
 1

mRNA codon optimization on quantum computers

Dillion M. Fox1, Kim M. Branson2, Ross C. Walker1,3*

1Data and Computational Science, Medicinal Sciences and Technology, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, PA,

19426, USA

2Artificial Intelligence and Machine Learning, Medicinal Sciences and Technology, GlaxoSmithKline, 1250 S. Collegeville Rd,

Collegeville, PA, 19426, USA

3Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92130, USA

*Email: ross.c.walker@gsk.com

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 2

Abstract

Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-

hard combinatorial optimization problem. Each amino acid in the protein sequence can

be represented by as many as six codons, and the process of selecting the combination

that maximizes probability of expression is termed codon optimization. This work

investigates the potential impact of leveraging quantum computing technology for codon

optimization. An adiabatic quantum computer (AQC) is compared to a standard genetic

algorithm (GA) programmed with the same objective function. The AQC is found to be

competitive in identifying optimal solutions and future generations of AQCs may be able

to outperform classical GAs. The utility of gate-based systems is also evaluated using a

simulator resulting in the finding that while current generations of devices lack the

hardware requirements, in terms of both qubit count and connectivity, to solve realistic

problems, future generation devices may be highly efficient.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 3

Introduction

Protein sequences can be encoded by an enormous multitude of possible

nucleotide sequences. The degenerate mapping between amino acids and synonymous

codons entails an exponential relationship between the number of potential nucleotide

sequences and the length of the polypeptide chain. However, different nucleotide

sequences encoding the same protein may exhibit dramatically different outcomes in

expression systems.1–4 Furthermore, recent studies have shown that codon selection

can impact downstream processes such as protein folding and function,1–3 which is

particularly important for use-cases such as recombinant protein therapies.5

Codon optimization is a procedure designed to increase gene expression based

on a heuristic scoring function6 with many scoring functions having been proposed.7–10

Some of the more common scoring functions seek to optimize the fraction of G and C

bases,11–15 match the codon usage bias of the host expression system,16–21 and/or

attempt to disrupt the formation of mRNA secondary structure.7,17,22 The vast solution

space is most commonly sampled using genetic algorithms (GA) that seek to evolve

solutions by introducing synonymous codon mutations and propagating favorable

substitutions through generations.12,16,20,23–25 However, other methods have been

proposed.18,26,27 While classical approaches such as GAs can be highly performant, the

fraction of solution space that is sampled in a fixed number of iterations decreases

exponentially as the polypeptide chain length grows. Thorough sampling of the solutions

space is therefore often intractable with biologically relevant use-cases. In this study we

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 4

investigate the viability of programming quantum computers to efficiently identify high-

quality solutions scored with arbitrary objective functions.

 Recent advances in quantum information science and technology have

elucidated the potential for quantum devices to outperform classical devices in a narrow

range of applications.28,29 Among these, certain types of combinatorial optimization

problems are among the most promising for near-term advantage.30 The field of

quantum computing is developing rapidly in terms of both hardware and algorithms.

Each type of quantum computing technology offers a unique set of strengths and

weaknesses, and applications are often tailored to compliment the strengths of each

device. While there are many physical realizations of quantum technologies, we focus

on two markedly different models; adiabatic quantum computers (AQC) and gate-based

quantum computers.

 AQCs, sometimes referred to as quantum annealers, are most commonly used to

solve high-dimensional combinatorial optimization problems.31–33 For example, a recent

study showed that protein design, which requires combinatorial optimization of

rotomeric states, can be accelerated with an AQC.34 Current implementations of AQCs

offer nearly two orders of magnitude more qubits than state of the art gate-based

devices, offering the potential to address realistic sized problems. The general class of

AQC algorithms are classified as metaheuristic methods for solving local optimization

problems in multivariate spaces.31 These approaches are similar to simulated annealing

but exploit the phenomena of quantum tunneling, instead of thermal activation, to hop

out of local energetic minima.35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 5

An alternative quantum computing technology, and the technology that was

recently used to demonstrate quantum supremacy,28,29 centers on gate-based

instructions. Current generations of non-error corrected hardware, termed Noisy

Intermediate Scale Quantum (NISQ),36 can be programmed to solve combinatorial

optimization problems using variational methods such as the Quantum Approximate

Optimization Algorithm (QAOA).37 Gate based quantum computers are presently,

however, less mature than AQCs and even the most capable devices to date lack the

number of qubits and connections between qubits needed to solve realistic

combinatorial optimization problems. As the technology matures however there is an

expectation that qubit count and connections between qubits will improve substantially.

There is also the expectation that error rates will decrease, and general-purpose error

correction may become possible. Developing and testing suitable algorithms ahead of

the technology development curve is thus a worthwhile endeavor and it is therefore

common practice to utilize simulators, running on classical computing hardware, to

permit evaluation of quantum algorithmic functions in the absence of real-world

hardware to evaluate performance on.

Designing novel algorithms to execute on quantum devices requires deep expert

knowledge of the devices, quantum information science, and quantum software stacks.

