
Castillo et al. (2017) previously performed transcriptome analysis on the brains of two 

mouse models of AD: a knock-in model, AppNL-G-F (Saito et al., 2014), and the transgenic 

model 3xTg-AD-H (Oddo et al., 2003). The AppNL-G-F  strain of mice carries a total of six 

mutations in the murine App gene: three mutations that humanise the mouse Aβ sequence, 

plus the Swedish (KM670/671NL), Iberian (I716F) and Artic (E693G) EOfAD mutations (Saito 

et al., 2014). The 3xTg-AD-H model of AD (hereafter referred to as 3xTg) carries the M146V 

EOfAD mutation within the endogenous mouse Psen1 gene, and expresses two transgenes: 

human APP with the Swedish EOfAD mutation, and human MAPT with the P301L mutation. 

Transcription of the transgenes is driven by the mouse Thy1.2 promotor (Oddo et al., 2003).  

The cortices of three male mice of each of these mutant strains (both strains of mice were 

homozygous for their respective mutations/transgenes), as well as wild type APP+/+ and 

non-transgenic (non-Tg) controls, were subjected to microarray analysis at 12 months of age 

using the Affymetrix Mouse Gene 2.0ST Array. All mice used in the study were maintained 

as inbred lines. There is no information on whether any of the mice analysed were 

littermates. It is highly unlikely that the mice used in each comparison between mutant 

individuals and their wild type counterparts all arose from the same litter, because 

obtaining 3 homozygous and 3 wild type male mice in a single litter arising from an in-

crossing of heterozygous mutant mice, (expected to produce a wild type : heterozygote : 

homozygote Mendelian genotype ratio of 1:2:1), would be a rare event as litters of mice 

generally consist of 5 to 10 pups. Therefore, additional variation was introduced into the 

analysis through use of mice from different litters and this is likely confounding with 

genotype. This is important to note, as the results presented here were generated under the 

assumption that any effects of litter of origin are negligible.  

We first obtained the raw microarray data from the GEO database (accession number 

GSE92926). Initially, we attempted to replicate the results of Castillo et al. (2017) using the 

Affymetrix Transcriptome Analysis Console software. However, we were unable to find 

sufficient information to replicate their results. Therefore, we analysed the microarray 

dataset in a reproducible manner by importing the .CEL files for all twelve mice for analysis 



with R (Team, 2019) using the oligo package (Carvalho and Irizarry, 2010). The analysis of 

this dataset is based on the proposed workflow found in (Klaus and Reisenauer, 2018) and 

code to reproduce the analysis can be found at https://github.com/karissa-b/AD-signature/.   

Pre-processing of raw data 

Raw intensities were pre-processed using the robust multichip average (rma) method 

(Irizarry et al., 2003). We next excluded probesets which contained a median log2 intensity 

value of < 3.5 (lowly expressed) and also any probesets assigned to multiple genes as 

recommended by Klaus and Reisenauer (2018). The distribution of the intensity values 

before and after the pre-processing can be found in Figure 1.  

 

Figure 1: A)  Boxplot and B)  density plot of the raw intensity data. C)  Boxplot and D)  

density plot of the intensity data after rma normalisation and fi ltering  for lowly 

expressed and multi-mapping probes.  

https://github.com/karissa-b/AD-signature/


Principal component analysis 

We performed principal component analysis (PCA) to explore the overall similarity between 

samples. Figure 2 below shows the plot of principal component 1 (PC1) against PC2 for each 

microarray sample after pre-processing. Samples separated across PC1 by genotype, 

suggesting that the homozygous genotypes in this study result in distinct transcriptome 

states. Notably, the AppNL-G-F/NL-G-F samples and their corresponding App+/+  control samples 

appear to separate to a greater extent across PC1 than the 3xTg samples and their 

corresponding non-Tg wild type control samples. This suggests that the disturbance to the 

cortex transcriptome in AppNL-G-F/NL-G-F mice is greater than that in 3xTg mice. 

 

Figure 2: Principal component (PC) analysis on rma-processed intensity values.  



