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ABSTRACT (248 words) 35 

Biomarker-assisted preclinical/early detection and intervention in Alzheimer’s disease (AD) 36 

may be the key to therapeutic breakthroughs. One of the presymptomatic hallmarks of AD is 37 

the accumulation of beta-amyloid (Aβ) plaques in the human brain. However, current methods 38 

to detect Aβ pathology are either invasive (lumbar puncture) or quite costly and not widely 39 

available (amyloid PET). Our prior studies show that MRI-based hippocampal multivariate 40 

morphometry statistics (MMS) are an effective neurodegenerative biomarker for preclinical 41 

AD. Here we attempt to use MRI-MMS to make inferences regarding brain Aβ burden at the 42 

individual subject level. As MMS data has a larger dimension than the sample size, we propose 43 

a sparse coding algorithm, Patch Analysis-based Surface Correntropy-induced Sparse coding 44 

and max-pooling (PASCS-MP), to generate a low-dimensional representation of hippocampal 45 

morphometry for each subject. Then we apply these individual representations and a binary 46 

random forest classifier to predict brain Aβ positivity for each person. We test our method in 47 

two independent cohorts, 841 subjects from the Alzheimer's Disease Neuroimaging Initiative 48 

(ADNI) and 260 subjects from the Open Access Series of Imaging Studies (OASIS). 49 

Experimental results suggest that our proposed PASCS-MP method and MMS can discriminate 50 

Aβ positivity in people with mild cognitive impairment (MCI) (Accuracy (ACC)=0.89 (ADNI)) 51 

and in cognitively unimpaired (CU) individuals (ACC=0.79 (ADNI) and ACC=0.81 (OASIS)). 52 

These results compare favorably relative to measures derived from traditional algorithms, 53 

including hippocampal volume and surface area, shape measures based on spherical harmonics 54 

(SPHARM), and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling 55 

(PASS-MP) methods.  56 

 57 
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1. INTRODUCTION 62 

  Alzheimer's disease (AD) is a major public health concern with the number of affected 63 

individuals expected to triple, reaching 13.8 million by the year 2050 in the U.S. alone 64 

(Brookmeyer et al., 2007). Current therapeutic failures in patients with dementia due to AD 65 

may be due to interventions that are too late, or targets that are secondary effects and less 66 

relevant to disease initiation and early progression (Hyman, 2011). Preclinical AD is now 67 

viewed as a gradual process that begins many years before the onset of clinical symptoms. 68 

Measuring brain biomarkers and intervening at preclinical AD stages are believed to improve 69 

the probability of therapeutic success (Brookmeyer et al., 2007; Jack et al., 2016; Sperling et 70 

al., 2011). In the A/T/N system - a recently proposed research framework for understanding the 71 

biology of AD - the presence of abnormal levels of Aβ in the brain or cerebrospinal fluid (CSF) 72 

is used to define the presence of biological Alzheimer’s disease (Jack et al., 2016). An 73 

imbalance between production and clearance of Aβ occurs early in AD and is typically followed 74 

by the accumulation of tau protein tangles (another key pathological hallmark of AD) and 75 

neurodegeneration detectable on brain magnetic resonance imaging (MRI) scans (Hardy and 76 

Selkoe, 2002; Jack et al., 2016; Sperling et al., 2011). Brain Aβ pathology can be measured 77 

using positron emission tomography (PET) with Aβ-sensitive radiotracers, or in CSF. Even so, 78 

these invasive and expensive measurements are less attractive to subjects in preclinical stage 79 

and PET scanning is also not as widely available as MRI.  80 

 Blood-based biomarkers (BBBs) are somewhat effective for inferring Aβ burden in the 81 

brain and CSF, and are less expensive than imaging (Bateman et al., 2019; Janelidze et al., 82 

2020; Palmqvist et al., 2020). Even so, structural MRI biomarkers are largely accessible, cost-83 

effective, and widely used in AD imaging research as well as for clinical diagnosis. 84 

Consequently, there is great research interest in using MRI biomarkers to predict brain Aβ 85 

burden (Pekkala et al., 2020; Reisa A. Sperling et al., 2011; Tosun et al., 2016, 2014). Tosun et 86 

al. (2014) combine MRI-based measures of cortical shape and cerebral blood flow to predict 87 

Aβ status for early-MCI individuals and achieve an 83% accuracy with the LASSO approach 88 

(least absolute shrinkage and selection operator). Pekkala et al. (2020) use brain MRI measures 89 
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(volumes of the cortical gray matter, hippocampus, accumbens, thalamus and putamen) to infer 90 

Aβ positivity in cognitively unimpaired (CU) subjects; they achieve a 0.70 area under the 91 

receiver operator curve (AUC) with their Disease State Index (DSI) algorithm. Although brain 92 

structural volumes are perhaps the most commonly used neuroimaging measures in AD 93 

research (Cacciaglia et al., 2018; Crivello et al., 2010; Reiter et al., 2017), surface-based 94 

subregional structure measures can offer advantages over volume measures as they contain 95 

more detailed and patient-specific shape information (Apostolova et al., 2010; Ching et al., 96 

2020; Costafreda et al., 2011; Dong et al., 2020b, 2019; Morra et al., 2009; Qiu et al., 2009; 97 

Shen et al., 2009; Styner et al., 2004; Paul M Thompson et al., 2004; Younes et al., 2014).  98 

Our prior studies (Shi et al., 2014; Wang et al., 2011, 2010) propose novel multivariate 99 

morphometry statistics (MMS) and apply them to analyze APOE4 dose effects on brain 100 

structures of nondemented and CU groups from the ADNI cohort (Dong et al., 2019; Li et al., 101 

2016; Shi et al., 2014). Our proposed MMS approach uses multivariate tensor-based 102 

morphometry (mTBM) to encode morphometry along the surface tangent direction and radial 103 

distance (RD) to encode morphometry along the surface normal direction. This approach 104 

performs better for detecting clinically-relevant group differences, relative to other TBM-based 105 

methods including those using the Jacobian determinant, the largest and smallest eigenvalues 106 

of the surface metric and the pair of eigenvalues of the Jacobian matrix (Wang et al., 2011, 107 

2010). Our recent studies (Dong et al., 2020b, 2019) show that MMS outperforms volume 108 

measures for detecting hippocampal and ventricular deformations in groups at high risk for AD 109 

at the preclinical stage. Our other related work (Wu et al., 2018) has studied hippocampal 110 

morphometry in cohorts consisting of Aβ positive AD patients (Aβ+ AD) and Aβ negative 111 

cognitively unimpaired subjects (Aβ- CU) using the MMS measure. We find significant Aβ+ 112 

AD vs. Aβ- CU group differences, using Hotelling's T2 tests. As MMS have a high dimension, 113 

it is not suitable for classification research directly. Therefore, we apply a Patch Analysis-based 114 

Surface Sparse-coding and Max-Pooling (PASS-MP) system for a low-dimensional 115 

representation of hippocampal MMS, and the binary group random forest classification of Aβ+ 116 

AD and Aβ- CU, achieving an accuracy rate of 90.48%. These studies show that MMS can 117 
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distinguish clinical groups with different Aβ status. We have also successfully applied PASS-118 

MP for MMS-based AD cognitive scores and autism spectrum disorder predictions (Dong et 119 

al., 2020a; Fu et al., 2021). 120 

In this work, we optimize the objective function of the PASS-MP system by introducing 121 

correntropy measure (Gui et al., 2017) and propose an improved sparse coding, dubbed as the 122 

Patch Analysis-based Surface Correntropy-induced Sparse-coding and max-pooling (PASCS-123 