However, there are a few classes of ubiquitous problems that are readily solvable using

tools built into many widely available software packages. The Binary Quadratic Model

(BQM) is perhaps the most archetypal example and can be found at the core of many

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 6

familiar problems such as the Ising model.38,39 The energy of a BQM can be described

by a Hamiltonian with the general form

ℋ =#h!q!
!

+##J"#q"q#			(1)
#$""

where qi, qj, and qk represent the values of the qubits, which can either be {0, 1} or {-1,

1} for binary or spin representations, respectively, hi are the one-body terms, and Jjk are

the two-body interactions. For the Ising model, h represents the physical spins and J

represents the energy of the interactions between the spins.

The methods section below shows that the codon optimization problem can be

mathematically formulated as a BQM and thus implemented on a variety of competing

quantum computing platforms. This representation requires translating the scoring

function used in traditional approaches into a quadratic Hamiltonian where the

eigenstates represent nucleotide sequences and the eigenenergies represent the

scores. Implementing this program on the D-Wave Advantage 1.1 AQC shows that it

identifies high quality solutions that are competitive with a basic implementation of a

genetic algorithm programmed with an equivalent scoring function. Implementing a

version of this program for IBM Q devices, while successful, shows that modelling

practical systems requires too many qubits to be run on even the most advanced gate-

based devices available (e.g. IBM’s 65-qubit Hummingbird device).40 However,

executing the model on an IBM noisy simulator41 demonstrates the potential of the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 7

algorithm. Finally, we comment on the potential usability of the BQM approach on

current and future generations of quantum computers.

Results

Codon optimization was implemented as a BQM on quantum devices with a

Hamiltonian designed to optimize GC-content, minimize sequentially repeated

nucleotides, and optimize codon-usage bias (see equation (15) in Methods for details).

Quantum devices use qubits to store data, which decode digitally to 0’s and 1’s upon

measurement, but which also may be in a superposition of 0 and 1 during the

calculation. To encode classical genetic data into a quantum device, every possible

codon that can map to the target polypeptide sequence is required to be explicitly

represented by a physical qubit. The qubits which return “1” upon measurement

represent the codons selected at each position in the polypeptide sequence. Therefore,

only 1 qubit (codon) for each position in the polypeptide sequence can be in a “1” state,

and the rest must return “0” upon measurement (Figure 1a). This scheme is enforced by

constructing a 2-body penalty matrix which adds infinite energy to pairs of codons that

map to the same position in the polypeptide sequence (Figure 1b). The final sequence

is determined by recording the values of the qubits and concatenating the

corresponding codons of the qubits in the “1” state (Figure 1c).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 8

Figure 1. (a) Example mapping of each possible codon for the amino acid Glycine (gray oval labeled “G”)

to qubits. Gray boxes represent qubits labeled q0…q3, and the codon assigned to each qubit is shown

next to the qubit label. (b) A penalty matrix is constructed to add infinite energy to cases where more than

one codon is in the “1” state. In this example, qubit q2 is in the “1” state and the rest are in the “0” state,

which returns an energetic penalty equal to 0. (c) Example mapping of codons for protein sequence

GSK… to qubits. One codon is selected for each position in the sequence, highlighted in orange.

AQC accuracy and quality of scores

The goal of the optimization is to find the combination of codons that minimizes

the Hamiltonian (or the objective function for the GA). In theory, AQCs should be able to

find the ground state of the input Hamiltonian. However, due to thermal fluctuations and

limited quantum processing unit (QPU) time, low energy solutions that are near, but not

equal to the ground state are expected. Furthermore, as the size of the problem

increases, the probability of annealing to an optimal eigenvalue decreases. See the

“BQM challenges and limitations” section in the Supplementary Information for further

discussion of technical challenges specific to heavily constrained problems such as

codon optimization.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 9

While it is not possible to calculate the true ground state for large problems,

comparisons can be made to other approximate methods, e.g., GA approaches, to

contextualize the results and performance of the AQC approach. Additionally, D-Wave

offers hybrid solvers that augment the AQC with classical methods to optimize the

results. Direct programming of the AQC yielded excessively noisy results with high

variance in the estimation of the ground state. The hybrid solver was thus selected to

more reliably optimize the input Hamiltonian.

Peptides of length 20

The baseline performance of the AQC implementation of codon optimization was

evaluated using 63 peptide fragments of length 20 derived from the human severe

acute respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) spike

glycoprotein sequence (UniProtKB–P0DTC2) and compared with a conventional single-

threaded GA implementation. See the Genetic Algorithm Validation section in the

Supplementary Information for performance metrics. The results of running the AQC

and the GA 20 times each are reported in Figure 2. There is an approximately linear

relationship between the optimization scores, with an average ratio close to 1:1. The

minimum eigenvalue identified by the AQC matched the minimum score obtained by the

GA to machine precision in 77% of the peptide fragments that were considered. In the

remaining cases, the GA identified a lower score than the AQC. The AQC was

programmed to run for a total of 6.0 s including preprocessing and communication

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 10

between the classical and quantum components. The average execution time for the

GA was 1.09 s with a standard deviation of 0.06 s.

