice. Following incubation, 

the nuclei were collected by centrifugation (600 x g) and resuspended in buffer A at a concentration of 2 x 106 

nuclei per mL. 
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DNase I digestion of mouse nuclei. 
Fresh nuclei were incubated for 3 minutes at 37°C with limiting concentrations of the DNA endonuclease 

deoxyribonuclease I (DNase I) (Sigma) in buffer A supplemented with Ca2+. The digestion was stopped with 

5X stop buffer (125 mM Tris-HCl, 250 mM NaCl, 0.25% SDS, 250 mM EDTA, 1 mM spermidine, 0.3 

spermine, pH 8.0) and the samples were treated with proteinase K and RNase A. The small ‘double-hit’ frag-

ments (<250 bp) were recovered by sucrose ultracentrifugation, end-repaired and ligated with adapters com-

patible with the Illumina sequencing platform. Libraries were amplified using minimal PCR cycles based on a 

trial qPCR amplification (8-16 cycles). A detailed protocol describing genome-wide mapping of DNase I hy-

persensitivity can found in 35. 

mESC profiling. 
B6xCAST mESCs were cultured as previously described in 80% 2i medium and 20% mESC medium34. For 

ChIP-seq, mESCs were crosslinked for 10 min in 1% formaldehyde and quenched in 125 mM glycine. Chro-

matin was sheared by Covaris LE220 Ultrasonicator (Covaris). CTCF antibody (Cell Signaling, 2899S) was 

conjugated to Dynabeads (M-280, Invitrogen) for 6 h at 4 °C, followed by overnight immunoprecipitation. 

After reversing crosslinks, immunoprecipitated DNA was treated with Proteinase K and RNase A, and puri-

fied using the DNA Clean and Concentrate-5 Kit (Zymo Research). 

Short-read sequencing and processing. 
DNase-seq and ChIP-seq libraries were sequenced on an Illumina HiSeq 2500 by the High-Throughput Ge-

nomics Center (University of Washington) or a NextSeq 500 (NYU Institute for Systems Genetics) in paired-

end 36 bp mode. 

Short reads were first trimmed to remove low-quality sequence or adapter contamination using trimmomatic 

v0.3336 with parameters 'TOPHRED33 ILLUMINACLIP: TruSeq3-PE-2.fa:2:5:5:1:true 

MAXINFO:27:0.95 TRAILING:20 MINLEN:27'. 

To reduce potential reference mapping bias, custom strain-specific genomes were created using vcf2diploid 

v0.26a37 to incorporate known22 point variants and insertions or deletions (REL-1505-SNPs_Indels / version 

5). Chain files were created for use with the UCSC liftOver tool to enable genomic coordinate conversion 

between the reference and strain-specific genomes. Genomes included unscaffolded contigs and alternate 

sequences but not the Y chromosome. 

Reads were mapped using Burrows-Wheeler Aligner (BWA) v0.7.13 to both the mouse reference assembly 

(GRCm38 / mm10) and the appropriate strain-specific genome with the command 'bwa aln -n 0.04 

-l 32 -t 2 -Y'38. Alignments were post-processed with a custom Python script using pysam 

(https://github.com/pysam-developers/pysam) to retain only properly-paired or single-end reads mapping 
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uniquely to the autosomes and chrX with a mapping quality of at least 20. Paired end reads were required to 

have an inferred template length of less than 500 bp. Duplicate reads were flagged on a per-library basis using 

Samblaster v0.1.22 39. Mapped tags were converted to BED format using awk and bedops v2.4.3540. DNase I 

hypersensitive sites were identified using hotspot2 v2.1.141. Reference mm10 coordinates were used for all 

analyses except for read counting (which additionally relied on the strain-specific mappings). 

Assessment of allelic imbalance. 
Reads overlapping all known point variants were assessed for allelic imbalance at all SNVs overlapping a 

DNase hotspot (5% FDR) called on the aggregate of all DNase data for a given strain and cell or tissue type. 