MP) method. PASCS-MP does not only take the advantage of the computational efficiency of 124 

PASS-MP in its new optimization strategy, but also effectively reduces the negative influence 125 

of non-Gaussian noise in the data, which tremendously improves the prediction accuracy. 126 

PASCS-MP is an unsupervised learning method to generate a low-dimensional representation 127 

for each sample. We leverage the novel PASCS-MP method on MMS to further explore 128 

hippocampal morphometry differences for the following contrasts at the individual subject level: 129 

(1) Aβ positive individuals with mild cognitive impairment (Aβ+ MCI) vs. Aβ negative 130 

individuals with mild cognitive impairment (Aβ- MCI) from ADNI, and (2) Aβ positive 131 

cognitively unimpaired subjects (Aβ+ CU from ADNI and OASIS) versus Aβ negative 132 

cognitively unimpaired subjects (Aβ- CU from ADNI and OASIS). We apply the proposed 133 

PASCS-MP and a binary random forest classifier to classify individuals with different Aβ status. 134 

We hypothesize that our MMS-based PASCS-MP may provide stronger statistical power 135 

relative to traditional hippocampal volume, surface area and spherical harmonics (SPHARM) 136 

based hippocampal shape measurements, in predicting subjects’ Aβ status. We expect that the 137 

knowledge gained from this type of research will enrich our understanding of the relationship 138 

between hippocampal atrophy and AD pathology, and thus help in assessing disease burden, 139 

progression, and treatment effects. 140 

2. SUBJECTS and METHODS 141 

2.1 Subjects 142 

Data for testing the performance of our proposed framework and comparable methods are 143 

obtained from the ADNI database (Mueller et al., 2005, adni.loni.usc.edu) and the OASIS 144 
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database (Marcus et al., 2010). ADNI is the result of efforts of many co-investigators from a 145 

broad range of academic institutions and private corporations. Subjects are recruited from over 146 

50 sites across the U.S. and Canada. The primary goal of ADNI is to test whether biological 147 

markers, such as serial MRI and positron emission tomography (PET), combined with clinical 148 

and neuropsychological assessments, can measure the progression of MCI and early AD. 149 

Subjects originally recruited for ADNI-1 and ADNI-GO have the option to be followed in 150 

ADNI-2. For up-to-date information, see www.adniinfo.org.  151 

From the ADNI cohort, we analyze 841 age and sex-matched subjects with florbetapir PET 152 

data and T1-weighted MR images, including 151 AD patients, 342 MCI and 348 asymptomatic 153 

CU individuals. Among them, all the 151 AD patients, 171 people with MCI and 116 CU 154 

individuals were Aβ positive. The remaining 171 MCI and 232 CU individuals were Aβ 155 

negative. From OASIS database, we analyze age-and-sex-matched 260 subjects with florbetapir 156 

PET data and T1-weighted MR images, including 52 Aβ positive CU and 208 Aβ negative CU.  157 

Table 1. Demographic information for the subjects we study from the ADNI and OASIS cohorts. 158 

Database Group Sex (M/F) Age MMSE Centiloid 

ADNI 

Cohort 

Aβ+ AD (n=151) 79/72 74.6±7.8 22.6±3.1 86.3±27.4 

Aβ+ MCI (n=171) 92/79 74.1±7.4 27.7±1.7 76.8±26.4 

Aβ- MCI (n=171) 92/79 74.0±7.4 28.3±1.6 8.9±14.9 

Aβ+ CU (n=116) 45/71 75.9±6.1 28.9±1.1 71.1±26.4 

Aβ- CU (n=232) 90/142 75.7±6.3 29.0±1.3 7.5±14.5 

OASIS 

Cohort 

Aβ+ CU (n=52) 22/30 70.5±7.5 29.0±1.3 71.4±20.9 

Aβ- CU (n=208) 88/120 68.5±6.8 29.0±1.3 8.5±9.5 

 Values are mean ± standard deviation where applicable. 159 

In addition to each MRI scan, we also analyze the corresponding Mini-Mental State Exam 160 

(MMSE) scores (Folstein et al., 1975) and centiloid measures (Navitsky et al., 2018). 161 

Operationally, the positivity of Aβ biomarkers is defined using standard cut-offs, with some 162 

efforts to reconcile differences among different Aβ radiotracers using a norming approach 163 

called the centiloid scale (Klunk et al., 2015; Rowe et al., 2017). ADNI florbetapir PET data 164 

are processed using AVID pipeline (Navitsky et al., 2018), and OASIS florbetapir PET data are 165 

processed using PUP (Lee et al., 2013; Su et al., 2015). Both are converted to the centiloid 166 
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scales according to their respective conversion equations (Navitsky et al., 2018; Su et al., 2019). 167 

A centiloid cutoff of 37.1 is used to determine Aβ positivity, this threshold corresponds to 168 

pathologically determined moderate to frequent plaques (Fleisher et al., 2011). Table 1 shows 169 

demographic information we analyze from the ADNI and OASIS cohorts.  170 

2.2 Proposed pipeline 171 

This work develops the PASCS-MP framework to predict individual Aβ burden (see Fig. 172 

1 for the processing pipeline). In panel (1), hippocampal structures are segmented from 173 

registered brain MR images with FIRST from the FMRIB Software Library (FSL) (Paquette et 174 

al., 2017; Patenaude et al., 2011). Hippocampal surface meshes are constructed with the 175 

marching cubes algorithm (Lorensen and Cline, 1987). In panel (2), hippocampal surfaces are 176 

parameterized with the holomorphic flow segmentation method (Wang et al., 2007). After the 177 

surface fluid registration algorithm, the hippocampal MMS features are calculated at each 178 

surface point. We propose a PASCS-MP and classification system to refine and classify MMS 179 

patches in individuals with different Aβ status. We randomly select patches on each 180 

hippocampal surface and generate a sparse code for each patch with our novel PASCS. Next, 181 

we adopt a max-pooling operation on the learned sparse codes of these patches to generate a 182 

new representation (a vector) for each subject. Finally, we train binary random forest classifiers 183 

on individual sparse codes in people with different Aβ status; we validate them with 10-fold 184 

cross-validation. The whole system is publicly available1. 185 

 
1http://gsl.lab.asu.edu/software/pass-mp/ 
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 186 

 

Fig. 1. System pipeline. Panel (1) shows hippocampal surfaces generated from brain MRI scans. In 

panel (2), surface-based Multivariate Morphometry Statistics (MMS) are calculated after fluid 

registration of surface coordinates across subjects. MMS is a 4 × 1 vector on each vertex, including 

radial distance (scalar) and multivariate tensor-based morphometry (3 × 1 vector). We randomly 

select patches on each hippocampal surface and generate a sparse code for each patch with our novel 

Patch Analysis-based Surface Correntropy-induced Sparse-coding (PASCS) method. Next, we apply 

the max pooling operation to the learned sparse codes to generate a new representation (a vector) for 

each subject. Finally, we train binary random forest classifiers on these representations and validate 

them with 10-fold cross-validation. 
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2.2.1 Image Processing 187 

Firstly, we use FIRST (FMRIB’s Integrated Registration and Segmentation Tool) 188 

(Patenaude et al., 2011) to segment the original MRI data and map the hippocampus 189 

substructure. After obtaining a binary segmentation of the hippocampus, we use a topology-190 

preserving level set method (Han et al., 2003) to build surface models. Based on that, the 191 

marching cubes algorithm (Lorensen and Cline, 1987) is applied to construct triangular surface 192 

meshes. Then, to reduce the noise from MR image scanning and to overcome partial volume 193 

effects, surface smoothing is applied consistently to all surfaces. Our surface smoothing process 194 

consists of mesh simplification using progressive meshes (Hoppe, 1996) and mesh refinement 195 

by the Loop subdivision surface method (Loop, 1987). Similar procedures adopted in a number 196 

of our prior studies (Colom et al., 2013; Luders et al., 2013; Monje et al., 2013; Shi et al., 2015, 197 