Figure 2. Eigenvalues measured by AQC vs GA scores. Lower scores indicate higher probability of

expression. Dashed line represents y=x. Error bars represent the standard deviation of 20 trials and are

shown in blue.

Full-length proteins

The Leap Hybrid solver is capable of solving codon optimization problems

expressed as a BQM with up to ~1,000 amino acids. A selection of full-length

sequences (see Test Applications in Methods) was run on both the AQC and the GA

(Figure 3). Each sequence was allotted 50 s of compute time on the AQC. The GA was

run for 6000 generations, determined through testing to be the point at which the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 11

systems asymptotically converged to a solution (see Genetic Algorithm Validation in the

Supplementary Information). The average execution time for the GA was 10.6 minutes

with a standard deviation of 0.9 minutes.

Figure 3. AQC vs GA for 10 full-length proteins. Dashed line represents y=x. Lower scores indicate higher

probability of expression. Point labels indicate number of amino acids.

Relationship between scoring function and scalability on quantum hardware

The choice of scoring function can have a dramatic impact on the size of the

model. For example, the Hamiltonian representing GC-content requires explicit

calculation of all off-diagonal elements of the two-body interaction matrix. In other

words, all logical qubits must be fully connected. The D-Wave Advantage system is

state-of-the-art in terms of number of qubits and connectivity, described by a P16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 12

Pegasus graph,42 and the best minor embedding scheme for a fully connected graph of

logical qubits was heuristically found to support a maximum of 180 nodes when

interfacing directly with the QPU. However, there are two-body Hamiltonians that do not

require couplers between all logical qubits. The Hamiltonian penalizing sequentially

repeated nucleotides only requires couplers between qubits mapping to neighboring

sequence positions. In this case, the task of minor embedding is straightforward and

would only require a few additional physical qubits to represent the required logical

qubits on the D-Wave Advantage system.

Gate-based simulator results

 The gate-based approach was simulated using the IBM Qasm noisy simulator,

which can simulate up to 24 fully connected qubits. The BQM implementation was

identical to the scheme described by the AQC (Figure 1), and the optimization was

carried out using QAOA.37 The codon optimization simulation was run on 313 peptides

of length four and one peptide of length three, each requiring between 7-24 logical

qubits with full connectivity. In the most resource-intensive scenario, there could be four

amino acids in a row that each map to six qubits, and the algorithm is tasked with

finding the ground state out of 64 = 1296 possible states using 24 qubits (the maximum

supported by the simulator). The task is therefore small enough to compute the exact

result with the NumPyMinimumEigensolver exact solver as a comparison to the

simulation.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 13

The simulated scores vs the exact scores are shown in Figure 4a. The quantum

algorithm identified the exact solution for 59 peptides, and overall, 84% of the trials

yielded valid results. However, there were 51 cases where the quantum algorithm

returned results which had an invalid mapping between codons and qubits. In each of

the invalid trials there was at least one amino acid position lacking a selected codon.

This type of error was more common in cases where more qubits were required to run

the simulation (minimum 16 qubits), and therefore the optimization task was more

difficult. The success of the calculation was dependent on the random seed used for the

noisy simulator; rerunning trials that failed to return valid results with different random

seeds changed the outcome and, in each case, a valid result was eventually found. The

instability of the simulation and its dependence on the number of qubits required to run

the simulation is an artifact not just of the simulated noise but also an inherent

consequence of the variational algorithm employed by the simulator, which is not

guaranteed to converge every time. See the “BQM challenges and limitations” section in

the Supplementary Information for discussion about the exponentially small subset of

valid solutions in the total possible solution space as the number of required qubits is

increased. These results imply that it may be impossible to effectively optimize

polypeptides of biological relevance on NISQ devices. Further studies are required to

determine if this behavior could be improved by making use of alternative variational

optimization algorithms or whether fundamental improvements in error correction are

needed at the hardware level.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 14

Figure 4. (a) QAOA simulated scores vs exact scores. Each point represents a single run of the simulator

for each peptide fragment. Lower scores indicate higher quality results. Trials that returned solutions with

invalid mapping between codons and amino acids were excluded. Line of best fit, displayed in blue,

shows on average scores from the quantum algorithm are 33% higher than the classical algorithm. (b)

Number of qubits required to simulate each of the 313 peptide fragments of length 4.

Discussion

 Codon optimization is a classic example of a biological problem with exponential

scaling in solution space. While there exist classical machine learning and artificial

intelligence methods that improve sampling, quantum technology may offer an

alternative or complimentary approach to enhance the ability to identify optimal samples

from these distributions. Current generations of quantum hardware are mature enough

to test ideas for novel algorithmic approaches to problems in life sciences but are not

yet capable of outperforming classical devices. In this study codon optimization is

reformulated to be readily implementable on quantum devices and the viability of the

method is demonstrated on both adiabatic and gate-based quantum computers.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 15

 The D-Wave Systems Advantage 1.1 system was heuristically determined to be

capable of solving codon optimization problems programmed directly into the QPU up to

approximately 180 codons with scoring functions requiring all logical qubits to be fully

connected, which maps to 30 amino acids in the most resource intensive cases. If a

scoring function is selected that does not require full connectivity, such as the

Hamiltonian describing repeated nucleotides, then nearly all of the logical qubits could

map directly to physical qubits and the system size could theoretically be scaled to

accommodate sequences of up to ~1,000 amino acids. There is likely significant room

for performance improvements in the quantum, hybrid, and classical methods. As AQC

hardware matures it will be possible to address questions of scalability for larger

sequences and critically assess the potential for quantum technology to surpass

classical techniques.