Reads were extracted from DNase-seq alignments using a custom script countReads.py written using Python 

and pysam. The liftOver tool was used with the chain file generated by vcf2diploid to map variant coordi-

nates from mm10 to each strain-specific genome. Reads were required to map uniquely to both mm10 and 

the strain-specific reference with the same mapping quality and template length. We excluded 3 bp at the 5' 

end of the read to exclude any possibility of sequence-specific DNase I cut rate42. Only reads with a base 

quality >20 at the variant position were counted. Read pairs overlapping a variant were counted once. 2 addi-

tional mismatches were permitted besides the known variant. Duplicate reads passing all filters with the same 

5' position on the reference were excluded (independent of the SAM duplicate flag). Variants lying within 72 

bp of a known insertion or deletion or with ≤60% of total overlapping reads passing filters were excluded 

from further analysis. 

To minimize possible mapping bias, we generated a mappability track by mapping simulated 36-bp paired-end 

reads with up to 125 bp-fragment length overlapping known SNPs and including no sequencing errors. Simu-

lated reads were mapped back to both the reference and strain-specific genomes and filtered using the ap-

proach described above. SNVs having ≤95% of simulated reads mappable were filtered out. 

A background set of SNVs not tested for imbalance was identified as all mappable SNVs not overlapping a 

DHS in the master list or any individual condition. 

Allele counts from all samples were aggregated into a single matrix and analyzed separately for per-sample, 

per-strain, and per-cell type imbalance. Only SNVs with at least 30 reads in one condition were retained. To 

account for variable sequencing depth and enrichment, we fit a beta binomial distribution for each condition 

using sites with >100 reads and computed P values against an expected 50% of reads mapping to each allele. 

We accounted for multiple testing using a false discovery rate (FDR) cutoff of 10% using the R package 

qvalue43. Aggregate imbalance analyses used sums of per-cell type counts. 
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Transcription factor motif analysis. 
We scanned the reference and all strain-specific genomes using FIMO v4.10.244 with TF motifs and TF clus-

ters as in 4. Strain-specific motif matches were converted to mm10 coordinates using liftOver, and a non-

redundant list of motif matches per-strain was created from the union of both sets. 

We analyzed the intersection of SNVs tested for imbalance with these motifs. We considered motifs with a 

median of ≥40 SNPs per position in the motif and ≥3 positions with ≥7 significant SNPs; positions with <7 

SNPs were considered missing data. For SNPs overlapping multiple matches to the same motif, we chose the 

best motif instance per SNP on the basis of FIMO P value.  

Genomic annotation. 
SNVs were annotated accordingly: 

• Cell-type activity spectrum MCV (multi-cell verified) was computed from a set of 45 representative 

samples from Mouse ENCODE selected through hierarchical clustering analysis. A master list45 was 

generated from these samples  and MCV was scaled to 0-1 by dividing by 45. 

• Footprints on mouse and human samples were called using FTD27. 

• RefSeq Genes and CpG Islands were downloaded from the UCSC Genome Browser. 

Human SNPs were annotated as in 4. Quantitative mouse annotations were scaled by the ratio of the mean 

annotation value at SNPs in mouse vs. human. Parameters were standardized to have a mean of 0 and stand-

ard deviation of 1. 

CATO2 scores. 
We generated CATO2 models on the combined human and mouse data as in 4 with several modifications. 

First, we trained a logistic model for the genomic annotations at each SNV using the glm() function in R 

v3.5.2: 

significant ~ MCV^2 + intron + intergenic + log(Dist. to TSS)^2 + 
DHS strength^2 + log(Width of DHS) + Footprint presence + #nearby 
binding sites^2 + PhastCons 

Then, we trained a second glm() logistic model for each TF, which incorporated the global per-SNV score as 

a parameter. Imbalance was analyzed per-cell type for the mouse data and cell types demonstrating log en-

richment >1 of imbalanced SNVs over the recognition sequence. 

significant ~ global.fit + log(score)^2 + logodds difference + x2 + 
... + xn  
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Finally, we combined scores from individual TF models at each SNV using the GLMnet46 package to train a 

sparse GLM using the lasso penalty and 50-fold cross-validation with performance measured by AUC. To 

score human point variants, annotation values were computed and standardized as before and CATO2 scores 

were computed using the R function predict(type="response"). 