2013b, 2013a; Wang et al., 2012, 2010) have shown that the smoothed meshes are accurate 198 

approximations to the original surfaces, with a higher signal-to-noise ratio (SNR). 199 

To facilitate hippocampal shape analysis, we generate a conformal grid (150 × 100) on 200 

each surface, which is used as a canonical space for surface registration. On each hippocampal 201 

surface, we compute its conformal grid with a holomorphic 1-form basis (Wang et al., 2010; 202 

Wang et al., 2007). We adopt surface conformal representation (Shi et al., 2015, 2013a) to 203 

obtain surface geometric features for automatic surface registration. This consists of the 204 

conformal factor and mean curvature, encoding both intrinsic surface structure and information 205 

on its 3D embedding. After we compute these two local features at each surface point, we 206 

compute their summation and then linearly scale the dynamic range of the summation into the 207 

range 0-255, to obtain a feature image for the surface. We further register each hippocampal 208 

surface to a common template surface. With surface conformal parameterization and conformal 209 

representation, we generalize the well-studied image fluid registration algorithm (Bro-Nielsen 210 

and Gramkow, 1996; Agostino et al., 2003) to general surfaces. Furthermore, most of the image 211 

registration algorithms in the literature are not symmetric, i.e., the correspondences between 212 

the two images depending on which image is assigned as the deforming image and which is the 213 

non-deforming target image. An asymmetric algorithm can be problematic as it tends to 214 
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penalize the expansion of image regions more than shrinkage (Rey et al., 2002). Thus, in our 215 

system, we further extend the surface fluid registration method to an inverse-consistent 216 

framework (Leow et al., 2005). The obtained surface registration is diffeomorphic. For details 217 

of our inverse-consistent surface fluid registration method, we refer to (Shi et al., 2013a). 218 

2.2.2 Surface-based Morphometry Feature Extraction 219 

After parameterization and registration, we establish a one-to-one correspondence map 220 

between hippocampal surfaces. This makes it effective for us to compare and analyze surface 221 

data. Besides, each surface has the same number of vertices (150 × 100) as shown in panel 2 222 

of Fig. 1. The intersection of the red curve and the blue curve is a surface vertex, and at each 223 

vertex, we adopt two features, the radial distance (RD) and the surface metric tensor used in 224 

multivariate tensor-based morphometry (mTBM). The RD (a scalar at each vertex) represents 225 

the thickness of the shape at each vertex to the medical axis (Pizer et al., 1999; Thompson et 226 

al., 2004), this reflects the surface differences along the surface normal directions. The medial 227 

axis is determined by the geometric center of the isoparametric curve on the computed 228 

conformal grid (Wang et al., 2011). The axis is perpendicular to the isoparametric curve, so the 229 

thickness can be easily calculated as the Euclidean distance between the core and the vertex on 230 

the curve. The mTBM statistics (a 3 × 1 vector at each vertex) have been frequently studied 231 

in our prior work (Shi et al., 2015, 2013b; Wang et al., 2010, 2009). They measure local surface 232 

deformation along the surface tangent plane and show improved signal detection sensitivity 233 

relative to more standard tensor-based morphometry (TBM) measures computed as the 234 

determinant of the Jacobian matrix (Wang et al., 2013). RD and mTBM jointly form a new 235 

feature, known as the surface multivariate morphometry statistics (MMS). Therefore, MMS is 236 

a 4 × 1 vector at each vertex. The surface of the hippocampus in each brain hemisphere has 237 

15,000 vertices, so the feature dimensionality for each hippocampus in each subject is 60,000. 238 

2.2.3 Surface Feature Dimensionality Reduction  239 

The above mentioned vertex-wise surface morphometry feature, MMS, is a high-fidelity 240 

measure to describe the local deformation of the surface and can provide detailed localization 241 
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and visualization of regional atrophy or expansion (Yao et al., 2018) and development 242 

(Thompson et al., 2000). However, the high dimensionality of such features is likely to cause 243 

problems for classification. Feature reduction methods proposed by (Davatzikos et al., 2008; 244 

Sun et al., 2009) may ignore the intrinsic properties of a structure’s regional morphometry. 245 

Therefore, we introduce the following feature reduction method for the vertex-wise surface 246 

morphometry features. 247 

The surface MMS feature dimension is typically much larger than the number of subjects, 248 

i.e., the so-called high dimension-small sample problem. To extract useful surface features and 249 

reduce the dimension before making predictions, this work first randomly generates square 250 

windows on each surface to obtain a collection of small image patches with different amounts 251 

of overlap. In our prior AD studies (Wu et al., 2018; Zhang et al., 2016a, 2016b), we discuss 252 

the most suitable patch size and number. Therefore, in this work, we adopt the same optimal 253 

experimental settings, as 1,008 patches (patch size=10 × 10 vertices) for each subject (504 254 

patches for each side of the hippocampal surface). As these patches are allowed to overlap, a 255 

vertex may be contained in several patches. The zoomed-in window in subfigure (b) of panel 256 

(2) in Fig.1 shows overlapping areas on selected patches. After that, we use the technique of 257 

sparse coding and dictionary learning (Mairal et al., 2009) to learn meaningful features. 258 

Dictionary learning has been successful in many image processing tasks as it can concisely 259 

model natural image patches. In this work, we propose a novel sparse coding and dictionary 260 

learning method with an l1-regularized correntropy loss function named Correntropy-induced 261 

Sparse-coding (CS), which is expected to improve the computational efficiency compared to 262 

Stochastic Coordinate Coding (SCC) (Lin et al., 2014). Formally speaking, correntropy is a 263 

generalized similarity measure between two scalar random variables U and V, which is defined 264 

by 𝒱𝜎(𝑈, 𝑉) = 𝔼𝒦𝜎(𝑈, 𝑉) . Here, 𝒦𝜎  is a Gaussian kernel given by 𝒦𝜎(𝑈, 𝑉) =265 

exp {− (u −  v)2 𝜎2⁄ } with the scale parameter 𝜎 > 0, (u-v) being a realization of (U, V) 266 

(Feng et al., 2015; Gui et al., 2017). Utilizing the correntropy measure as a loss function will 267 

reduce the negative influence of non-Gaussian noise in the data. 268 

Classical dictionary learning techniques (Lee et al., 2007; Olshausen and Field, 1997) 269 
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consider a finite training set of feature maps, 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑅𝑝×𝑛. In our study, 𝑋 is 270 

the set of MMS features from n surface patches of all the samples. All the MMS features on 271 

each surface patch, 𝑥𝑖, is reshaped to a 𝑝-dimensional vector. And we desire to generate a new 272 

set of sparse codes, 𝑍 = (𝑧1, 𝑧2, … , 𝑧𝑛) in 𝑅𝑚×𝑛  for these features. Therefore, we aim to 273 

optimize the empirical cost function as Eq. (1). 274 

       𝑓(𝐷, 𝑧𝑖) ≜ ∑ 𝑙(𝑥𝑖, 𝐷, 𝑧𝑖)
𝑛
𝑖=1                           (1)  275 

where 𝐷 ∈ 𝑅𝑝×𝑚 is the dictionary and 𝑧𝑖 ∈ 𝑅
𝑚 is the sparse code of each feature vector. 276 

