
  

Possession of the ε4 allele of apolipoprotein E (APOE) is the greatest genetic risk factor for 

development of sporadic, late-onset Alzheimer’s disease (LOAD). Homozygosity for the ε4 

allele increases an individual’s risk at least 9-fold relative to the common, ε3 allele 

(depending on sex and ethnicity) (Farrer et al., 1997). There is also an ε2 allele of APOE, 

which is protective against development of AD (Farrer et al., 1997). To understand the 

effects of the different alleles of APOE, targeted replacement mice have been developed 

expressing humanised ε2, ε3, or ε4 alleles from the mouse Apoe locus (APOE-TR) (Sullivan et 

al., 1997). 

Zhao et al. (2020) performed an RNA-seq experiment investigating the effect of APOE 

genotype, age (3, 12 and 24 months of age) and sex in APOE-TR homozygous mice. In that 

analysis, pairwise comparisons between the ε2, or ε4 alleles relative to the ε3 allele were 

not conducted at each age and sex. Only genes/pathways which were influenced overall by 

APOE genotype, age, sex , and interactions between these factors was reported. We are 

interested in the cellular processes implicated as affected by AD-causative mutations in 

young brains. Therefore, here we will re-analyse the RNA-seq dataset from Zhao et al. to ask 

which processes are affected by homozygosity for the ε2, or ε4 alleles relative to the ε3 

allele of APOE in the brains of three and twleve month old mice. Throughout this analysis, 

we refer to these homozygous mice as “APOE2”, “APOE3” and “APOE4”.  

RNA-seq data processing 

We first obtained the raw fastq files for the entire APOE-TR RNA-seq experiment from AD 

Knowledge Portal (accession number syn20808171,  

https://adknowledgeportal.synapse.org/). The raw reads were first processed using 

AdapterRemoval (version 2.2.1) (Schubert et al., 2016), setting the following options: --

trimns, --trimqualities, --minquality 30, --minlength 35. Then, the trimmed reads were 

aligned to the Mus musculus genome (Ensembl GRCm38, release 98) using STAR (version 

2.7.0) (Dobin et al., 2013) using default parameters. The gene expression counts matrix was 

generated using featureCounts (version 1.5.2) (Liao et al., 2014). We only counted the 

number of reads which uniquely aligned to, strictly, exons with a mapping quality of at least 

10 to predict expression levels of genes in each sample.  

https://adknowledgeportal.synapse.org/


  

We then imported the output from featureCounts (Liao et al., 2014) for analysis with R 

(Team, 2019). We first omitted genes which are lowly expressed (and are uninformative for 

differential expression analysis). We considered a gene to be lowly expressed if it contained, 

at most, 2 counts per million (CPM) in 8 or more of the 24 samples we analysed. The effect 

of filtering lowly expressed genes is found in Figure 1 below.  

Figure 1:  The density of the log counts per million (logCPM) values detected in 3 
month old mouse brain samples is shown before filtering in A , then after omitting 
samples with a logCPM of < 2 in at least one third of the samples in B .  

Assessment of expression of genes from the Y-chromosome to confirm sex. 

We then confirmed the sex of each mouse by examination of the expression of genes from 

the Y-chromosome. Sample APOE_3M_21 appears to be a male sample as it expresses 

genes from the Y chromosome. Samples  APOE_3M_30 and APOE_3M_7 appear to be 

female as they do not express genes from the Y-chromosome (Figure 2). This was 

subsequently corrected for the rest of the analysis. 



  

 

Figure 2: A)  Boxplots showing the distribution of expression of male-specific genes 
(located on the Y-chromosome) in the cortex of 3 month old APOE -TR mice, grouped 
by initial sex.  B)  Expression of male-specific genes after correcting the sex of the 
samples.  

  



  

Principal component analysis 

We next performed principal component analysis (PCA) to explore whether APOE genotype 

results in stark differences to the brain transcriptome at 3 months of age. A plot of principal 

component 1 (PC1) against principal component 2 (PC2) revealed that samples separated 

into two distinct clusters of sex across PC2 (Figure 3A). This suggests that the effect of sex 

on the murine brain transcriptome is substantial and cannot be ignored in the differential 

gene expression analysis. Among the male samples, APOE4 samples form a distinct cluster 

from the APOE2 and APOE3 samples, suggesting that the APOE4 genotype has a distinct 

effect on the transcriptome compared to APOE2 relative to APOE3 in males. This is not 

observed to the same extent in the female samples. However, the male APOE4 and APOE3 

samples appeared to arise mostly from single litters, as implied from the date-of-birth of 

each sample (Figure 3B).  