 The IBM Experience provides free access to small quantum devices and noisy

simulators. The largest quantum device freely available, Melbourne, contains 15 qubits

with 2-3 couplers between them. The BQM presented in this study requires full

connectivity between the logical qubits. Melbourne is therefore able to represent a

select set of 2-amino acid systems in which each amino acid maps to one or two

codons. Meanwhile the IBM Qasm simulator allows up to 24 fully connected simulated

qubits, which is generally limited to 4 amino acids. This simulation approach is sufficient

to use QAOA to solve small proof of concept problems, but realistically thousands of

qubits with high connectivity are required to run biologically relevant sequences. Given

IBM’s current public Roadmap for Scaling Quantum Technology,40 devices with this

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 16

capacity are not expected to be available to the public before 2024. Utilizing the

simulator, the QAOA algorithm had variable performance, identifying the true ground

state solution in nearly 20% of the trials, and failing to identify a valid solution in 16% of

the trials. As noted above the success of the calculation was dependent on the random

seed used for the noisy simulator; valid results for each failed run can be obtained by

rerunning with different random seeds until a valid result is found. Further investigation

on physical devices is required to determine the limit of the accuracy and precision of

the method.

 There is a vast body of literature discussing codon optimization techniques for

protein expression. This study contributes to the field by offering a novel approach to

sampling the vast solution space with an emerging technology. The considerations that

went into the construction of the Hamiltonian were designed to highlight some of the

implementational nuances associated with common scoring functions. For example, the

expression for measuring optimality of GC-content requires full connectivity between

qubits. However, counting repeated nucleotides between neighbors only requires some

qubits to be coupled. Codon usage bias can be factored into the Hamiltonian using one-

body terms, but one could imagine a more thorough approach which compares the

distribution of codons selected in the sequence compared to the reference distribution,

which would require two-body terms. Similarly, implementing the popular “one amino

acid-one codon” strategy would require codons from each type of amino acid to be

coupled,18,21,43 adding many two-body terms but not as many as optimization of GC-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 17

content. Thus, the particular Hamiltonian studied here serves as a demonstration of the

efficacy of the method at evaluating a realistically complicated objective function.

Further studies are required to evaluate these samples beyond simple numerical

scores to determine the value this approach could add to the field of protein expression

using future generations of quantum hardware. Current quantum hardware is subject to

high levels of noise and is therefore not competitive with classical techniques in most

practical applications. However, quantum hardware and techniques are advancing

exponentially in terms of both scale and tolerance to noise. This rapid advancement

coupled with the expectation that scaling with problem size is significantly reduced on

quantum hardware compared with classical methods implies that future quantum

approaches could provide a significant performance advantage for optimization of NP

problems in life sciences.

Methods

Codon optimization algorithm

Classical scoring functions can be reinterpreted as a Hamiltonian by separating

one- and two-body interaction terms. There is considerable research and ongoing

debate of the proper way to score nucleotide sequences for expression,5,8,18–21,24–27,43,10–

17 as well as arguments against the use of codon optimization in some cases.5 The

purpose of this study is not to contribute to the discussion of whether or not codon

optimization is an appropriate tool for any given context or the optimal way in which it

should be performed but rather to investigate a novel method of sampling the vast

solution space. The optimization task is therefore restricted to three considerations that

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 18

capture simple countable properties from the sequences themselves. This includes

discussion of how to formulate energetic terms in the Hamiltonian that serve to

minimize:

1. Codon usage bias.

2. The difference between GC-content and a target value.

3. The number of sequentially repeated nucleotides.

Energetic terms can be combined into one Hamiltonian or used on their own, just

like a scoring function in a GA. Furthermore, the Hamiltonian could be extended using

any type of scoring function that can be broken down into one- and two- body

interaction terms. The following sections outline the mathematical representations of

these optimization tasks and show how they naturally map to a Hamiltonian with a form

compatible with a BQM.

Two additional constraints are imposed to add energetic penalties to

combinations of codons that do not translate to the query sequence. The first constraint

adds a small linear shift to the one-body term of each qubit. Shifting the potentials

increases the energetic favorability of including more codons in the sequence. Similarly,

the other constraint adds a significant energetic penalty to codons mapping to the same

position in the amino acid sequence. The combination of these two potentials optimizes

the energetic score of valid combinations of codons compared to invalid combinations.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 19