𝑙(𝑥𝑖, 𝐷, 𝑧𝑖) is the loss function that measures how well the dictionary 𝐷 and the sparse code 277 

𝑧𝑖 can represent the feature vector 𝑥𝑖. Then, 𝑥𝑖 can be approximated by 𝑥𝑖 = 𝐷𝑧𝑖. In this 278 

way, we convert the 𝑝-dimensional feature vector, 𝑥𝑖, to a 𝑚-dimensional sparse code, 𝑧𝑖, 279 

where 𝑚 is the dimensionality of the sparse code and the dimensionality could be arbitrary. In 280 

this work, we introduce the correntropy measure (Gui et al., 2017) to the loss function and 281 

define the 𝑙1-sparse coding optimization problem as Eq. (2) 282 

min
𝐷,𝑧𝑖

1

2
∑ 𝑒𝑥𝑝 (−

‖𝐷𝑧𝑖−𝑥𝑖‖2
2

𝜎2
) + 𝜆∑ ‖𝑧𝑖‖1

𝑛
𝑖=1

𝑛
𝑖=1               (2) 283 

where 𝜆 is the regularization parameter, 𝜎 is the kernel size that controls all properties of 284 

correntropy. ‖∙‖2 and ‖∙‖1are the 𝑙2-norm and 𝑙1-norm and exp() represents the exponential 285 

function. The first part of the loss function measures the degree of the image patches’ goodness 286 

and the correntropy may help remove outliers. Meanwhile, the second part is well known as the 287 

𝑙1 penalty (Fu, 1998) that can yield a sparse solution for 𝑧𝑖 and select robust and informative 288 

features. Specifically, there are m columns (atoms) in the dictionary 𝐷 and each atom is 𝑑𝑗 ∈289 

𝑅𝑝, 𝑗 = 1, 2,… ,𝑚. To avoid 𝐷 from being arbitrarily large and leading to arbitrary scaling of 290 

the sparse codes, we constrain each 𝑙2-norm of each atom in the dictionary no larger than one. 291 

We will let C become the convex set of matrices verifying the constraint as Eq. (3). 292 

C ≜ {𝐷 ∈ 𝑅𝑝×𝑚𝑠. 𝑡. ∀𝑗 = 1,2, … ,𝑚, 𝑑𝑗
𝑇𝑑𝑗 ≤ 1}           (3) 293 

Note that, the empirical problem cost 𝑓(𝐷, 𝑧𝑖) is not convex when we jointly consider the 294 

dictionary 𝐷 and the coefficients 𝑍. But the function is convex concerning each of the two 295 
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variables, 𝐷, and 𝑍, when the other one is fixed. Since it takes much time to solve 𝐷 and 𝑍 296 

when dealing with large-scale data sets and a large-size dictionary, we adopt the framework in 297 

the stochastic coordinate coding (SCC) algorithm (Lin et al., 2014), which can dramatically 298 

reduce the computational cost of the sparse coding, while keeping a comparable performance.  299 

To solve this optimization problem, we reformulate the first part of the equation by the 300 

half-quadratic technique (Nikolova and Ng, 2006) and then the objective can be solved as the 301 

minimization problem Eq.(4): 302 

min
1

2
𝐷,𝑧𝑖

∑ ℎ𝑖‖𝐷𝑧𝑖 − 𝑥𝑖‖2
2 + 𝜆∑ ‖𝑧𝑖‖1

𝑛
𝑖=1

𝑛
𝑖=1 , ℎ𝑖 = exp (−

‖𝐷𝑧𝑖−𝑥𝑖‖2
2

𝜎2
).     (4)                                                           303 

Here the auxiliary variable, ℎ𝑖, will be updated in each update iteration. At each iteration, we 304 

update 𝐷 and 𝑍 alternately, which means we firstly fix 𝐷 and update the sparse code 𝑍 305 

with coordinated descent (CD) and then fix Z to update the dictionary 𝐷  via stochastic 306 

gradient descent (SGD).  307 

As our optimization method is stochastic, we only update the sparse code and dictionary 308 

with only one signal for each iteration. In the following paragraphs, we will discuss the 309 

optimization in one iteration with only one signal. If a signal, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝) 
𝑇 ∈ 𝑅𝑝, is 310 

given, we first update its corresponding sparse code, 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑚), via CD. Let 𝑧𝑙 311 

denote the 𝑙 -th entry of 𝑧  and 𝑑𝑘𝑙  represents the 𝑘 -th item of 𝑑𝑙 . 𝑑𝑙  is the 𝑙 -th 312 

atom/column of the dictionary 𝐷. Then, we can calculate the partial derivative of 𝑧𝑙 in the 313 

first part of the function, 𝑓(𝐷, 𝑧𝑖), as Eq. (5) 314 

𝜕

𝜕𝑧𝑙
𝑐(𝐷, z) =

𝜕

𝜕𝑧𝑙

1

2
ℎ‖𝐷𝑧 − 𝑥‖2

2 = −ℎ∑ 𝑑𝑘𝑙 (𝑥𝑘 −∑ 𝑑𝑘𝑟𝑧𝑟
𝑚

𝑟=1
)

𝑝

𝑘=1
 315 

                           = −ℎ∑ 𝑑𝑘𝑙 (𝑥𝑘 −∑ 𝑑𝑘𝑟𝑧𝑟
𝑚

𝑟≠𝑙
− 𝑑𝑘𝑙𝑧𝑙)                              

𝑝

𝑘=1
 316 

                    = −ℎ∑ 𝑑𝑘𝑙 (𝑥𝑘 −∑ 𝑑𝑘𝑟𝑧𝑟
𝑚

𝑟≠𝑙
)

𝑝

𝑘=1
+ ℎ𝑧𝑙∑ (𝑑𝑘𝑙)

2
𝑝

𝑘=1
 317 

                                      = −𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙                                          (5) 318 

where 𝜌𝑙 = ℎ∑ 𝑑𝑘𝑙(𝑥𝑘 − ∑ 𝑑𝑘𝑟𝑧𝑟
𝑚
𝑟≠𝑙 )𝑝

𝑘=1 , 𝜐𝑙 = ∑ (𝑑𝑘𝑙)
2𝑝

𝑘=1  and ℎ is the auxiliary variable 319 

for the signal. Since we normalize the atom, 𝑑𝑙, in each iteration, 𝜐𝑙 can be ignored. Then, we 320 
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compute the subdifferential of the lasso loss function and equate it to zero to find the optimal 321 

solution as follows: 322 

𝜕

𝜕𝑧𝑙
𝑓(𝐷, z) =

𝜕

𝜕𝑧𝑙
𝑐(𝐷, z) +

𝜕

𝜕𝑧𝑙
𝜆‖𝑧‖1 = −𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙 +

𝜕

𝜕𝑧𝑙
𝜆‖𝑧‖1 = 0         (6) 323 

Then, according to the derivative of the l1-norm, we can have the following equations. 324 

{

−𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙 − 𝜆 = 0       𝑖𝑓 𝑧𝑙 < 0
−𝜌𝑙 − 𝜆 ≤ 0 ≤ −𝜌𝑙 + 𝜆 𝑖𝑓 𝑧𝑙 = 0
−𝜌𝑙 + ℎ𝑧𝑙𝜐𝑙 + 𝜆 = 0      𝑖𝑓 𝑧𝑙 > 0

                  (7) 325 

Finally, we can get the soft thresholding function as: 326 

𝑧𝑙 =

{
 
 

 
 