Generation and analysis of RNA-seq data. 
Total RNA was isolated using the mirVana miRNA Isolation Kit with phenol (AM1560). Spike-in controls 

were mixed in (Ambion-ERCC Mix, Cat no. 4456740) and Illumina sequencing libraries were made using the 

RNA TruSeq Stranded total RNA (Illumina). Libraries were sequenced on an Illumina HiSeq 2500 or 

NextSeq by the High-Throughput Genomics Center (University of Washington) in paired-end 36 bp or 76 bp 

modes. Previously published data for kidney, liver, and lung B6xCAST19 were downloaded from the NCBI 

SRA repository (Supplementary Table 4). 

Reads were mapped to the mm10 reference and strain-specific genomes in parallel using STAR v2.5.2a47. 

Counts from all non-exonic SNVs overlapping a given Gencode M10 basic level 1 and 2 protein-coding tran-

script were aggregated. SNVs were analyzed using same allele counting pipeline as for DNase-seq data. We 

assessed allelic imbalance using a beta binomial model fit at SNVs with >100 reads. We accounted for multi-

ple testing using a false discovery rate (FDR) cutoff of 10% using the R package qvalue43 and additionally 

required >60% of reads to map to one allele. Counts were aggregated for all samples per cell type and per-

DHS hotspot. A minimum of 50 total reads per transcript were required. RNA-seq imbalance data were then 

overlapped with per-sample DHS imbalance data. 

 

Data availability  
Sequencing data have been deposited in the NCBI GEO repository under accession GSE156692. 

Code availability  
The processing pipelines for DNase-seq and RNA-seq data are available at 

https://github.com/mauranolab/hybridmouse. All code for analyses herein is available upon request. 
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Figures 
 

 

 

Fig. 1. Allelic analysis of DNA accessibility in hybrid mice from diverged strains. 

a. Overall schematic of experiment b. DNase-seq profiles at the Pparg locus in liver, kidney, lung tissue and B cells from F1 
crosses of C57Bl/6J dams with 129/SvImJ and CAST/EiJ sires. c. Fragment length distribution of samples showing high-
quality libraries comprising non-nucleosomal fragments. d. Hierarchical clustering of DHSs from high-depth samples. e.-f. 
Counts of SNVs shared across strains (e) and cell types (f). g. Counts of imbalanced SNVs (FDR 10%). Counts are reported in 
aggregate across all data sets (left), by cell type (middle), and by parental strain (right). h. Summary of master list of DHSs 
overlapping SNVs from all strains. Counts include all DHSs (dark gray), DHSs with SNVs (light gray), DHSs passing mappa-
bility filters (orange), DHSs with sufficient coverage to test for imbalance across all data sets (green) and in individual cell types 
or strains (blue). Counts include only autosomal DHSs. i. Pearson correlation of allelic ratios at adjacent SNVs broken down 
by distance to next SNV. Dashed line represents the median width of DHS hotspots overlapping SNVs in this study.  
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Fig. 2. Predetermination of sites of strain-specific DNA accessibility 

a. Cumulative density distribution of cell-type activity of DHSs measured across 39 mouse ENCODE DNase-seq samples in 
reference C57BL/6 mice24. DHSs are stratified based on whether imbalance favored the reference or non-reference allele. Not 
tested refers to the set of mappable SNVs not in DHSs for Liver, Kidney, Lung or B cells and therefore not tested for imbal-
ance. b. Proportion of imbalanced SNVs from a given cell/tissue type that overlap DHSs from mouse ENCODE cell and 
tissue types (along y-axis). Cell and tissue types are ordered based on hierarchical clustering of all hotspots. Developmental 
timepoints for some samples are indicated in parenthesis (E, embryonic day; P, postpartum, W; adult week). Blue triangles in-
dicate ENCODE samples matching tissues from hybrid mice in this study. 
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Fig. 3. Cross-cell type analysis of allelic variation in DNA accessibility. 