Incorporating codon usage bias

 Codon usage frequency varies by host system.44 Therefore, the scoring function

is tailored to match the expression system. For this study, codon usage frequencies for

e. coli are imported from the python-codon-tables 0.1.10 library.45 Let Ci represent the

frequency of finding codon C at position i. The potential is thus designed to return a

large penalty for rare codons (where Ci is small) and incur a negligible penalty for

codons readily available to the system (where Ci is large). One such function is the log

of the inverse multiplied by -1. This function yields the desired behavior of adding large

penalties to rare codons and adding small penalties to accessible codons. However, the

function is undefined at Ci = 0. If a host system truly does not have access to a given

codon, then any sequence containing the codon is not expressible, and the probability

of expression would be zero. However, the scoring function must be restricted to finite

decimal values, so an infinitesimal value, εf, is added to the denominator to avoid

undefined values. For a system containing N possible codons, the Hamiltonian is given

by:

ℋ% = −𝑐%#log 1
1

𝐶& + 𝜀%
4 𝑞&

'

&

= 𝑐%#𝜍&𝑞&

'

&

			(2),

where cf is a tunable constant, qi ∈ {0,1} is the value of the qubit, and ζ is a vector

containing the values of the log inverse codon usage frequencies. Given the binary qi

values, the Hamiltonian only penalizes codons that are “selected”, represented by

qubits with value qi = 1.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 20

Optimize target GC concentration

To optimize the GC concentration of a nucleotide sequence, rGC, a cost function

∆ must be introduced to minimize the difference between rGC and the target GC

concentration, rT. The simplest objective function satisfying this constraint is a quadratic

function,

∆= 𝑐()(𝜌() − 𝜌*)+,			(3)

where cGC is a tunable constant. The GC content is calculated by summing the number

of G’s and C’s in the sequence of length N and normalizing by the number of

nucleotides in the sequence

𝜌() =
1
𝑁#𝑠&𝑞&

'

&

			(4),	

where si is an integer representing the number of G’s and C’s in codon i, and qi

represents the value of qubit i. By expanding equation (3), a form similar to a Binary

Quadratic Model (BQM) formulation becomes apparent:

ℋ() ∝ (𝜌() − 𝜌*)+ =
1
𝑁+##(𝑠⨂𝑠)&,𝑞&𝑞, −

2𝜌*
𝑁 #𝑠&𝑞&

'

&

+ 𝜌*+
'

,

'

&

			(5)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 21

The matrix represented in the double sum needs to be restricted to a sum over the

upper triangular elements, consistent with equation (1). By decomposing the sum into

the trace and a term that sums the contributions of the off-diagonal elements, the sum

can be restricted to the upper triangular elements. The trace requires a single

summation over si2. Since qubits map to binary values, they are idempotent with

themselves and therefore qi2 = qi.

𝑇𝑟 E##(𝑠⨂𝑠)&,𝑞&𝑞,)	
'

,

'

&

F =#𝑠&+𝑞&

'

&

		(6)

Since the matrix is symmetric, all off-diagonal terms are accounted for in a upper

triangular form by multiplying by 2. Thus,

ℋ() =
2𝑐()
𝑁+ ##𝑠&𝑠,𝑞&𝑞, +

𝑐()
𝑁+ #𝑠&+𝑞&

'

&

−
2𝜌*𝑐()
𝑁 #𝑠&𝑞&

'

&

+ 𝑐()𝜌*+ 		(7)
'

,$&

'

&

recapitulates the quadratic cost function (equation (3)) in a form consistent with a BQM

(equation (1)). See the GC-Content Derivation section in the Supplementary Information

for a full derivation.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 22

Minimize sequentially repeated nucleotides

To minimize the number of repeated nucleotides in a sequence, all codons

mapping to sequential positions in the amino acid sequence are compared. Let r(Ci, Cj)

represent a quadratic function that returns the maximum number of repeated sequential

nucleotides between codons Ci and Cj, shifted to the origin for null cases by subtracting

one. For example,

𝑟(𝐴𝑇𝐴, 𝑇𝐶𝐺) = 1+ − 1 = 0

𝑟(𝐴𝑇𝑨, 𝑨𝐶𝐺) = 2+ − 1 = 3

𝑟(𝐶𝑮𝑮, 𝑮𝑮𝑮) = 5+ − 1 = 24

Repeated nucleotide penalties are stored in a matrix R,

𝑅&, = 𝑟O𝐶& , 𝐶,P𝛿&, 			(8),

where the delta-function returns 1 if the codons map to sequential positions and 0

otherwise.

𝛿&, = S
1	𝑖𝑓	𝑖	𝑎𝑛𝑑	𝑗	𝑚𝑎𝑝	𝑡𝑜	𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																			

		(9)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 23

Supplementary Figure S1 shows the result of applying this function to the system in

Figure 1. The total repeated nucleotide penalty for a given nucleotide sequence is given

by

ℋ- =##𝑅&,𝑞&𝑞,

'

,

'

&

			(10).	