𝜌𝑙+𝜆

ℎ𝜐𝑙
       𝑓𝑜𝑟 𝜌𝑙 < −𝜆

     0     𝑓𝑜𝑟 − 𝜆 ≤ 𝜌𝑙 ≤ 𝜆
𝜌𝑙−𝜆

ℎ𝜐𝑙
      𝑓𝑜𝑟 𝜌𝑙 > 𝜆

                    (8) 327 

After we update the sparse code, we propose the following strategy to accelerate the 328 

convergence for updating the dictionary 𝐷. The atom, 𝑑𝑙 will stay unchanged if 𝑧𝑙 is zero 329 

since ∇𝑑𝑙 = ℎ(𝐷𝑧 − 𝑥)𝑧𝑙 = 0. Otherwise, as shown in Fig. 2, we can update the 𝑙-th atom of 330 

the dictionary 𝐷  as 𝑑𝑙 ← 𝑑𝑙 − 𝛾𝑙ℎ(𝐷𝑧 − 𝑥)𝑧𝑙 . 𝛾𝑙  is the learning rate provided by an 331 

approximation of the Hessian: 𝑅 ← 𝑅 + 𝑧𝑧𝑇 and 𝛾𝑙 is given by 1/𝑟𝑙𝑙, where 𝑟𝑙𝑙 is the item 332 

at the 𝑙-th row and 𝑙-th column of the Hessian matrix 𝑅. The pseudo-code of the model was 333 

shown in Alg. 1, dubbed as PASCS.  334 
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Alg. 1 Patch Analysis-based Surface Correntropy-induced Sparse-coding 

Require: Data set 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in 𝑹𝒑×𝒏 

Ensure: Dictionary 𝑫 ∈ ℝ𝒑×𝒎 and sparse codes 𝒁 = (𝒛𝟏, 𝒛𝟐, … , 𝒛𝒏) ∈ ℝ
𝒎×𝒏 

Initialize: 𝑫𝟏,𝟏, 𝑹 = 𝟎, 𝒛𝒊
𝟎 = 𝟎, 𝒉𝒊

𝟎 = 𝟏, 𝒊 = 𝟏,… , 𝐧 

1: for 𝒕 =  𝟏 to 𝝉 do 

2:        for 𝒊 =  𝟏 to 𝒏 do 

3:              Get an image patch 𝒙𝒊 from 𝑿. 

4:              Update 𝒛𝒊
𝒕 via coordinate descent:  

𝒛𝒊
𝒕 ← 𝑪𝑫(𝒙𝒊, 𝑫

𝒊,𝒕, 𝒛𝒊
𝒕−𝟏). 

5:              Update Hessian matrix and the learning rate:  

𝑹 ← 𝑹 + 𝒛𝒊
𝒕(𝒛𝒊

𝒕)𝑻, 𝜸𝒊,𝒍 = 𝟏/𝒓𝒍𝒍. 

6:              Update the support of the dictionary via SGD for non-zero entry 𝒛𝒊,𝒍
𝒕  (and 

normalize it): 

𝒅𝒍
𝒊+𝟏,𝒕 ← 𝒅𝒍

𝒊,𝒕 − 𝜸𝒊,𝒍𝒉𝒊(𝑫
𝒊,𝒕𝒛𝒊

𝒕 − 𝒙𝒊)𝒛𝒊,𝒍
𝒕 . 

7:              Update auxiliary variable 𝒉𝒊: 

𝒉𝒊 = 𝐞𝐱𝐩 (−‖𝑫
𝒊,𝒕𝒛𝒊

𝒕 − 𝒙𝒊‖𝟐
𝟐
𝝈𝟐⁄ ). 

8:              If 𝒊 =  𝒏, Then 𝑫𝟏,𝒕+𝟏 = 𝑫𝒏,𝒕. 

9:        end for 

10: end for 

Output: 𝑫 = 𝑫𝒏,𝝉 and 𝒛𝒊 = 𝒛𝒊
𝝉 for 𝒊 = 𝟏,… , 𝐧 

335 

 
Fig. 2. Illustration of one iteration of the proposed Patch Analysis-based Surface Correntropy-

induced Sparse-coding (PASCS) algorithm. The input is many 10 × 10 patches on each surface based 

on our multivariate morphometry statistics (MMS). With an image patch 𝑥𝑖, PASCS performs one 

step of coordinate descent (CD) to find the support and the sparse code. Meanwhile, PASCS performs 

a few steps of CD on supports (non-zero entries) to obtain a new sparse code 𝑧𝑖
𝑘. Then, PASCS 

updates the supports (green boxes in the figure) of the dictionary by stochastic gradient descent 

(SGD) to obtain a new dictionary 𝐷𝑖+1,𝑡. Here, t represents the t-th epoch; i represents the i-th patch.  
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2.2.4 Pooling and Classification 336 

After we get the sparse code (the dimension is m) for each patch, the dimensionality of 337 

sparse codes for each subject is still too large for classification, which is 𝑚× 1008. Therefore, 338 

we apply Max-pooling to reduce the feature dimensionality for each subject. Max-pooling 339 

(Boureau et al., 2010) is a way of taking the most responsive node of a given region of interest 340 

and serves as an important layer in the convolutional neural network architecture. In this work, 341 

we compute the maximum value of a particular feature over all sparse codes of a subject and 342 

generate a new representation for each subject, which is an m-dimensional vector. These 343 

summary representations are much lower in dimension, compared to using all the extracted 344 

surface patch features; this can improve results generalizability via less over-fitting.  345 

With these dimension-reduced features, we choose the random forest algorithm (Liaw and 346 

Wiener, 2002) for the binary classification. Random forests are a combination of tree predictors 347 

such that each tree depends on the values of a random vector sampled independently and with 348 

the same distribution for all trees in the forest. This algorithm adopts a learning process called 349 

feature bagging. In this process, we select a random subset of the features several times and 350 

then train a decision tree for each subset. If some features are strong predictors of the response, 351 

they will be selected in many decision trees and this makes them correlated. In comparison with 352 

decision trees, random forests have the same bias but lower variance, which means they can 353 

overcome the drawback of overfitting caused by a small data set. For our sparse surface 354 

features, when the size of the training set becomes small, diversification becomes more subtle, 355 

and the method can better detect these subtle differences. In this project, we use the random 356 

forest classifier in the scikit-learn package (https://scikit-learn.org/) with the default settings. 357 

Besides, under the imbalanced-data condition (such as 116 Aβ+ CU and 232 Aβ- CU in the 358 

ADNI data set), the classifier tends to classify all the training data into the major class, as it 359 

aims to maximize training accuracy. Therefore, we adopt random undersampling (Dubey et al., 360 

2014) to balance the numbers of training subjects in the two classes. All the experiments in this 361 

work use the same setups for the random forest classifier and random undersampling. 362 
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2.3 Performance Evaluation Protocol 363 

Before using hippocampal MMS features for Aβ status classification, we need to apply 364 

PASCS-MP to extract sparse codes from these high dimensional MMS features. The 365 

performance of PASCS-MP has a close relationship to four key parameters: the patch size, the 366 

dimensionality of the learned sparse coding, the regularization parameter for the 𝑙1-norm (𝜆), 367 

and the kernel size (𝜎) in the exponential function (see Eq.(2)). Patch-based analysis has been 368 

widely used for image segmentation and classification (Kao et al., 2020). Leveraging patches 369 

in our MMS can preserve well the properties of the regional morphometry of the hippocampal 370 

surface since the vertices that carry strong classification power are always clustered on the 371 

surface and a set of such vertices typically has a stronger classification ability compared to 372 

using just a single vertex. However, the size of the set of such vertices is unknown. Therefore, 373 

we select the vertices by randomly selecting the same number of square patches with different 374 

sizes and compared the performance of the final classification accuracy for the different patch 375 

sizes. The dimensionality of the learned sparse coding (m) is also the dimensionality of the 376 

representation for each subject. The model might miss some significant information if the 377 

dimensionality is too low. Also, the representations will contain too much redundant 378 

information when the dimensionality is too large. The regularization parameter for the l1-norm 379 