Differential Gene Expression Analysis 

To determine which probesets (i.e. genes) are differentially expressed (DE) in each of the 

pairwise comparisons of mutant mice with their respective non-mutant/non-Tg controls, we 

performed differential gene expression analysis with limma (Ritchie et al., 2015). A design 

matrix was generated to specify sample genotypes, while a contrasts matrix was generated 

to specify the pairwise contrasts. We considered a gene to be DE if the FDR-adjusted p-value 

was less than 0.05 (no fold change filter). We identified 158 genes to be differentially 

expressed (DE) in AppNL-G-F/NL-G-F mice relative to App+/+ mice, and 126 genes to be DE in 3xTg 

mice relative to non-Tg wild type controls (Figure 3A, B). Three downregulated genes: Fos, 

Gadd45b, and Nr4a1 and one upregulated gene, Il33, were found to be DE in both forms of 

mutant mice relative to their wild type/non-transgenic counterparts (Figure 3C, D).  



 

Figure 3:  Differential gene expression analysis. A)  Volcano plot and B)  MD plot of the 

changes to gene expression in AppNL - G - F/NL -G - F   and 3xTg mice relative to controls. C)  

Venn diagram showing four genes are identified as differentially expressed (DE) in  

both comparisons. D)  Boxplot of expression values of the four shared DE genes. The 

FDR-adjusted p-values as calculated from the limma analysis are indicated.  

Over-representation analysis 

We next tested whether any KEGG (Kanehisa and Goto, 2000) or IRE (Hin et al., 2020) gene 

sets were significantly over-represented within the DE genes in each comparison using 

kegga (Young et al., 2010). The KEGG gene sets were obtained using the package msigdbr 
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(Dolgalev, 2020), and the IRE (Hin et al., 2020) gene sets, obtained from 

https://github.com/nhihin/ire. We restricted the gene sets to include only genes that had 

been tested for differential expression in the limma analysis. After correcting for multiple 

testing using the Bonferroni method, we found statistical evidence (Bonferroni-adjusted p-

value < 0.05) for two gene sets as significantly over-represented among the DE genes in 

3xTg mice, and 27 gene sets to be significantly overrepresented among the DE genes in 

AppNL-G-F/NL-G-F mice (Figure 4A). No IRE gene sets were found to be significantly enriched 

among either of the DE gene lists. Notably, the enriched DE genes within each gene set in 

the AppNL-G-F/NL-G-F mice appear to be shared across many of the gene sets (Figure 4B). Many 

of these gene sets contain shared DE genes are involved in inflammatory processes, which is 

not unexpected as gliosis has previously been observed to occur in these mutant mice 

(Castillo et al., 2017; Saito et al., 2014). Only the KEGG_LYSOSOME gene set appears to be 

enriched in mostly independent DE genes (which are upregulated) (Figure 4C). In summary, 

enrichment testing within the DE genes suggests that, at 12 months of age, the AppNL-G-F/NL-G-

F mice have a more severe phenotype/transcriptome disturbance than the 3xTg mice (due to 

the larger number of gene sets significantly altered), and this phenotype mostly consists of 

an inflammatory response, and changes to the lysosome.   

 

https://github.com/nhihin/ire
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Figure 4: Over-representation analysis. A)  Pyramid bar plot indicating the number of 

genes in the significantly enriched KEGG and IRE gene sets in AppNL -G - F/NL- G- F   and 3xTg 

mice. Only gene sets with a Bonferroni adjusted p-value from kegga  are shown (and 

are indicated by a black dot). The total number s of genes in these gene sets are shown 

by grey bars, while the number s of significantly differentially expressed genes in these 

gene sets are shown in magenta. B) Upset plot indicating the high degree of overlap of 

DE genes across the significantly enriched gene sets in AppNL - G- F/NL- G -F  mice. C) 

Heatmap of the KEGG_LYSOSOME  gene set indicating the intensity expression values. 

Both rows and columns are clustered according to their Euclidean distance. Genes are 

labelled red if they were found to be differential ly expressed by limma  in AppNL - G- F/NL -

G - F   mice, and the magnitude of logFC is shown in green.  