Matrix R is upper triangular, so the pairwise sum can be restricted to upper triangular

elements without changing the result, making it compatible with the BQM model

(equation (1)). A tunable constant, cR, is introduced to weight the contribution in the

Hamiltonian, resulting in the form:

ℋ- = 𝑐-##𝑟O𝐶& , 𝐶,P𝛿&,𝑞&𝑞, 			(11).
'

,$&

'

&

	

Additional constraints to the Hamiltonian

 The energetic terms described above are designed to add penalties to particular

sequence properties. The ground state energy of this type of objective function is zero

since introducing codons increases the score. To counteract this tendency, a constant

factor, ε, is subtracted from the one-body term of each codon, thereby increasing the

energetic favorability of introducing codons to the system. The absolute value of the

constant must exceed the largest value in the one-body vector h (equation (1)).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 24

To negate the possibility of assigning more than one codon to a given position, a

site-specific delta-function is introduced that applies an effectively infinite penalty to

pairs of codons assigned to the same position.

𝛿.&, = S
∞	𝑖𝑓	𝑖	𝑎𝑛𝑑	𝑗	𝑚𝑎𝑝	𝑡𝑜	𝑠𝑎𝑚𝑒
	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	𝑖𝑛	𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																										
	(12)

Supplementary Figure S2 shows the result of applying equation (12) to the example

system referenced in Figure 1. For a system with N possible codons, the Hamiltonian is

modified by adding the following terms:

ℋ/ = −#𝜀
'

&

+##𝛿.&,𝑞&𝑞,

'

,$&

			(13).		
'

&

Implementation of objective function

The Hamiltonian representing the total “energy” of a nucleotide sequence is

computed by summing the contributions of the expressions defined in the previous

sections.

ℋ = ℋ% +ℋ() +ℋ- +ℋ/			(14).

Expanding and rearranging the terms gives the form in equation (15):

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 25

ℋ =#[𝑐%𝜍& −
2𝜌*𝑐()
𝑁 𝑠& +

𝑐()
𝑁+ 𝑠&

+
'

&

−ε]𝑞&

+##i
2𝑐()
𝑁+ 𝜎&, + 𝑐-𝑟O𝐶& , 𝐶,P𝛿&, + 𝛿.&,k 𝑞&𝑞, + 𝑐()𝜌*+

'

,$&

'

&

		(15).

This form is consistent with the BQM formalism (equation (1)) and can be directly

implemented into BQM frameworks.

Algorithm implementations

 The current approach to performing calculations on quantum devices requires

the interaction terms to be precomputed on classical devices and read into the quantum

devices via specialized APIs. The one- and two-body interaction terms from equation

(15) were precomputed in python 3.7 using standard libraries and numpy46 arrays. The

numpy arrays were converted to dictionaries in accordance with the expected input for

the quantum device libraries.

The execution of the BQM was carried out using libraries described in the

following sections. Each calculation was run 20 times for small peptide fragments (<100

residues), and full-length proteins were only run one time due to QPU resource

constraints. Table 1 provides the values of the constants used in the objective function.

The eigenstate returned by the quantum devices was converted back to a nucleotide

sequence and translated to a polypeptide sequence to verify the validity of the result.

Furthermore, the nucleotide sequence was scored using the classical scoring function

used by the GA, and the result was compared to the eigenvalue returned by the

quantum devices. Eigenvalues and classical scores agreed to 8 decimal places.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 26

D-Wave Advantage 1.1

The codon optimization BQM was implemented on the D-Wave Advantage

System 1.1 utilizing the Leap Hybrid Solver1. This adiabatic quantum device contains

more than 5,000 superconducting qubits. Each qubit is connected to 15 others

described by a Pegasus P16 graph.42 The Advantage system was accessed through the

D-Wave Leap web interface, which serves as an access point to QPU hardware as well

as an integrated developer environment with built-in support for the full D-Wave API.

The program was constructed and executed using python libraries provided by

D-Wave systems. The BinaryQuadraticModel class in the dimod 0.9.10 python library

was used to construct the model from the classically prepared data and convert it to a

data structure compatible with the quantum device. The one- and two-body interaction

terms were precomputed, stored in numpy arrays, and passed into the

BinaryQuadraticModel instance along with an offset of 0.0 and the dimod.BINARY

representation. The model was executed using the LeapHybridSampler classes in the

dwave.system python library. The solver was allotted 6 s of execution time for small

cases (< 100 qubits) and 50 s for larger cases (> 100 qubits). The eigenstate with the

lowest associated eigenvalue was chosen to represent the result of the simulation.

1 https://www.dwavesys.com/sites/default/files/Advantage_Datasheet_v9_0.pdf

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 27

Qiskit Qasm Simulator

 The BQM was implemented in qiskit through the IBM Experience web interface.

This interface provides access to IBM Q hardware and an integrated developer

environment served by Jupyter Notebooks with all fundamental Qiskit 0.16.4 python

libraries installed.41 The IBM Experience provides limited free access to quantum

devices, but the available devices were too small (<= 15 qubits) to sample the codon

optimization BQM problem, so a noisy simulator hosted by the IBM Experience on

classical hardware was used in its place.