(λ) will control the sparsity of the learned sparse codes. A suitable regularization parameter will 380 

select significant features meanwhile reducing noise. The kernel size in the exponential 381 

function controls all properties of correntropy. Correntropy is directly related to the probability 382 

of how similar two random variables are in a neighborhood of the joint space controlled by the 383 

kernel bandwidth, i.e., the kernel bandwidth acts as a zoom lens, controlling the observation 384 

window over which similarity is assessed. This adjustable window provides an effective 385 

mechanism to eliminate the detrimental effect of outliers (Liu et al., 2007).  386 

Thus, we adopt 10-fold cross-validation to evaluate the classification accuracy on another 387 

dataset from ADNI 2 with a series of key parameter candidates and select the optimal parameter 388 

setups. The detailed information about the dataset and the key parameter candidates will be 389 

introduced in next section. For the 10-fold cross-validation, we randomly shuffle and split the 390 
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dataset into ten groups. We take one group as the test data set and use the remaining groups to 391 

train a model. Then, the candidate model is evaluated using the test data. In this way, we can 392 

get a predicted class label for all the samples. Then, the output of each classification experiment 393 

is compared to the ground truth, and the accuracy is computed to indicate how many class labels 394 

are correctly identified. The key parameters with the highest classification accuracies are 395 

selected. 396 

Once we get an optimized PASCS-MP model, we can compare the performances of MMS, 397 

volume, and surface area measurements for classifying individuals of different Aβ status. We 398 

use the volume from the left and right hippocampi (i.e., hippocampi in each brain hemisphere) 399 

as two features to train the classifier instead of adding them together. The same classification 400 

strategy is applied to surface areas from both sides. Moreover, we will compare the 401 

classification performances based on PASCS-MP, PASS-MP (Zhang et al., 2017b, 2016b) and 402 

SPHARM (Chung et al., 2008, 2007; Shi et al., 2013a). We evaluate these classification 403 

performances with the same 10-fold cross-validation method. Four performance measures: the 404 

Accuracy (ACC), Balanced Accuracy (B-ACC), Specificity (SPE) and Sensitivity (SEN) are 405 

computed (Bhagwat et al., 2018; Hinrichs et al., 2011; Ritter et al., 2015; Salvatore et al., 2018; 406 

Zhang et al., 2017b). We also compute the area-under-the-curve (AUC) of the receiver 407 

operating characteristic (ROC) (Bhagwat et al., 2018; Fan et al., 2008; La Joie et al., 2013; 408 

Nakamura et al., 2018). By considering these performance measures, we expect the proposed 409 

system integrating MMS, PASCS-MP and the binary random forest classifier to perform better 410 

than similar classification strategies for identifying individuals with different Aβ status. 411 

3. RESULTS 412 

3.1 Key Parameter Estimations for the PASCS-MP Method 413 

To apply PASCS-MP method on hippocampal MMS, four parameters need to be 414 

empirically assigned, namely: the patch size, the dimensionality of the learned sparse coding, 415 

the regularization parameter for the 𝑙1-norm (λ) and the kernel size (𝜎) in the exponential 416 

function. Selecting suitable parameters will lead to superior performance in refining lower 417 
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dimensional MMS representations related to AD pathology. With 10-fold cross-validation, 418 

these key parameters are evaluated from PASCS-MP based classification performance on 109 419 

AD patients and 180 CU subjects of ADNI-2 cohort. To avoid data leakage, these subjects are 420 

not used in the following study of Aβ burden classification.  421 

In Fig. 3, we illustrate the classification accuracy for different values of each parameter. 422 

When we evaluate one parameter, we fix the rest parameters. For example, in the first bar chart 423 

in Fig. 3, we try different patch sizes including 5×5,10×10,15×15,20×20 and 30×30 while we 424 

fix the sparse code dimensionality as to 1800, and set λ to 0.22, and σ to 3.6. By testing varied 425 

sets of parameters, we find that the optimal patch size is 10×10, the optimal sparse code 426 

dimensionality is 1800, the optimal λ is 0.22 and the optimal σ is 3.6 and these optimal 427 

parameters will be adopted in the study of Aβ burden classification.  428 

 

Fig. 3. The relationship of each parameter to classification accuracy. The y-axis represents the value 

for each parameter. The orange bars represent the classification performances using the optimal 

parameters. 

3.2 Classification of Aβ Burden 429 

To explore whether there is a significant gain in classification power with our new system, 430 

based on our surface MMS, we generate two different kinds of sparse codes with our previous 431 

framework (PASS-MP) (Fu et al., 2021; Zhang et al., 2017; Zhang et al., 2016b) and the new 432 

framework (PASCS-MP). The parameter settings for the two sparse coding methods are the 433 

same. Additionally, we apply the popular SPHARM method (Chung et al., 2008; Shi et al., 434 
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2013a) to calculate hippocampal shape features. Based on these three kinds of feature sets, we 435 

apply the random forest classifier to detect individuals with different Aβ status. Moreover, we 436 

also examine the classification performances using hippocampal MMS, surface area and 437 

volume measures. These classification performances are evaluated using ACC, B-ACC, SPE,  438 

Table 2. Classification Results for four contrasts. 439 

Area 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- CU 

(ADNI) 

Aβ+ CU vs. Aβ- CU 

(OASIS) 

ACC 0.68±0.01 0.55±0.02 0.54±0.01 0.47 

B-ACC 0.69±0.02 0.55±0.02 0.54±0.02 0.43 

SPE 0.66±0.02 0.54±0.02 0.55±0.02 0.49 

SEN 0.71±0.03 0.56±0.03 0.53±0.04 0.37 

Volume 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- CU 

(ADNI) 

Aβ+ CU vs. Aβ- CU 

(OASIS) 

ACC 0.71±0.01 0.53±0.02 0.50±0.03 0.51 

B-ACC 0.72±0.01 0.53±0.01 0.50±0.03 0.52 

SPE 0.68±0.01 0.52±0.01 0.51±0.02 0.54 

SEN 0.75±0.01 0.54±0.02 0.49±0.04 0.50 

SPHARM 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- CU 

(ADNI) 

Aβ+ CU vs. Aβ- CU 

(OASIS) 

ACC 0.71±0.02 0.56±0.02 0.52±0.02 0.60 

B-ACC 0.71±0.02 0.56±0.03 0.51±0.04 0.60 

SPE 0.74±0.02 0.61±0.03 0.56±0.03 0.61 

SEN 0.68±0.04 0.51±0.03 0.46±0.05 0.60 

PASS-MP 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- CU 

(ADNI) 

Aβ+ CU vs. Aβ- CU 

(OASIS) 

ACC 0.79±0.01 0.73±0.02 0.71±0.02 0.74 

B-ACC 0.79±0.01 0.73±0.02 0.70±0.03 0.73 

SPE 0.78±0.02 0.75±0.02 0.73±0.03 0.74 

SEN 0.79±0.01 0.72±0.03 0.67±0.03 0.73 

PASCS-MP 
Aβ+ AD vs. 

Aβ- CU 

Aβ+ MCI vs. 