a-b. Example DHSs showing cell-type specific imbalance. Normalized DNaseI cleavage density is colored by signal mapping 
to reference (blue) and non-reference (red) alleles based on the aggregation of informative SNVs. Counts above peaks denote 
sum of reads for all SNVs in region mapping to reference and non-reference alleles; * indicates statistically significant allelic 
imbalance. Selected TF recognition sequences overlapping imbalanced SNVs are highlighted below. a. Shows DHS accessible 
in liver and lung but with imbalance only in liver. b. Shows DHSs accessible in all 4 tissues (left) or specific to B cells (right); 
both DHSs only show imbalance in B6xCAST and B6xSPRET B cells. c-d. Sharing of imbalance by cell type. 1 – π0 repre-
sents the proportion of rejected null hypotheses by Storey’s method. c. Average sharing of imbalance (1 - π0) between samples 
of the same cell type vs. samples sharing only the same strain or unrelated samples (not sharing either strain or cell type). Bar 
height represents average of all pairwise comparisons. Error bars represent standard deviation. d. Pairwise sharing of imbal-
ance between all cell or tissue types.  
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Fig. 4. Analysis of variation affecting TF occupancy. 

a. Overlap of imbalanced SNVs with matches to TF motifs from different large-scale collections. b. Frequency of aggregate 
imbalance at SNVs overlapping TF motifs from a large-scale SELEX-seq database48 and DNase I footprints aggregated across 
all cell types. Results are stratified by FIMO value of overlapping TF motif (if any). c. Enrichment by TF family of imbalanced 
SNVs in TF core recognition sequences, relative to flanking sequence. Each point corresponds to a TF motif, grouped into TF 
families on the Y-axis. Shown are TF families with at least one enriched motif. d. TF profiles for NFIX, CTCF and HNF1A. 
For comparison, profiles generated from published analysis in human4 are shown below in blue. 
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Fig. 5. Cellular context sensitive analysis of variation affecting TF occupancy. 

a. Enrichment of imbalance called in each cell type for overlap with DNase I footprints in matching cell type (green) or in 
other cell types (blue). b. Cell-type specific enrichment of SNVs in motif for TFs. Shown are TF families with greater than 
twofold enrichment in at least one cell type. c-f. Analysis of variation affecting TF occupancy across cell/tissue types for 
JDP2, ETV4, HNF1A, and CEBPG motifs. 
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Fig. 6. Cell-type specific prediction of variation affecting TF occupancy. 

a. CATO2 strategy for cell-type specific scoring of regulatory variation. 

b. Number of mouse cell-types used for each TF model; all TF models included human data. 

c. Number of unique TF clusters with non-zero coefficients in aggregate and cell-type specific CATO2 scores. TFs shared 
with the aggregate model are highlighted in blue. 

d. Area under precision-recall curves (full curves shown in Supplementary Fig. 7) showing performance to predict imbal-
anced polymorphism on SNVs tested for imbalance in individual cell types. 
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Fig. 7. Imbalanced accessibility and transcript levels. 

Pearson correlation in allelic ratios between SNVs in DHSs and transcript levels broken down by distance to transcription 
start site (TSS). All pairs of DHSs and TSSs within 500 kb are considered. Dark gray shading at bottom indicates 95% confi-
dence band from 1000 permutations of DHS allelic ratios among DHS-TSS pairs for each cell or tissue type. Light gray shad-
ing at right indicates that DHS lies downstream of TSS. 
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Tables 
Table 1. Summary of SNVs tested for imbalance per cell type/strain. 

Shown are counts for variants that were tested for imbalance in the per-sample, per-cell type and per-strain analyses. Imbal-
anced variants are shown for the per-cell type analysis in the bottom row. 