Ranked list enrichment analysis 

We next obtained a more complete view on the changes to gene expression observed in 

AppNL-G-F/NL-G-F  and 3xTg mice relative to their respective controls by performing three 

methods of rank-based, gene set enrichment analysis: fry (Wu et al., 2010), camera (Wu and 

Smyth, 2012) and GSEA (Sergushichev, 2016; Subramanian et al., 2005). We then calculated 

the harmonic mean p-value (Wilson, 2019) from the raw p-values from each method as 

discussed in (Barthelson et al., 2020). In this analysis, we considered a KEGG or IRE gene set 

to be significantly altered if the Bonferroni-adjusted harmonic mean p-value was less 0.05. 

We observed similar gene sets to be significantly altered using this ranked-list approach to 

the over-representation analysis described above. Additionally, the significance of the gene 

sets is likely being driven by similar genes, as supported by the observed number of the DE 

genes across the gene sets (and to a lesser extent, the leading edge genes from the GSEA 

algorithm) (Figure 5). A summary of whether a gene set is observed to be significantly 

altered in either over-representation analysis or from our ranked-list approach can be found 

in Figure 6.  



 

Figure 5: Ranked-list enrichment testing. A)  Summary of significantly enriched KEGG  

and IRE  gene sets in AppNL- G - F/NL -G - F   and 3xTg mice. Gene sets are coloured according 

to whether they were below the threshold of a Bonferroni-adjusted harmonic mean p-

value of < 0.05. B)  Upset plot indicating the overlap of DE genes across the 

significantly altered gene sets in AppNL - G- F/NL -G - F   mice. C)  Upset plot indicating the 

leading edge genes from the GSEA algorithm in AppNL -G - F/NL - G- F   mice.  
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Figure 6:  Summary of significantly altered gene sets in AppNL - G- F/NL- G -F   and 3xTg mice. 

Gene sets only found to be altered by calculation of the harmonic mean p -value (HMP) 

are shown on the left. Gene sets only found to be altered by over-representation 

analysis (ORA) using kegga  are shown on the right. Gene sets found to be altered in 

both types of enrichment are shown in the middle. Gene sets are coloured according 

to the comparison in which they are significantly altered.  

Changes to cell type proportions are present in AppNL-G-F/NL-G-F  mice 

Castillo et al. (2017) noted an increase in expression of marker genes of astrocytes, 

microglia and oligodendrocytes, while relatively consistent expression of marker genes of 

neurons in AppNL-G-F/NL-G-F  mice. However, only a maximum of 16 genes were used as 

markers of these cell types. Therefore, we inspected larger sets of genes obtained from 

(Cahoy et al., 2008) and (Oosterhof et al., 2017) to assess whether cell type proportions are 

altered in these microarray samples. Using fry with a directional hypothesis, we observed 

statistical evidence for increased expression of marker genes of astrocytes, 

oligodendrocytes and microglia (FDR < 0.05) in AppNL-G-F/NL-G-F  mice, suggesting increased 

abundances of these broad cell types found in the mouse brain (Figure 7). Approximately 

half of the DE genes in the AppNL-G-F/NL-G-F  mice overlap with marker genes of microglia. 



Therefore, a significant proportion of the changes to gene expression we observed in this 

analysis may be artefactual due to increased proportions of microglia in the AppNL-G-F/NL-G-F  

samples.  
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Figure 7:  Proportions of cell types in AppNL - G- F/NL-G - F   mice are altered. A)  Gene set 

testing using fry  on marker gene sets of neurons,  astrocytes and oligodendrocytes 

from (Cahoy et al., 2008) and microglia from (Oosterhof et al., 2017). The black line 

indicates an FDR-adjusted p-value of 0.05. B)  Distribution of intensities of the marker 

genes across genotypes. The boxplots indicate summary statistics. The mean intensity 

value for each genotype is indicated by the red diamonds. To assi st with visualisation 

of the increased expression of marker genes in AppNL -G - F/NL - G- F   mice, the mean 

expression in App+/+   mice is also shown as a black dashed line. C)  Upset plot showing 

the overlap of DE genes found in AppNL - G -F/NL -G - F   (left) and 3xTg (right) mice with the 

cell type marker gene sets.  