 

Figure 3: Principal component analysis.  A  shows principal component 1 (PC1) against 
PC2. The numbers between parentheses indicate the percentage of variation in the 
dataset that PC explains. Each point represents a sample, which is coloured by APOE  
genotype, and shaped by sex. B  also shows PC1 against PC2. However, each point is 
coloured by litter (implied from the date-of-birth of each mouse), and shaped by APOE  
genotype.  

From Figure 3B, we observed that some experimental groups of samples (i.e. the male 

APOE3 and male APOE4 samples) appeared to arise mostly from single litters of mice. This is 

confounding with the effect of genotype and complicates interpretation of whether any 



  

effects observed in a pairwise contrast between male APOE3 and APOE4 mice are due to 

APOE genotype or litter-of-origin (or, most likely, both). Indeed, 𝝌2 tests for independence 

revealed that there is a highly significant dependence of APOE genotype and litter across 

the entire 3-month-old dataset (𝝌2= 82.7, df = 20, p-value = 1.4e-09), only within male 

samples (𝝌2= 43.1, df = 14, p-value = 8.2e-05) and only within female samples (𝝌2= 39.3, df 

= 14, p-value = 3.0e-04). Some litters did not contain sufficient mice to remove the effect 

(i.e. some coefficients could not be estimated during the generalised linear model fitting 

procedure due to the design matrix not having full rank). Therefore, we continued the 

analysis assuming that the effect of litter is negligible.  

Initial differential gene expression analysis 

To determine which genes were dysregulated in APOE4 and APOE2 mice relative to APOE3, 

we performed a differential gene expression analysis using a generalised linear model and 

likelihood ratio tests using edgeR (McCarthy et al., 2012; Robinson et al., 2009).  We chose a 

design matrix which specifies the APOE genotype and sex of each sample. The contrasts 

matrix was specified to compare the effect of APOE2 or APOE4 relative to APOE3 in both 

males and females. In this analysis, we considered a gene to be differentially expressed (DE) 

if the FDR-adjusted p-value was < 0.05. Many genes were found to be DE in each 

comparison, particularly in male APOE4 mice (Figure 4A). Additionally, the bias for GC 

content and gene length for differential expression noted by Zhao et al. in the original 

analysis was also apparent (Figure 4A, B).  
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Figure 4: Initial differential expression analysis . A)  Bar chart showing the number of 
differentially expressed genes (DE) in each comparison of the APOE4 or APOE2 
genotype to APOE3. B)  A ranking statistic per gene was calculated as the sign of the 
logFC multiplied by the negative log10 of the p -value from the likelihood ratio tests in 
edgeR . This was plotted against a weighted (by transcript length) average %GC 
content per gene and C)  average transcript length. The blue g eneralised additive 
model fit (gam) lines are not centred on 0, indicating a bias.  

Conditional quantile normalisation 

A gene length bias for differential expression has been shown to influence the results of 

gene set enrichment analyses (Mandelboum et al., 2019). Therefore, to correct for the 



  

observed bias for gene length (and GC content), we used conditional quantile normalisation 

(cqn) (Hansen et al., 2012). We calculated the average transcript length per gene, and a 

weighted (by transcript length) average %GC content per gene as input to cqn to produce 

the offset to correct for the bias. This offset was then included in an additional generalised 

linear model and likelihood ratio tests in edgeR with the same design and contrast matrices. 

In these tests, many genes were identified as DE and the bias for %GC and gene length had 

improved. A gene length bias was still present in male APOE4 and female APOE2 

comparisons to APOE3. However, these were only observed due to a small number of long 

gene transcripts and likely can be ignored.  

