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Materials and Methods 

 

2.1 Participants 

We initially enrolled 58 young adults (male 32 / female 26, mean age ± SD was 30.72 ± 11.58). 

All participants were right-handed and native Italian speakers. The inclusion criteria were: 1) 

no major internal, neurological or psychiatric illnesses; 2) no use of drugs or medication that 

could interfere with MEG/MRI signals. The study complied with the Declaration of Helsinki 

and was approved by the local Ethics Committee. All participants gave written informed 

consent. 

 

2.2 MRI acquisition 

3D T1-weighted brain volumes were acquired at 1.5 Tesla (Signa, GE Healthcare) using 

a 3D Magnetization-Prepared Gradient-Echo BRAVO sequence (TR/TE/TI 8.2/3.1/450 ms, 

voxel 1 × 1 × 1 mm3, 50% partition overlap, 324 sagittal slices covering the whole brain). The 

MRI scan was performed after the MEG recording. 

 

2.3 Tractography analysis 

 

A subject-specific connectome was obtained in all subjects on the same MRI scanner (1.5 

Tesla, Signa, GE Healthcare). DTI preprocessing was carried out using the software modules 

provided in the FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl). All DTI datasets 

were corrected for head movements and eddy currents distortions using the "eddy_correct" 

routine, rotating diffusion sensitizing gradient directions accordingly, and a brain mask was 

obtained from the B0 images using the Brain Extraction Tool routine. A diffusion-tensor model 

was fitted at each voxel, and fiber tracks were generated over the whole brain by deterministic 

tractography using Diffusion Toolkit (FACT propagation algorithm, angle threshold 45°, 

spline-filtered, masking by the FA maps thresholded at 0.2). For tractographic analysis, the 

ROIs of the AAL atlas and of a MNI space-defined volumetric version  of the  Desikan-

Killiany-Tourville (DKT) ROI atlas were used, both masked by the GM tissue probability map 

mailto:pierpaolo.SORRENTINO@univ-amu.fr


available in SPM (thresholded at 0.2). To this end, for each participant, FA volumes were 

normalized to the MNI space using the FA template provided by FSL, using the spatial 

normalization routine available in SPM12, and the resulting normalization matrices were 

inverted and applied to the ROIs, to apply them onto each subject. The quality of the 

normalization was assessed visually. From each subject's whole brain tractography and 

corresponding GM ROI set, the number of streamlines connecting each couple of GM ROIs 

and the corresponding mean tract length was calculated using an in-house software written in 

Interactive Data Language (IDL, Harris Geospatial Solutions, Inc., Broomfield, CO, USA).  

Connectomes in the replication dataset were constructed using an alternative mapping pipeline 

and high-quality diffusion MRI data from the Human Connectome Project (HCP). 

Deterministic tractography was performed using MRtrix3 (1) under the following parameters: 

FACT algorithm, 5 million streamlines, 0.5 mm propagation step size, 400 mm maximum 

propagation length, and 0.1 FA threshold for the termination of streamlines (2)Structural 

matrices were constructed 200 HCP participants using the AAL atlas and averaged to derive a 

group-level connectome. 

 

 

 

2.5 Acquisition 

 The data were acquired using a MEG system equipped by 154 magnetometers (SQUID  

- Superconducting Quantum Interference Device) placed as close as possible to the head of the 

subjects, and 9 references sensors in order to record the environmental noise (3). The system 

is placed in a magnetically shielded room (AtB Biomag, Ulm, Germany) to reduce the external 

noise. The MEG registration was split into two eyes-close segment of 3 minute and half. To 

identify the right position of the head within the helmet, before each recording, the position of 

four anatomical points (nasion, right and left pre-auricular points and vertex of the head) and 

four coils (two attached on the forehead, one behind the right ear and one behind the left ear) 

were digitized by using  Fastrak (Polhemus®). The coils were activated at the beginning of  

each segment of the registration. Electrocardiogram (ECG) and electro-oculogram (EOG) were 

also recorded during the acquisition (4).   

 

2.6 Preprocessing  

 The MEG signals, after an anti-aliasing filter, were acquired at 1024 Hz, then a fourth 

order Butterworth IIR band-pass filter in the 0.5-48 Hz band was applied (5). To remove the 

environmental noise, measured by reference magnetometers, we used Principal Component 

Analysis (6), while we adopted Independent Component Analysis (7) to clean the data from 

physiological artifacts, such as eye blinking (if present) and heart activity (generally one 

component). Noisy channels were identified and removed manually by an expert rater (8). 47 

subjects had enough clean data and were selected for further analysis. 

 

2.7 Source reconstruction 

 The time series of neuronal activity were reconstructed in 116 regions of interests 

(ROIs) based on the Automated Anatomical Labeling (AAL) atlas (9, 10); and in 84 regions of 

interest based on the Desikan-Killiany-Tourreville (DKT) atlases. To do this, we used the 

volume conduction model proposed by Nolte (11) applying the Linearly Constrained Minimum 

Variance (LCMV) beamformer algorithm (12) based on the native MRIs. Sources were 

reconstructed for the centroids of the each ROI. Finally, we considered a total of 90 ROIs since 

we have excluded 26 ROIs corresponding to the cerebellum because of their low reliability in 

MEG (13). All the preprocessing steps and the source reconstruction are made using the 

Fieldtrip toolbox (14).  