Discussion and Conclusion 

In summary, we draw three main conclusions from our re-analysis of the microarray 

transcriptomic data from the cortices of 12 month old male AppNL-G-F/NL-G-F  mice and 3xTg 

mice:  

1) AppNL-G-F/NL-G-F  mice and 3xTg mice show distinct brain transcriptomic disturbances 

relative to controls. 

2) Brain transcriptomes from AppNL-G-F/NL-G-F  mice, when compared to transcriptomes 

wild type mice, show apparent strong inflammatory signals and changes to gene 

expression implicating the lysosome. 

3) A significant factor contributing (artefactually) to apparent disturbances of gene 

expression observed in AppNL-G-F/NL-G-F  mice is likely increased proportions of 

microglia within the cortex samples 

Our re-analysis of the microarray dataset described by Castillo et al. (2017) mostly 

replicated their conclusions. At the single gene level, we found some overlap of DE genes 

with Castillo et al. (2017), and some distinct DE genes (data not shown). This is likely due to 

different approaches used in pre-processing of the raw data and testing for differential gene 

expression. However, at the pathway (i.e. gene set) level, both analyses predict similar 

processes to be affected in each mouse model.  



We also observed highly significant upregulation of genes involved in lysosome function in 

AppNL-G-F/NL-G-F  mice but not in 3xTg mice.  Changes to the lysosomal network have been 

observed previously in AppNL-G-F/NL-G-F  mice at a young age at the protein level (Whyte et al., 

2020), supporting the validity of this result. The Iberian mutation of APP present in AppNL-G-

F/NL-G-F  mice has been shown to increase levels of the C99 fragment of APP (Guardia-

Laguarta et al., 2010), which would impair acidification of the endo-lysosomal system (Jiang 

et al., 2019), and likely result in an intracellular ferrous iron deficiency, mitochondrial 

dysfunction and inflammation (Yambire et al., 2019). We did not observe any evidence for 

mitochondrial dysfunction or iron dyshomeostasis in this dataset. However, we suspect that 

these signals may be lost in the noise due to sample litter-of-origin issues and the strong 

inflammatory signal.  

From this dataset, it appears that the AppNL-G-F/NL-G-F  mice have a more severe phenotype 

than the 3xTg mouse at 12 months of age. This is unexpected, as the more extensive 

genomic differences of the 3xTg mice relative to AppNL-G-F/NL-G-F  mice, would, in a simplistic 

view, be thought to affect more cellular processes. Indeed, 3xTg mice show cognitive 

impairment from 4 months age (Billings et al., 2005), while AppNL-G-F/NL-G-F  mice do not show 

cognitive impairment until 6 months of age (Mehla et al., 2019). However, the memory 

impairments at 12 months of age appeared to be most severe in AppNL-G-F/NL-G-F  mice (Mehla 

et al., 2019), which would imply that the effects on cellular processes are also more severe 

at this age.  

Notably, the comparisons made in this microarray analysis between the AppNL-G-F/NL-G-F  and 

App+/+  mice observed the compounded effects of homozygosity for 6 mutations 

simultaneously. An interesting future experiment could entail comparison of the AppNL-G-F/NL-

G-F  mice to mice carrying only the humanised Aβ sequence (i.e. (Serneels et al., 2020)) to 

assist with identification of changes to the transcriptome due specifically to the EOfAD 

mutations in this knock-in mouse model. Finally, the inclusion of three EOfAD mutations in 

APP within the same animal is of questionable relevance to the genetic state of human 

EOfAD. Therefore, the results presented here are not ideal for comparison with the 

transcriptome changes observed in our heterozygous, single knock-in mutation zebrafish 



models. The AppNL  mouse model carries only the Swedish APP EOfAD mutation within the 

humanised Aβ sequence (Saito et al., 2014). A brain transcriptome analysis of young (3 or 6 

months of age) heterozygous AppNL mice, relative to mice carrying only the humanised Aβ 

sequence, would not require the generation of new mouse mutants and would provide data 

more comparable with that already available from our studies using zebrafish.  
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