 

A 



  

 

Figure 5:  Differential gene expression analysis after cqn . A)  Number of genes 
identified to be differentially expressed (DE) after cqn . B)  Improvement of observed 
bias between %GC content and C)  gene length for differential expression after cqn . 
The remaining bias for transcript length in the female APOE2 and male APOE4 
comparisons appear to be only driven by a small number of genes.  D)  Volcano plots 
and E)  mean difference (MD) plots of the changes to gene expression observed due to 
homozygosity for the APOE4 or APOE2 alleles relative to APOE3 in male and female 
mice. The limits of the x-axis in D)  and the y-axis in E)  are constrained to -2 and 2, and 
of the y-axis in D)  to between 0 and 20, for visualisation purposes.   



  

Enrichment analysis 

We next tested for over-representation of the KEGG (Kanehisa and Goto, 2000) and IRE (Hin 

et al., 2020) gene sets within the DE gene lists using goseq (Young et al., 2010), using the 

average transcript length per gene to calculate the probability weighting function (PWF). 

After correction for multiple testing using the FDR, we observed a total of three gene sets to 

be significantly enriched in any of the DE gene lists. Two of these KEGG gene sets were 

enriched in the DE genes for male APOE4 mice: KEGG_CALCIUM_SIGNALING_PATHWAY 

(pFDR = 0.03) and KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION (pFDR = 0.04). 

Approximately one third of the DE genes in each of these gene sets are shared, indicating 

that the enrichments of these gene sets are driven partially by the same genes (Figure 6).  
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Figure 6:  Enrichment analysis within the lists of differentially expressed genes. A)  
Upset plot indicating the overlap of DE genes in male APOE4 samples for the 
significantly enriched gene sets. B)  Pathview (Luo et al., 2017) visualisation of the 
logFC in male APOE4 samples for the KEGG_CALCIUM_SIGNALING_PATHWAY gene set 
and C)  KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION  gene set.  

Additionally, the gene set KEGG_STEROID_BIOSYNTHESIS was found to be significantly 

enriched among the female APOE2 DE genes (pFDR = 1e-5). This gene set appears to be 

downregulated (Figure 7). 

 

Figure 7:  Pathview visualisation indicating the logFC of genes in the 
KEGG_STEROID_BIOSYNTHESIS  gene set in female APOE2 mice.  

Over-representation analysis using goseq relies on a hard threshold for a gene to be 

classified as DE. Therefore, information may be missed, i.e. genes which are highly ranked in 

terms of differential expression, but do not reach the threshold of FDR < 0.05. Therefore, to 

obtain a more complete view of the changes to gene expression in APOE4 or APOE2 mice 

relative to APOE3 mice, we performed enrichment analysis on the entire list of detectable 

genes using three methods of rank-based gene set enrichment analysis with different 

statistical methodologies: fry (Wu et al., 2010), camera (Wu and Smyth, 2012) and GSEA 



  

(Subramanian et al., 2005) (implemented in the fgsea R package (Sergushichev, 2016)). We 

then combined raw p-values from each method to obtain an overall significance value by 

calculation of the harmonic mean p-value (Wilson, 2019) (a method which has been shown 

specifically to be robust to combining dependent p-values). After FDR adjustment of the 

harmonic mean p-value, we observed 73 gene sets to be significantly altered (FDR adjusted 

harmonic mean p-value < 0.05) in male APOE4 mice, 5 gene sets in male APOE2 mice, 30 

gene sets in female APOE4 mice, and 30 gene sets in female APOE2 mice. This appears to be 

a considerable number of significantly altered gene sets, especially for young mice carrying 

mutations associated with LOAD. However, these effects are likely driven by both APOE 

genotype and litter-of-origin (Figure 5). Therefore, to simplify interpretation, we considered 

a gene set to be altered significantly if the FDR-adjusted harmonic mean p-value was < 0.01, 

which represents the most significantly altered pathways (as these are likely to have the 

largest effect of genotype). The statistical significance values of the gene sets are mostly 

driven by distinct expression signals, as shown by the lack of overlap of the DE genes found 

in the significantly altered gene sets (with the exception of the KEGG gene sets for oxidative 

phosphorylation and Parkinson’s disease, which share 14 DE genes).  
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Figure 8:  Ranked-list gene set enrichment testing. A)  Heatmap indicat ing gene sets 
with a FDR-adjusted harmonic mean p-value < 0.01 in APOE-TR mice at 3 months of 
age. Gene sets of interest are highlighted with a red box.  Note that no gene sets were 
found to contain an FDR-adjusted harmonic mean p-value of < 0.01 in male APOE2 
mice. B)  Upset plots indicating the overlap of DE genes across the gene sets which 
were calculated to have a FDR-adjusted harmonic mean p-value < 0.01 in APOE-TR 
mice.  