 

Strain / Cell type Liver Kidney Lung B cell All cells/tissues 
B6x129 28,527 11,353 11,262 11,423 52,400 
B6xC3H 22,526 12,423 3,932 4,481 37,915 
B6xCAST 78,740 37,576 92,128 45,777 215,629 
B6xPWK 37,819 34,325 23,285 5,880 103,441 
B6xSPRET 45,858 11,100 16,995 29,439 113,398 
All hybrids 187,307 110,643 151,818 94,469 357,303 
Imbalanced 4,490 4,147 5,037 4,230 13,835 
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SUPPLEMENTAL FIGURES 
 

 

 

 

Supplementary Fig. 1. Fragment length distributions of DNase-seq data. 

Shown are samples passing all QC filters. 
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Supplementary Fig. 2. DNase-seq data replicate concordance. 

Average pairwise replicate concordance for each cell/tissue type and strain. Y-axis measures the average pair-
wise Pearson correlation between replicates of DNase cleavage density in hotspots. Error bars represent 
standard deviation. 
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Supplementary Fig. 3. Summary of allelic imbalance analysis. 

a. Distribution of allelic ratio for actual data compared to data simulated from binomial and beta-binomial 
distributions. b-d. Distribution of allelic ratios for aggregate (b), per-cell type (c), per-strain (d) analyses. e. 
Counts of SNVs tested for imbalance (blue) and significantly imbalanced SNVs (red, FDR 10%). Counts are 
reported in aggregate across all data sets (left), by cell type (middle), and by parental strain (right).  
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Supplementary Fig. 4. Imbalance versus read depth and number of samples. 

a. Frequency of imbalance by total reads for that SNV across all samples. b-d. Frequency of imbalance by the 
number of samples (b), cell/tissue types (c), or strains (d) in which a SNV was measured. 
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Supplementary Fig. 5. Rates of imbalance for various genomic features. 

Frequency of imbalance relative to a. genic sequence, b. distance to transcription start site (TSS), c. phyloge-
netic conservation (PhastCons), d. DHS strength, e. DHS hotspot width, and f. number of nearby TFBS in 
footprints.  
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Supplementary Fig. 6. CATO2 performance on mESC validation data. 

Precision-recall assessment of CATO2 predictions using independently generated allelic accessibility and 
CTCF occupancy from mESCs (n=18,211 and 2,995 SNVs tested for imbalance, respectively). Training set 
performance is shown at DHSs in common with mESC data. For ChIP-seq, only predictions overlapping 
CTCF recognition sequences (FIMO P < 10-4) were assessed. 
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Supplementary Fig. 7. CATO2 predictive performance for variation affecting TF occupancy. 

Precision-recall curves showing performance to predict imbalanced polymorphism. Shown are SNVs tested 
for imbalance in individual cell types. Solid lines represent performance of models trained using glmnet pack-
age to have cell-type specific weights for relevant TFs. Gray lines represent performance of a random classifi-
er based on the proportion of true positives in dataset. 
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Supplementary Tables 
Supplementary Table 1. Summary of DNase I samples in this study. 