Aβ- MCI 

Aβ+ CU vs. Aβ- CU 

(ADNI) 

Aβ+ CU vs. Aβ- CU 

(OASIS) 

ACC 0.91±0.01 0.89±0.01 0.79±0.02 0.81 

B-ACC 0.91±0.01 0.89±0.01 0.79±0.03 0.80 

SPE 0.91±0.01 0.91±0.01 0.80±0.02 0.82 

SEN 0.90±0.01 0.88±0.01 0.79±0.05 0.79 

Values are mean ± 95% confident interval where applicable. 440 
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SEN. For each binary classification of ADNI cohort, we repeat the 10-fold cross-validation 5 441 

times; the mean and 95% confident interval of the evaluation measures are calculated as 442 

(Vanwinckelen and Blockeel, 2012) and shown in the middle three columns of Table 2. To 443 

further evaluate the performance of our new framework, we firstly generate new representations 444 

with our proposed PASCS-MP for all the CU subjects from ADNI and OASIS cohorts. Then, 445 

we train a binary random forest model on the ADNI dataset and test it with the OASIS dataset. 446 

Since there is no cross-validation here, there is no confident interval in the last column of Table 447 

2. We also compute the area-under-the-curve (AUC) of the receiver operating characteristic 448 

(ROC). The ROC curve and AUC for these classification tasks are illustrated in Fig. 4. This 449 

comparison analysis classification performance shows that the combination of PASCS-MP and 450 

hippocampal MMS measures have superior performance when detecting individuals with 451 

different Aβ status, compared to other similar methods. 452 

 

Fig. 4. ROC curves for the classification tasks, Aβ+ AD vs. Aβ- CU, Aβ+ MCI vs. Aβ- MCI, Aβ+ CU 

vs. Aβ- CU (ADNI), and Aβ+ CU vs. Aβ- CU (OASIS).  
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4. DISCUSSION 453 

In this paper, we propose a novel surface feature dimension reduction scheme, PASCS-MP, 454 

to correlate the hippocampus MMS with different levels of Aβ burden in individual subjects. 455 

We develop a hippocampal structure-based Aβ burden prediction system that involves 456 

hippocampal MMS computing, sparse coding and classification modules. We apply the 457 

proposed system on two independent datasets, ADNI and OASIS. We have two main findings. 458 

Firstly, the hippocampal surface-based MMS measure practically encodes a great deal of 459 

neighboring intrinsic geometry information that would otherwise be inaccessible or overlooked 460 

in classical hippocampal volume and surface area measures. Experimental results show that the 461 

MMS measure provides better classification accuracy than hippocampal volume, surface area 462 

measures and SPHARM for detecting the relationships between hippocampal deformations and 463 

Aβ positivity. Secondly, we propose a novel sparse coding method, PASCS-MP. It has all the 464 

advantages of our previous proposed PASS-MP (Zhang et al., 2016b, 2016a) and improves the 465 

follow-up classification performance compared to PASS-MP.  466 

4.1 Comparison Analysis of Hippocampal MMS, Volume and Surface Area 467 

The hippocampus is a primary target region for studying early AD progression. Its structure 468 

can be measured using the widely used overall hippocampal volume, surface area and our 469 

proposed hippocampal MMS. Our prior studies (Dong et al., 2019; Li et al., 2016; Shi et al., 470 

2011; Wang et al., 2011) show that hippocampal MMS performs robustly in distinguishing 471 

clinical groups at different AD risk levels. In particular, we previously found that hippocampal 472 

MMS can detect APOE4 gene dose effects on the hippocampus during the preclinical stage, 473 

while the hippocampal volume measure cannot (Dong et al., 2019). A study by Wu et al. (2018) 474 

demonstrates that hippocampal MMS performs better than traditional hippocampal volume 475 

measures in classifying 151 Aβ+ AD and 271 Aβ- CU subjects. 476 

This work evaluates the performance of the above three hippocampal measurements for 477 

predicting Aβ status at the individual subject level. Classification results (see Table 2 and Fig. 478 

4) show that hippocampal MMS has better performance as measured by ACC, SPE, SEN and 479 
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AUC. These results validate our hypothesis that hippocampal MMS-based analysis methods 480 

provide improved statistical accuracy than hippocampal volume and surface area measures in 481 

predicting the subjects with different Aβ status in the AD continuum. Our prior work (Wang et 482 

al., 2011) shows that MMS may offer a surrogate biomarker for PET/CSF Aβ biomarkers. This 483 

work further shows it can be used to classify brain Aβ burden on an individual basis. 484 

4.2 Comparative Analysis of PASCS-MP, PASS-MP and SPHARM 485 

The MMS measure for brain structures performs well in clinical group comparisons (Dong 486 

et al., 2020b, 2019; Li et al., 2016; Shi et al., 2015, 2014b; Wang et al., 2013; Yao et al., 2018), 487 

and as we have shown, it has the potential to further be applied for individual Aβ classification. 488 

To achieve this goal, we need to solve the challenge that the MMS dimension is usually much 489 

larger than the number of subjects, i.e., the so-called high dimension, small sample size problem. 490 

A reasonable solution is to reduce the feature dimension. Existing feature dimension reduction 491 

approaches include feature selection (Fan et al., 2005; Jain and Zongker, 1997), feature 492 

extraction (Guyon et al., 2008; Jolliffe, 2002; Mika et al., 1999) and sparse learning methods 493 

(Donoho, 2006; Vounou et al., 2010; Wang et al., 2013). In most cases, information is lost when 494 

mapping data into a lower-dimensional space. By defining a better lower-dimensional subspace, 495 

this information loss can be limited. Sparse coding (Lee et al., 2007; Mairal et al., 2009) has 496 

been previously proposed to learn an over-complete set of basis vectors (also called a dictionary) 497 

to represent input vectors efficiently and concisely (Donoho and Elad, 2003). Sparse coding 498 

has been shown to be effective for many tasks such as image imprinting (Moody et al., 2012), 499 

image deblurring (Yin et al., 2008), super-resolution (Yang et al., 2008), classification (Mairal 500 

et al., 2009), functional brain connectivity (Lv et al., 2017, 2015), and structural morphometry 501 

analysis (Zhang et al., 2017).  502 

Our previous studies (Zhang et al., 2017; Zhang et al., 2016b, 2016a) propose a patch 503 

analysis-based surface sparse-coding and max-pooling (PASS-MP) method, consisting of 504 

sparse coding (Lee et al., 2006; Mairal et al., 2009) and max-pooling (LeCun et al., 2015), for 505 

surface feature dimension reduction. PASS-MP has excellent impressive performance for the 506 
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sparse coding of our MMS features. Our prior studies successfully apply these sparse codes in 507 

detecting individual brain structure abnormalities and obtain state-of-art performance (Dong et 508 

al., 2020a; Fu et al., 2021; Wu et al., 2018). 509 

Even so, there typically exists non-Gaussian and localized sources of noise in surface-based 510 

morphometry features, this can dramatically influence the learned dictionary and further lead 511 

to poor sparse coding based on the loss function of PASS-MP. The correntropy measure is a 512 

very robust method for correcting such sources of noise (He et al., 2012; Liu et al., 2007; 513 

Nikolova and Ng, 2006). In this paper, we improve upon the PASS-MP method by introducing 514 

correntropy measures into the loss function (Gui et al., 2017). Therefore, our proposed sparse 515 

coding method, PASCS-MP, incorporates all the advantages of PASS-MP and meanwhile 516 

improves the classification performance. We also test SPHARM-based hippocampal shape 517 

features as they have frequently been studied in prior AD research (e.g., (Cuingnet et al., 2011; 518 