 The program was constructed and executed using python libraries provided by

IBM Qiskit. The core of the implementation builds on the QuadraticProgram base class

from the qiskit.optimization library. The codons were appended to the model as binary

variables, physically represented by qubits. The objective function was constructed as a

minimization with the one- and two-body precomputed terms and an offset of 0.0. The

model was simulated using the Aer class with the qasm_simulator backend and

FakeVigo noise data, both from the Qiskit library, and the simulator was converted to an

executable Quadratic Unconstrained Binary Optimization (QUBO) model with the

MinimumEigenOptimizer from the qiskit.optimization.algorithms library. Finally, the

combinatorial optimization was carried out with QAOA37 from the qiskit.aqua.algorithms

library. The program was run with default values where possible.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 28

Classic genetic algorithm

 A basic single-threaded genetic algorithm with an objective function

mathematically equivalent to equation (15) was implemented in Python 3.7 using

standard libraries and BioPython 1.78.47 For polypeptide fragments (<= 20 residues),

the simulations were run for 100 iterations (generations), with each generation

procreating 50 times. For full-length sequences (> 100 residues), the number of

iterations was increased to 6000. The calculations were run on the Leap web interface

to provide an accurate execution time comparison to the AQC calculations. See the

Genetic Algorithm Validation section in the Supplementary Information for performance

metrics.

Test applications

 Sample peptide sequences were obtained by splitting the human severe acute

respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) spike glycoprotein

sequence (UniProtKB–P0DTC2) into shorter peptide fragments for simulation on the

resource-constrained systems. The sample preparation for the D-Wave system yielded

62 peptides of length 20 and one additional peptide of length 15. The IBM Qasm

simulator was simulated with 313 peptides of length 4 and one additional peptide of

length 3. Additionally, 10 full-length proteins associated with SARS-CoV-2 studies were

scored using the AQC and the GA for comparison. See the Sequences section of the

Supplementary Information for the full list.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 29

Acknowledgements

We acknowledge the use of IBM Quantum services for this work. The views expressed

are those of the authors, and do not reflect the official policy or position of IBM or the

IBM Quantum team. We would like to thank Eric Manas, Chris MacDermaid and Simon

Kelow of GSK for evaluation and suggested refinements, and Andrea Schreij for helping

with graphic design.

Author Contributions

D.M.F. conceived, designed, and implemented this project. R.C.W. contributed to the

design of experiments. R.C.W. and K.M.M. contributed to the validation of the work.

D.M.F. and R.C.W. wrote the manuscript.

Competing Interests

The authors declare no competing interests.

References

1. Kimchi-Sarfaty, C. et al. A “Silent” Polymorphism in the MDR1 Gene Changes

Substrate Specificity. Science (80-.). 315, 525–529 (2007).

2. Buhr, F. et al. Synonymous Codons Direct Cotranslational Folding toward

Different Protein Conformations. Mol. Cell 61, 341–351 (2016).

3. Kirchner, S. et al. Alteration of protein function by a silent polymorphism linked to

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 30

tRNA abundance. PLoS Biol. 15, (2017).

4. Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence: Synonymous

nucleotides as a key to biological regulation and complexity. Nucleic Acids Res.

41, 2073–2094 (2013).

5. Mauro, V. P. & Chappell, S. A. A critical analysis of codon optimization in human

therapeutics Optimizing codon usage for increased protein expression. Trends

Mol. Med. 20, 604–613 (2014).

6. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous

protein expression. Trends Biotechnol. 22, 346–353 (2004).

7. Brule, C. E. & Grayhack, E. J. Synonymous Codons: Choose Wisely for

Expression. Trends Genet. 33, 283–297 (2017).

8. Parret, A. H., Besir, H. & Meijers, R. Critical reflections on synthetic gene design

for recombinant protein expression. Curr. Opin. Struct. Biol. 38, 155–162 (2016).

9. Quax, T. E. F., Claassens, N. J., Söll, D. & van der Oost, J. Codon Bias as a

Means to Fine-Tune Gene Expression. Mol. Cell 59, 149–161 (2015).

10. Gustafsson, C. et al. Engineering genes for predictable protein expression.

Protein Expr. Purif. 83, 37–46 (2012).

11. Kim, C. H., Oh, Y. & Lee, T. H. Codon optimization for high-level expression of

human erythropoietin (EPO) in mammalian cells. Gene 199, 293–301 (1997).

12. Wang, X., Li, X., Zhang, Z., Shen, X. & Zhong, F. Codon optimization enhances

secretory expression of Pseudomonas aeruginosa exotoxin A in E. coli. Protein

Expr. Purif. 72, 101–106 (2010).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 31

13. Inouye, S., Sahara-Miura, Y., Sato, J. I. & Suzuki, T. Codon optimization of genes

for efficient protein expression in mammalian cells by selection of only preferred

human codons This paper is dedicated to the late Professor J. Woodland

Hastings (deceased on August 6, 2014). Protein Expr. Purif. 109, 47–54 (2015).

14. Newman, Z. R., Young, J. M., Ingolia, N. T. & Barton, G. M. Differences in codon

bias and GC content contribute to the balanced expression of TLR7 and TLR9.

Proc. Natl. Acad. Sci. U. S. A. 113, E1362–E1371 (2016).

15. Barahimipour, R. et al. Dissecting the contributions of GC content and codon

usage to gene expression in the model alga Chlamydomonas reinhardtii. Plant J.

84, 704–717 (2015).

16. Chung, B. K. S. & Lee, D. Y. Computational codon optimization of synthetic gene

for protein expression. BMC Syst. Biol. 6, (2012).