Analyzed reads were required to pass all mapping filters. Read counts are in millions. Signal Portion of Tags 
(SPOT) scores are a measure of enrichment and refer to the proportion of reads mapping within DHS; SPOT 
scores are reported from hotspot V1. 
Strain Cell/tissue type Sample ID # Sequenced reads (M) # Analyzed reads (M) # Duplicate reads (M) SPOT 
B6x129 B cell DS33334 175 99 9 0.51 
B6x129 B cell DS33340 395 215 32 0.40 
B6x129 B cell DS33342 50 32 2 0.38 
B6x129 Kidney DS32758 176 121 49 0.76 
B6x129 Kidney DS32759 104 50 6 0.77 
B6x129 Liver DS32752 444 239 49 0.70 
B6x129 Liver DS32753 656 378 79 0.67 
B6x129 Lung DS32746 165 93 13 0.61 
B6x129 Lung DS32747 404 205 127 0.66 
B6xC3H B cell DS34563 10 2 3 0.81 
B6xC3H B cell DS34565 70 31 3 0.48 
B6xC3H B cell DS34569 9 2 3 0.76 
B6xC3H B cell DS38898 105 44 18 0.31 
B6xC3H B cell DS38899 126 53 19 0.36 
B6xC3H B cell DS38900 151 58 25 0.45 
B6xC3H Kidney DS33566 211 105 17 0.63 
B6xC3H Kidney DS33567 34 7 0 0.81 
B6xC3H Kidney DS33568 154 95 6 0.46 
B6xC3H Kidney DS38819 33 12 4 0.81 
B6xC3H Liver DS33560 247 98 7 0.71 
B6xC3H Liver DS33561 488 278 98 0.70 
B6xC3H Liver DS33563 65 33 1 0.59 
B6xC3H Lung DS33554 178 68 10 0.36 
B6xC3H Lung DS38811 131 63 49 0.69 
B6xC3H Lung DS38812 152 66 44 0.50 
B6xCAST B cell DS35978 459 194 93 0.79 
B6xCAST B cell DS35986 41 22 4 0.58 
B6xCAST B cell DS35992 63 27 6 0.74 
B6xCAST B cell DS35993 303 139 66 0.71 
B6xCAST Kidney DS35927 75 25 2 0.49 
B6xCAST Kidney DS36776 279 129 10 0.48 
B6xCAST Kidney DS36777 138 65 4 0.49 
B6xCAST Kidney DS36778 378 186 18 0.46 
B6xCAST Liver DS35877 278 154 28 0.69 
B6xCAST Liver DS35884 137 77 10 0.57 
B6xCAST Liver DS35889 77 30 3 0.86 
B6xCAST Liver DS35890 230 112 16 0.74 
B6xCAST Liver DS36784 15 5 0 0.76 
B6xCAST Liver DS36791 82 34 3 0.61 
B6xCAST Lung DS35897 84 44 3 0.48 
B6xCAST Lung DS35898 705 377 80 0.59 
B6xCAST Lung DS35909 259 93 15 0.45 
B6xCAST Lung DS35910 62 20 12 0.55 
B6xCAST Lung DS36795 24 7 0 0.44 
B6xPWK B cell DS36869 358 159 77 0.53 
B6xPWK B cell DS36870 24 11 2 0.46 
B6xPWK B cell DS36871 407 198 120 0.59 
B6xPWK Kidney DS36635 279 147 34 0.60 
B6xPWK Kidney DS36649 80 37 9 0.54 
B6xPWK Kidney DS37495 73 13 2 0.66 
B6xPWK Kidney DS37496 337 135 14 0.38 
B6xPWK Liver DS36636 64 32 2 0.56 
B6xPWK Liver DS36641 173 95 12 0.65 
B6xPWK Liver DS36648 507 218 54 0.86 
B6xPWK Lung DS36655 120 47 29 0.68 
B6xPWK Lung DS36657 527 202 77 0.45 
B6xPWK Lung DS37487 383 65 11 0.57 
B6xSPRET B cell DS39204 176 58 8 0.55 
B6xSPRET B cell DS39205 220 115 75 0.58 
B6xSPRET Kidney DS37590 225 58 4 0.65 
B6xSPRET Kidney DS37591 205 64 6 0.74 
B6xSPRET Kidney DS39287 12 6 0 0.56 
B6xSPRET Liver DS37603 292 139 15 0.61 
B6xSPRET Liver DS38318 66 29 10 0.81 
B6xSPRET Liver DS38327 178 71 36 0.83 
B6xSPRET Lung DS37582 246 66 5 0.48 
B6xSPRET Lung DS38311 197 104 7 0.38 
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Supplementary Table 2. Summary of DNase I data by strain and tissue type. 