Gerardin et al., 2009; Gutman et al., 2013)). In such an approach, we use a series of spherical 519 

harmonics to model the shapes of the hippocampus segmented by FSL. The SPHARM 520 

coefficients are computed using SPHARM-PDM (Spherical Harmonics-Point Distribution 521 

Model) software developed by the University of North Carolina and the National Alliance for 522 

Medical Imaging Computing  (Styner et al., 2006). The classification features are based on 523 

these SPHARM coefficients, which are represented by two sets of three-dimensional SPHARM 524 

coefficients for each subject (in fact, one set for the hippocampus in each brain hemisphere). In 525 

Gerardin et al. (2009), they use a feature selection step because the subject groups are much 526 

smaller (fewer than 30 subjects in each group). When the number of subjects is small, the 527 

classifier can be more sensitive to uninformative features. In the current study, the number of 528 

subjects is relatively large, so a feature selection step is less necessary and may increase the 529 

risk of overfitting. We adopt the same approach in Cuingnet et al. (2011), who chose to avoid 530 

this selection step. The classification results (see Table 2 and Fig. 4) based on PASCS-MP, 531 

PASS-MP and SPHARM meet our expectation that the classification performances based on 532 

PASCS-MP have an apparent improvement measured by ACC, B-ACC, SPE, SEN and AUC. 533 

  534 
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4.3 Aβ Burden Prediction using MRI Biomarkers 535 

Aβ accumulation is a major feature of AD neuropathology (Brier et al., 2016; Cummings, 536 

2019). Detecting it early and accurately provides a potential opportunity for effective 537 

therapeutic interventions before the advanced stages of AD (Tosun et al., 2014). Compared to 538 

PET and CSF Aβ measurement techniques, MRI is less expensive (than PET) and less invasive 539 

(than both PET and lumbar puncture). AD-related biomarker studies (Jack et al., 2018; Jack 540 

and Holtzman, 2013; Sperling et al., 2011b) have shown that abnormal brain Aβ accumulation 541 

typically precedes detectable structural brain abnormalities. There is emerging literature using 542 

MRI biomarkers to predict brain Aβ burden, and hippocampal structural measurement is one 543 

of the major predictors (Ansart et al., 2020; Pekkala et al., 2020; Tosun et al., 2016, 2014). 544 

Tosun et al. (2014) applied LASSO penalized logistic regression classifier to MRI-based voxel-545 

wise anatomical shape variation measures and cerebral blood flow measures to predict Aβ 546 

positivity in 67 people with early MCI (34 Aβ+); the classification accuracy was 83%. Ansart 547 

et al. (2020) applied LASSO feature selection and a random forest classifier to MRI- based 548 

cortical thickness and hippocampal volume measures to classify 596 people with MCI scanned 549 

as part of ADNI MCI (375 Aβ+); the AUC was 0.80. Our proposed classification framework 550 

has a higher ACC=89% or AUC=0.90 than each of these two studies (Ansart et al., 2020; Tosun 551 

et al., 2014) for predicting Aβ status in people with MCI. Of the studies predicting Aβ positivity 552 

in CUs, Ansart et al. (2020) applied LASSO feature selection and random forest classifier to 553 

MRI-derived cortical thickness and hippocampal volume measures to classify 431 ADNI CUs 554 

(162 Aβ+) and 318 INSIGHT CUs (88 Aβ+); the AUCs were 0.59 and 0.62, respectively. 555 

Pekkala et al. (2020) used the Disease State Index machine learning algorithm and MRI-based 556 

biomarkers (total cortical and gray matter volumes, hippocampus, accumbens, thalamus and 557 

putament volumes) to predict Aβ burden in 48 CUs (20 Aβ+); the AUC was 0.78. Our proposed 558 

classification framework has AUC=0.78 on 348 ADNI CUs (116 Aβ+) and AUC=0.89 on 260 559 

OASIS CUs (52 Aβ+). Table 3 and Fig. 4 present the AUC or ACC values from this work and 560 

from similar studies predicting Aβ positivity using brain MRI biomarkers. Compared to these 561 

similar studies, our proposed classification system only uses hippocampal structural features 562 
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but still consistently outperforms other recently published methods for predicting Aβ positivity 563 

in people with MCI and CUs. 564 

Table 3. Studies to impute Aβ status from MRI biomarkers in key clinical groups in AD research. 565 

4.4 Limitations and Future Work 566 

Despite the promising results are obtained by applying our proposed Aβ positivity 567 

classification framework, there are two important caveats. First, when applying the PASCS-568 

MP method to refine MMS, we generally cannot visualize the selected features. To some extent, 569 

this decreases the interpretability of the effects, although it is still possible to visualize 570 

statistically significant regions as in our prior group difference studies (Shi et al., 2013b; Wang 571 

et al., 2013). However, in our recent work (Zhang et al., 2018), instead of randomly selecting 572 

Method Subjects (Aβ+/-) MRI Biomarkers ACC AUC 

PASCS-MP-Random 

forest classifier 

(This work) 

342 ADNI MCI 

(171/171) 

Hippocampal 

multivariate 

morphometry statistics 

(MMS) 

0.89±0.01 0.90 

348 ADNI CU 

(116/232) 

0.79±0.02 0.78 

260 OASIS CU 

(52/208) 

0.81 0. 89 

LASSO penalized 

logistic regression 

classifier 

(Tosun et al., 2014) 

67 Early MCI 

(34/33) 

Voxel-wise anatomical 

shape variation 

measures and cerebral 

blood flow (including 

frontoparietal cortical, 

hippocampal regions, 

among others) 

0.83±0.03  

LASSO feature 

selection and 

Random Forest 

classifier 

(Ansart et al., 2020) 

596 ADNI MCI 

(375/221)  

Cortical thickness and 

hippocampal volume 

 0.80 

431 ADNI CU 

(162/269) 

0.59 

318 INSIGHT CU 

(88/230) 

0.62 

Disease State Index 

machine learning 

algorithm  

(Pekkala et al., 2020) 

48 CU (20/28) Total cortical and gray 

matter volumes, 

hippocampus, 

accumbens, thalamus 

and putamen volumes 

 0.78 
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patches to build the initial dictionary, we use group lasso screening to select the most significant 573 

features first. Therefore, the features used in sparse coding may be visualized on the surface 574 

map. In the future, we will incorporate this idea into the PASCS-MP framework to make it 575 

more interpretable. Second, this work only applies hippocampal MMS to predict Aβ positivity. 576 

In future work, we plan to introduce more AD risk factors (such as demographic information, 577 

genetic information and clinical assessments) (Ansart et al., 2020; Pekkala et al., 2020; Tosun 578 

et al., 2014), and more AD regions of interest (ROIs, e.g., ventricles, entorhinal cortex, temporal 579 

lobes) (Brier et al., 2016; Dong et al., 2020b; Foley et al., 2017) into our proposed framework; 580 

these additional features are expected to improve the Aβ positivity prediction.  581 

5. CONCLUSION 582 

In this paper, we explore the association between hippocampal structures and Aβ positivity 583 

on two independent databases using our hippocampal MMS, PASCS-MP method and a random 584 

forest classifier. Compared to traditional hippocampal shape measures, MMS have superior 585 

performance for predicting Aβ positivity in the AD continuum. Besides, the proposed PASCS-586 

MP outperforms our previous sparse coding method (PASS-MP) on refining MMS features. 587 

Compared to similar studies, this work achieves state-of-the-art performance when predicting 588 

Aβ positivity based on MRI biomarkers. In future, we plan to apply this proposed framework 589 

to other AD ROIs and further improve the comprehensibility of the framework by visualizing 590 

morphometry features selected in the classification. 591 
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