 

2.8 Neuronal avalanches and branching parameter 

 To study the dynamics of brain activity, we estimated “neuronal avalanches”. Firstly, 

the time series of each ROI was discretized calculating the z-score, then positive and negative 

excursions beyond a threshold were identified. The value of the threshold was set to 3 standard 

deviations (|z|  = 3), but we tested the robustness of the results changing this threshold from 2.5 

to 3.5. A neuronal avalanche begins when, in a sequence of contiguous time bins, at least one 

ROI is active (|z| >3), and ends when all ROIs are inactive (15, 16). The total number of active 

ROIs in an avalanche corresponds to its size.  

These analyses require the time series to be binned. This is done to ensure that one is capturing 

critical dynamics, if this is present. To estimate the suitable time bin length, for each subject, 

for each neuronal avalanches and for each time bin duration, the branching parameter σ was 

estimated (17, 18). In fact, system operating at criticality typically display a branching ratio ~1. 

The branching ratio is calculated as the geometrically averaged (over all the time bins) ratio of 

the number of events (activations) between the subsequent time bin (descendants) and that in 

the current time bin (ancestors) and then averaging it over all the avalanches (19). More 

specifically: 
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Where 𝜎𝑖 is the branching parameter of i-th avalanche in the dataset, 𝑁𝑏𝑖𝑛 is the total amount 

of bins in the i-th avalanche, 𝑛𝑒𝑣𝑒𝑛𝑡𝑠 (𝑗) is the total number of events active in the j-th bin, 

𝑁𝑎𝑣𝑎𝑙 is the total number of avalanche in the dataset. We tested bins from 1 to 5, and picked 3 

for further analyses, given that the branching ratio was 1 for bin =3. However, results are 

unchanged for other bin durations (data not shown). The results shown are derived when taking 

into accounts avalanches longer than 10 time bins. However, we repeated the analysis taking 

into account avalanches longer than 30 time bins, as well as taking all avalanches into account, 

and the results were unchanged. 

 

 

2.9 Randomization procedure 

 

To validate our results, we used a null model based on the assumption that the topological 

organization of the connectome does not affect the spreading of activations in time. Hence, 

every avalanche, for every subject, was randomized in time (i.e. the order of the time bins was 

reallocated randomly, while the spatial ordering of the activations (i.e. across regions) was left 

unchanged). A surrogate transition matrix was computed per each surrogate avalanche. These 

surrogate transition matrices were then averaged within each subject and then across subjects. 

The resulting group surrogate matrix was then symmetrized and compared to the structural 

connectome obtained as the average of the subject specific tractographies using Spearman rank 

correlation. The procedure described above was repeated a thousand time, retrieving a null 

distribution of r’s and p’s of the Spearman correlations. These distributions were then 

compared to the observed p and r. 

 

 

 



Results 
 

3.1 Alternative estimation of Transition Matrices. 

 

To further rule out the possibility that the transition matrix is an effect of volume conduction, 

we built the transition matrix using an alternative procedure, which maximizes consecutive 

lags between consecutive activations. To this end we checked, once an avalanche started (i.e. 

some regions were above threshold), what other regions followed, regardless of the time lag. 

In other words, we did not scroll along the time of the avalanche to compute a probability of 

activation, but we simply noted what regions activated after the first perturbation. This way, 

the delays accounted for were up to the length of the avalanche itself. This procedure was 

carried out for the AAL atlas, in the case of binning =3, z-score threshold = ± 3.  

As shown in Supplementary figure 1, we were able to replicate the results using this alternative 

procedure to map transition matrices, further suggesting that the impact of volume conduction 

is an unlikely confound.     

 

 
 

 

3.2 Frequency – specific analysis 

 

To explore if any frequency-specific effect was evident, we carried out the analysis after 

filtering the reconstructed signals in the classical frequency bands: delta (0.5 – 4 Hz), theta (4 

– 8 Hz), alpha (8 – 13 Hz), beta (13 – 30 Hz) and gamma (30 – 48 Hz). To this end, we applied 

a fourth-order Butterworth pass-band filter, before proceeding to the further analysis as 

previously described. The results remained significant in all the explored frequency bands. This 

analysis was carried out for the DKT atlas, binning = 3, z-score   threshold = ± 3. 

 

 R p 

Delta (0.5 – 4 Hz) 0.39 2.07e-88 

Theta (4 – 8 Hz) 0.29 4.95e-70 

Alpha (8 – 13 Hz) 0.32 2.11e-84 

Beta (13 – 30 Hz) 0.32 7.23e-88 

Gamma (30 – 48 Hz)          0.32 3.84e-88 
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