 

Strain 
Cell/tissue 
type Analyzed reads 

# Biological  
replicates 

# Hotspots 
(5% FDR) 

B6x129 B cell 347,204,832 3 117,910 
B6x129 Kidney 170,705,656 2 238,917 
B6x129 Liver 617,160,439 2 295,565 
B6x129 Lung 298,565,608 2 261,732 
B6xC3H B cell 190,135,121 6 78,387 
B6xC3H Kidney 218,833,896 4 203,372 
B6xC3H Liver 409,883,230 3 215,510 
B6xC3H Lung 198,062,728 3 152,006 
B6xCAST B cell 394,467,062 4 156,078 
B6xCAST Kidney 404,999,564 4 228,944 
B6xCAST Liver 413,748,454 6 233,784 
B6xCAST Lung 543,296,869 5 281,978 
B6xPWK B cell 376,482,554 3 134,316 
B6xPWK Kidney 332,674,371 4 231,416 
B6xPWK Liver 345,057,236 3 242,731 
B6xPWK Lung 315,239,886 3 194,034 
B6xSPRET B cell 173,650,753 2 91,621 
B6xSPRET Kidney 127,799,573 3 186,061 
B6xSPRET Liver 239,422,480 3 211,762 
B6xSPRET Lung 170,021,189 2 169,389 
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Supplementary Table 3. Summary of TF models. 

Shown are TF motifs with enrichment of imbalanced SNVs. TF motifs were curated from multiple databases 
and annotated with gene name. Motifs with redundant sequence specificities by TOMTOM were identified 
and collapsed using a clustering approach4. 

 

 

Total TFs 
in database 

TFs overlapping sufficient variation 
Human (166 

individuals and 
116 cell types4) 

Mouse (5 
strains and 

4 cell types) 
Pooled human 

and mouse 
TF motifs 2154 509 627 857 
TF genes 695 268 335 430 
TF motifs (collapsed) 270 82 105 131 
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Supplementary Table 4. Summary of RNA-seq samples in this study. 

Uniquely mapped reads were required to pass all mapping filters. Nonredundant reads exclude PCR dupli-
cates. Read counts are in millions. Samples IDs beginning with SRR are from 19. 

Strain Cell/tissue type Sample ID 
Num. pass filter 
alignments 

Uniquely 
mapped reads 

Nonredundant 
reads 

B6xC3H B cell DS38895 199 173 94 
B6xC3H Kidney DS38815 128 113 77 
B6xC3H Liver DS38822 132 109 67 
B6xC3H Lung DS38808 112 96 69 
B6xCAST B cell DS35975 117 109 80 
B6xCAST Kidney SRR823460 75 60 46 
B6xCAST Kidney SRR823468 130 85 50 
B6xCAST Liver SRR823469 213 148 88 
B6xCAST Liver SRR823474 221 143 88 
B6xCAST Lung SRR823447 86 74 55 
B6xCAST Lung SRR823448 104 89 64 
B6xPWK B cell DS36866 80 76 56 
B6xPWK B cell DS37551 116 91 61 
B6xPWK Kidney DS37491 112 107 74 
B6xPWK Liver DS37504 124 100 55 
B6xPWK Lung DS37484 100 92 73 
B6xSPRET B cell DS39200 67 60 38 
B6xSPRET Kidney DS37587 103 98 67 
B6xSPRET Kidney DS38305 132 111 67 
B6xSPRET Liver DS37600 94 87 54 
B6xSPRET Liver DS38323 137 114 46 
B6xSPRET Lung DS37580 125 115 70 
B6xSPRET Lung DS38309 130 107 72 
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Supplementary Table 5. Summary of mESC samples in this study. 

Analyzed reads were required to pass all mapping filters. Read counts are in millions. Signal Portion of Tags 
(SPOT) scores are a measure of enrichment and refer to the proportion of reads mapping within DHS; SPOT 
scores are reported from hotspot V1. 

 
Strain Cell type Experiment Sample ID # Sequenced reads (M) # Analyzed reads (M) # Duplicate reads (M) SPOT 
B6xCAST mESC DNase-seq BS02277A 63 140 14 0.2798 
B6xCAST mESC DNase-seq BS02283A 192 128 11 0.2737 
B6xCAST mESC CTCF ChIP-seq BS03752A 61 39 24 0.6104 
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Supplementary Data 
Supplementary Data 1. Details of sites tested for imbalance. 

Details of 357,303 SNVs tested for imbalance, including coordinates (mm10), read counts, p-value, and ag-
gregate and per-cell/tissue type imbalance calls. 
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