17. Nieuwkoop, T., Claassens, N. J. & van der Oost, J. Improved protein production

and codon optimization analyses in Escherichia coli by bicistronic design. Microb.

Biotechnol. 12, 173–179 (2019).

18. Puigbò, P., Guzmán, E., Romeu, A. & Garcia-Vallvé, S. OPTIMIZER: A web

server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35,

126–131 (2007).

19. Supek, F. & Vlahoviček, K. INCA: Synonymous codon usage analysis and

clustering by means of self-organizing map. Bioinformatics 20, 2329–2330 (2004).

20. Chin, J. X., Chung, B. K. S. & Lee, D. Y. Codon Optimization OnLine (COOL): A

web-based multi-objective optimization platform for synthetic gene design.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 32

Bioinformatics 30, 2210–2212 (2014).

21. Rehbein, P., Berz, J., Kreisel, P. & Schwalbe, H. “CodonWizard” – An intuitive

software tool with graphical user interface for customizable codon optimization in

protein expression efforts. Protein Expr. Purif. 160, 84–93 (2019).

22. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence

determinants of gene expression in Escherichia coli. Science (80-.). 23, 1–7

(2008).

23. Holland, J. H. Adaptation in Natural and Artificial Systems. (MIT Press, 1992).

24. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene

Designer: A synthetic biology tool for constructuring artificial DNA segments. BMC

Bioinformatics 7, 1–8 (2006).

25. Sandhu, K. S., Pandey, S., Maiti, S. & Pillai, B. GASCO: Genetic Algorithm

Simulation for Codon Optimization. In Silico Biol. 8, 187–192 (2008).

26. Fu, H. et al. Codon optimization with deep learning to enhance protein

expression. Sci. Rep. 10, 1–9 (2020).

27. Lanza, A. M., Curran, K. A., Rey, L. G. & Alper, H. S. A condition-specific codon

optimization approach for improved heterologous gene expression in

Saccharomyces cerevisiae. BMC Syst. Biol. 8, 1–10 (2014).

28. Zhong, H.-S. et al. Quantum computational advantage using photons. Science

(80-.). 1463, 1460–1463 (2020).

29. Arute, F. et al. Quantum supremacy using a programmable superconducting

processor. Nature 574, 505–510 (2019).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 33

30. Djidjev, H., Chapuis, G., Hahn, G. & Rizk, G. Efficient combinatorial optimization

using quantum annealing. arXiv 1–25 (2018).

31. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90,

15002 (2018).

32. Doll, J. D., Gomez, M. A., Stenson, C., Finnila, A. B. & Sebenik, C. Quantum

annealing: A new method for minimizing multidimensional functions. Chem. Phys.

Lett. 219, 343–348 (2002).

33. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random

instances of an NP-complete problem. Science (80-.). 292, 472–476 (2001).

34. Mulligan, V. K. et al. Designing Peptides on a Quantum Computer. bioRxiv 1–20

(2019) doi:10.1101/752485.

35. Muthukrishnan, S., Albash, T. & Lidar, D. A. Tunneling and speedup in quantum

optimization for permutation-symmetric problems. Phys. Rev. X 6, 1–23 (2016).

36. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 1–20

(2018).

37. Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Optimization

Algorithm. arXiv 1–16 (2014).

38. Kochenberger, G. et al. The unconstrained binary quadratic programming

problem: A survey. J. Comb. Optim. 28, 58–81 (2014).

39. Date, P., Patton, R., Schuman, C. & Potok, T. Efficiently embedding QUBO

problems on adiabatic quantum computers. Quantum Inf. Process. 18, 1–31

(2019).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 34

40. Gambetta, J. M. IBM’s Roadmap For Scaling Quantum Technology. IBM

Research Blog https://www.ibm.com/blogs/research/2020/09/ibm-quantum-

roadmap/ (2020).

41. Abraham, H. et al. Qiskit: An Open-source Framework for Quantum Computing.

(2019). doi:DOI: 10.5281/zenodo.2562110.

42. Dattani, N., Szalay, S. & Chancellor, N. Pegasus: The second connectivity graph

for large-scale quantum annealing hardware. arXiv (2019).

43. Menzella, H. G. Comparison of two codon optimization strategies to enhance

recombinant protein production in Escherichia coli. Microb. Cell Fact. 10, 11–15

(2011).

44. Grantham, R., Gautier, C., Gouy, M., Mercier, R. & Pavé, A. Codon catalog usage

and the genome hypothesis. Nucleic Acids Res. 8, 197 (1980).

45. Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from

international DNA sequence databases: Status for the year 2000. Nucleic Acids

Res. 28, 292 (2000).

46. Harris, C. R. et al. Array programming with {NumPy}. Nature 585, 357–362

(2020).

47. Cock, P. J. A. et al. Biopython: Freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

 35

Tables

cf 0.1
cGC 1
cR 0.1
ε 1
rT 0.5

Table 1. Constants used in equation (15).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.19.431999doi: bioRxiv preprint

https://doi.org/10.1101/2021.02.19.431999