As described in the main text, the KEGG_OXIDATIVE_PHOSPHORYLATION gene set was the 

only gene set to be affected by all the EOfAD-like mutations in our zebrafish models and not 

by non AD-relevant mutations. In APOE-TR mice, statistical evidence was observed for this 

gene set to be altered in male APOE4 mice (Table 1). The overall direction of logFC of genes 

in the KEGG_OXIDATIVE_PHOSPHORYLATION gene set was up in the male APOE4 mice 

(although some genes of the gene set were downregulated) (Figure 9).  

Table 1: Significance of the KEGG_OXIDATIVE_PHOSPHORYLATION gene set in young 
APOE-TR mice.  

Sex APOE FDR-adjusted harmonic mean p-value 

Male 
APOE4 0.00948 
APOE2 0.794 

Female 
APOE4 0.794 

APOE2 0.248 

 



  

 

Figure 9:  Changes to the KEGG_OXIDATIVE_PHOSPHORYLATION  gene set in young 
APOE-TR mice.  

Additionally, the KEGG_RIBOSOME gene set was found to be altered in common by EOfAD-

like (and non-EOfAD-like) mutations in our zebrafish models. This gene set was found to be 

highly significantly altered in both male and female APOE4 mice and not in APOE2 mice 

(Figure 8A). The genes in this gene set appear to be mostly upregulated in APOE4 mice, and 

are both upregulated or downregulated in APOE2 mice.  

logFC in male APOE4 logFC in female APOE4

logFC in female APOE2logFC in male APOE2



  

 

Figure 10:  The columns in the heatmap represent a gene in the KEGG_RIBOSOME  gene 
set, while the rows indicate the comparisons between APOE -TR mice in the 
differential expression analysis. The colour of s cell represents the logFC of a 
particular gene, and the genes are labelled in green above if they were classified as 
differentially expressed (FDR < 0.05) in the differential gene expression analysis in a 
particular comparison.  

The KEGG_MTOR_SIGNALING_PATHWAY gene set was observed to be significantly altered 

in both male and female APOE4 mice. No clear direction of change is evident, as both up- 

and down-regulation of genes in this pathway is observed (Figure 11). 



  

 

Figure 11: Changes to the KEGG_MTOR_SIGNALING_PATHWAY  gene set in young 
APOE4 mice. 

Cell type proportions 

We next assessed whether changes to gene expression observed in young APOE-TR mice are 

due to changes to cell type proportions as described in Supplementary File 2. We observed 

a slight decrease in expression values of neuronal marker genes in female APOE2 mice, and 
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logFC in female APOE4



  

increased expression of marker genes of oligodendrocytes and astrocytes in male APOE4 

mice, suggesting that the overall changes to gene expression observed in these mice may be 

driven partially by differences in cell type proportions (Figure 12).  

 

 

Figure 12: A)  Significance of gene set testing from fry  with a directional hypothesis of 
gene sets consisting of marker genes of neurons,  astrocytes and oligodendrocytes 
from (Cahoy et al., 2008) and microglia from (Oosterhof et al., 2017). B)  Distribution 
of expression (logCPM) of these cell type marker genes in APOE -TR mice. Boxplots 
show the summary statistics, while the violin plots summarise the density of logCPM 
expression values. The mean of each experimental group is shown by the red 
diamonds, and the mean of the APOE3 expression v alues is shown by black dashed 
lines.  



  

Discussion and conclusion 

In conclusion, our re-analysis of the comprehensive study of Zhao et al. (2020) predicts 

many cellular processes to be affected in young APOE-TR mice. However, sources of 

external variation may be contributing to the observed effects (i.e. litter-of-origin, changes 

to cell type proportions and possibly gene length). Importantly, the specific changes to gene 

expression observed in our zebrafish models of EOfAD are observed to be altered in APOE4 

mice (KEGG_RIBOSOME in both males and females, and 

KEGG_OXIDATIVE_PHOSPHORYLATION only in males). However, replication of this study is 

desirable, particularly with modifications to compensate for the litter-of-origin confounding 

effect, to confirm that these effects are due to APOE genotype.   
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